用户名: 密码: 验证码:
蜀南地区中二叠统缝洞储层特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近两年,蜀南地区弥补老区产量的递减和完成新井产量任务,逐步优选高产量、大储量的中二叠统目标进行钻探:2008年新开包003-2井茅口组钻探见到了天然气,中测4.6万方/日;寺005-1井茅口组钻遇大缝洞系统,气水同产。这些新井的成功表明中二叠统还是具有较大的剩余储量。因此,重新认识蜀南地区中二叠统缝洞性储层特征及其控制因素有着重要意义。
     本文以岩芯、录井、测井、物性等资料为基础,研究工区储层的主要储集空间类型,裂缝、溶洞的空间配置关系,建立缝洞系统的基本地质模型;通过茅四和茅三残余厚度研究本区岩溶发育特征,利用放空井段、探明储量分布与古侵蚀面之间的相互关系,总结溶洞系统特征及其发育控制因素。
     研究结果表明研究工区中二叠统碳酸盐岩储层基质岩块的孔隙度极低,渗透性能差。溶洞系统是主要储渗空间,裂缝主要提供一些渗滤通道和扩大连通范围。喜山期构造难以形成较大溶洞,东吴期古岩溶是溶洞系统的主要成因;区内总体剥蚀厚度差距不大,中部剥蚀最强,茅四段全部被剥蚀,只留下茅三段。利用放空井位分布与已探明储量分布为证据,溶洞主要分布于工区西边茅四尖灭线以西的岩溶高地边缘-岩溶斜坡上。该岩溶发育区的单斜或向斜可以作为寻找天然气的重要区块;在前人成藏研究的基础上,研究认为喜马拉雅期构造运动产生褶皱和断裂,褶皱构造作用使地下相互独立的缝洞系统一部分因背斜相对抬升,另一部分则随向斜相对下降。气水的分异作用主要在构造裂缝网络和古溶洞系统两者组合、沟通形成的缝洞系统内部进行。不论是背斜构造的高部位,还是向斜的低部位,缝洞系统中必然气水共存。所以排水找气理论具有普遍的适应性。
The past two years, the south of Sichuan gradually optimized large duty,large capacity targets in the middle Permian drilling to retrieve declining production in old bases and complete the task of the new wells: In 2008, a new well Bao 003-2 see natural gas in maokou formation drilling, the measurement of 4.6 / day; Si 005-1 maokou formation well drilled big fracture-cavity system and produced the gas and the water simultaneously. The success of these new wells illustrate that still has large remaining reserves in the middle Permian. Therefore, the recognition of fracture-cave reservoir characterization and controlling factors of The Middle Permian in the south of sichuan basin is of great significance.
     This paper concentrates on the principal reservoir storage space type, cracks-caves of space collocation relation, setting basic geological model of Fracture-Cavity System that is based on dates of core, log, well logging and physical properties. Using thickness of remaining strata reveal carst developmental Characterization and the relationship between depletion section、distribution of the proven reserves and fossil erosion surface generalize the cave reservoir characterization and controlling factors.
     Research results show that carbonate reservoir matrix block of The Middle Permian is very low porosity and poor permeability. Cave system is the main reservoir and flow space, fracture mainly to provide some filtration channels and expand the scope of connectivity. Himalayan tectonic difficult to form many larger caves, Dongwu Age of ancient karst cave system is the main cause; In the region, the overall erosion thickness is little disparity, central erosion strongest, Mao 4 duan all been eroded, leaving only Mao 3 duan; Using the distribution of depletion wells and proven reserves demonstrate that cave system mainly is situated west of Pinch edge of karst highland - karst slopes in work area. monoclinic and syncline in the karst area can find natural gas as an important block. Based on the previous study, the Himalayan tectonic movement created folds and faults that make underground independent cave system part with the relative uplift of Anticline, partly with the relative decline syncline.Gas-Water differentiation mainly happen in Fracture-cave system that is combined by fracture networks and ancient cave system.Whether the high parts of anticlines or synclines low parts, gas and water must coexist in Fracture-cave system, wherefore gas finding by water withdrawal theory is of universal adaptability.
引文
[1]洪余刚.乐山-龙女寺古隆起奥陶系风化壳岩溶储层特征与地震预测研究[D].西南石油大学,2006.
    [2]陈胜.塔河油田奥陶系古岩溶及储层特征研究[D].成都理工大学,2007.
    [3]许维武.塔河油田南部地区奥陶系岩溶储层发育规律研究[D].成都理工大学,2008.
    [4]徐国强.塔里木盆地早海西期风化壳岩溶洞穴层研究[D].成都理工大学,2007.
    [5]陆正元.川东、南地区阳新统缝洞储层识别[J].天然气工业,1987,7(1):28-32.
    [6]赵文革,陆正元.四川盆地下二叠统碳酸盐岩气藏储渗空间研究[J].大庆石油地质与开发,2006,25(5):9-11.
    [7]陆正元,陈立官.四川盆地下二叠统气藏储层模式的再认识[J].石油与天然气地质,1993,20(1):11-14.
    [8]陈立官,王洪辉等.川南地区古岩溶与阳新统天然气局部富集关系的探讨[J].成都地质学院学报,1992,19(4):99-105.
    [9]童崇光.四川盆地构造演化与油气聚集[M].地质出版社,1992.2.
    [10]郭正吾等.四川盆地形成与演化[M].地质出版社,1996.
    [11]赵景续.一个岩溶型气藏——威远气田阳新统气藏分析[J].中国岩溶,1988,9:201-207.
    [12]李鸿智,陆正元等.川东阳新统试油层位的选择[J].天然气工业,1989,9(3):50-54.
    [13]黄先平,杨天泉等.四川盆地下二叠统沉积相及其勘探潜力区研究[J].天然气工业,2004,1:10-12.
    [14]马永生等.四川盆地川东去二叠系—三叠系天然气勘探成果与前景展望[J].石油与天然气地质,2006,12:741-750.
    [15]成都地质学院沉积地质矿产研究所译编,长庆石油勘探局勘探开发研究院译编.古岩溶与油气储层[M].成都科技大学出版社,1991.5.
    [16]罗蛰潭,王允诚等.油气储集层的孔隙结构[M].科学出版社,1986.
    [17]陈立官等.油气测井地质[M].成都科技大学出版社,1990.
    [18]洪余刚,陈景山等.古地貌恢复在风化壳岩溶型储层研究中的应用——以川中—川南过渡带奥陶系为例[J].大庆石油地质与开发,2007,2:1-5.
    [19]尹晓贺,蒋裕强,陈义才.川中地区M构造香溪群古构造恢复及气水分布关系探讨[J].西部探矿工程,2006,10:162-166.
    [20]罗志立等.四川盆地古构造发展及对油气聚集的控制作用研究报告[M].成都理工学院出版社,1994.
    [21]戴弹申,欧振洲.裂缝圈闭及其勘探方法[J].天然气工业, 1990,10 (4):1- 6.
    [22]陆正元.四川盆地下二叠统高自然伽玛溶洞储层[J].石油学报, 1999,20(5):24- 26.
    [23]刘仲宣,夏绍文.川西南地区阳新统有效裂缝分布规律与布井方法探讨[J].天然气工业,1991,11(3):1-7.
    [24]陆正元,王洪辉,张高信,王守冲.致密碳酸盐岩缝洞型有水气藏的储量计算──以四川盆地下二叠统气藏为例[J].石油与天然气地质,1997,18(03):195-198.
    [25]曾学鲁,徐玉麟,魏真鑫等.新疆塔里木盆地北部层序地层学及其古生物学研究[M].北京:地质出版社,1996.
    [26]乐昌硕,于炳松,田成等.新疆塔里木盆地北部层序地层及其沉积学研究[M].北京:地质出版社,1996.
    [27]李士伦等.天然气工程[M].北京:石油工业出版社,2000.
    [28]王允诚等.油层物理学[M].北京:石油工业出版社,1993.
    [29]孙良田等.油层物理实验[M].北京:石油工业出版社,1992.
    [30]黄籍中,张子枢.四川盆地阳新统天然气的成因[J].石油勘探与开发,1982,9(1):12-25.
    [31]黄华梁,吴葆青.川南阳新统气藏岩溶成因与气藏分布[J].中国岩溶,985,7(4):297-305.
    [32]曾令卓,王园森.川南排水找气储量计算方法[J].天然气工业,1995,15(4):86-88.
    [33]贾疏源.中国岩溶缝洞系统油气储层特征及其勘探前景[J].特种油气藏,1997,4(4):1-5.
    [34]易运昭,贾疏源等.川南地区深部阳新统灰岩岩溶缝洞系统的发育特征[J].中国岩溶,1988,9:184-190.
    [35]张富成.川南向斜构造阳新统气藏勘探前景的探讨[J].天然气工业,1988,8(4):7-11.
    [36]颜其彬,庞雯等.川南茅口灰岩岩溶特征与油气关系[J].西南石油学院学报,1993,8:11-16.
    [37]李国辉,李翔等.四川盆地二叠系三分及其意义[J].天然气勘探与开发,2005,9:20-25.
    [38]夏崇双.不同类型有水气藏提高采收率的途径和方法[J].天然气工业,2002,5:73-77.
    [39]曹刚,李其安,安辉.川南地区下二叠统茅口组岩溶型气藏地震、地质特征探讨[J].天然气地球科学,1999,8:76-82.
    [40] Injection.Proceedings of the Daqing International Meeting,1982,AAPG Studies in Geology,28
    [41] Lawrence D. Christian: U. S. Patent No. 4149598 entitled "Recovery of Gas from Water Drive Gas Reservoirs,”Assigned to Exxon Production Research CoMPany.
    [42] Coleman S B et al.Applying gas well load up technology. JPT, 1991;(4):344-349.
    [43] F. P. Brinkman, Increase Gas Recovery from a Moderate Water Drive Reservoir,SPE 9473, 1980.
    [44] Lutes, J. L. Chiang, C. P.,et al, Accelerated Blow down of a Strong Water Drive Gas Reservoir, SPE 6166, 1976
    [45] Satman,Abdurrahmant et a1. Pressure transient analysis of a composite naturally fractured reservoir.SPE Formation Evalution,1991;(6):109-175.
    [46] Stehfest H. Numerical inversion of Laplace transforms algorithm 368. Communication of the ACM,1970;13:47.
    [47] Payne D A. Material balance calculations in tight-gas reservoirs:the pitfalls of p/Z plots and a more accurate technique.SPE 25259.
    [48] Jacques Hagoort et al. Numerical solution of the material balance equations of coMPartmented gas reservoirs.SPE 38082.
    [49] Pow M et al. Production of gas from tight naturally fracture reservoirs with activewater. JCPT, 2000.
    [50] V. L. Trubaer and A. N. Shandrygin:“INCREASE OF GAS RECOVERY BY ACTIVE TIMULATION OF THE WATER DRIVE OF THE MASSIVE POOL OF THE KOROBK DUSK FIELD", IZU. VYSSH.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700