用户名: 密码: 验证码:
基于FBG的生物膜式反应器内温度场测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物膜滴滤塔反应器是一个含生化反应的多元多相流、传热传质的复杂体系,流体的多相流动和传输特性又与多孔填料塔内的生化反应特性密切相关。总结国内外相关的理论和实验方面的研究工作可知:生物膜滴滤塔反应器可以动态控制、并能够影响有机废水降解效率的热物理参数包括:系统温度场、有机废水的浓度场和速度场、气相的浓度场和速度场、反应器填料段的压力场等。这些参数具有复杂性、空间分布性、时间动态性,并直接或间接地影响着有机废水中的有机质在生物膜中的扩散速度场、浓度场乃至生物膜厚度等,从而影响生物膜对有机废水的降解效率。正是由于反应器中生化反应过程的这些复杂性和不确定性,导致了过程机理研究与过程优化控制的困难。文章提出采用“分布式光纤Bragg光栅(FBG)”技术对反应器内温度场分布进行实验研究,同时建立了能够完整描述反应器内温度场分布的数学模型,研究了温度和压力二参量对FBG的交叉敏感特性。主要研究成果如下:
     ①设计并搭建了处理有机废水的实验装置,根据反应器的几何特征和处理对象设计并制作了液体分布器、液体收集器。分析了影响反应器降解效率的因素。
     ②设计并制作了FBG温度传感单元、FBG温度传感阵列,研究了传感单元和传感阵列的温度分辨率、测量误差以及各传感单元Bragg中心波长漂移量与温度之间满足的函数关系。实验结果表明:FBG温度传感单元以及传感阵列的温度分辨率为0.10℃,误差为±0.20℃。研究了温度和压强二参量对FBG交叉敏感特性,给出相应的数学模型和仿真结果。仿真结果表明:当ΔT和ΔP的值分别达到90℃和90MPa时,交叉敏感项的值将达到1pm。
     ③根据热力学参数、气-液-固-生物相参数以及滴滤塔结构参数等,以细胞代谢产热模型、非牛顿流体在毛细管内的渗流模型、毛细管展开微平面上对流传热的等效模型,建立了一个完整的用于描述反应器内温度场分布、压力场分布的数学模型。深入研究了反应器内温度分布与降解效率之间的函数关系。
     ④采用FBG温度传感阵列系统,对生物膜反应器在挂膜启动前、挂膜启动初期、挂膜启动稳定后的温度场分布进行了实验研究。实验结果表明:由挂膜启动初到挂膜启动稳定后(120h~360h),填料段径向温差由0.80℃增加到1.38℃,轴向温差由2.08℃增加到3.04℃。在液相流变速循环条下,填料段上部温度随液相流流速的增加变化明显,最后趋于流体进口温度;填料床下部温度随循环液流速的增大而升高,当液体流速达到45L/h时,填料床下部温度超过上部温度。
Trickling biofilter reactor is an extremely complex system which is composed of biochemical reactions, multiphase fluid flow, heat and mass transfer. And fluidic multiphase flow and transmission property are closely associated with the characteristics of biochemical reaction in the packing column. The paper has researched the literatures including domestic and international theories and experiments, and concluded that the trickling biofilter can be dynamically controlled and the treatment efficiency of the trickling biofilter will be affected by the thermophysical parameters including the system temperature field, concentration and velocity field of organic wastewater, gas velocity and concentration field and pressure field in the reactor etc. these parameters are of complexity, spatial distribution and dynamic characteristic of the time. Simultaneously, the organic matter diffusion comprising velocity field, density field even the biofilm thickness in the biofilm has been directly or indirectly affected by the parameters. Eventually, the affection has given rise to the degradation efficiency of the trickling biofilter for treating the organic wastewater. The biochemical reactions process is of considerable complexity and uncertainty in the biofilm reactor, which increases the difficulty to study the mechanism and optimal control process. The temperature field of reactor has been researched by the technology of distributed fiber Bragg grating (DFBG), a theoretic model has been established for describing temperature distribution of the reactor, and the cross-sensitivity characteristic of fiber Bragg grating (FBG) on temperature and pressure was studied in the paper. The main results are as follows.
     ①The experimental device for treating organic wastewater, and the liquid distributor and collector which accorded to the geometric characteristics of the reactor and processing object, were designed and constructed. Meanwhile, there were analyses on the degradation efficiency impact factors of the reactor.
     ②FBG temperature sensor unit and array were designed and built. The temperature resolution, measurement error, and the functional relationship between the Bragg center wavelength drift and the temperature were researched for the sensor unit and array. The experimental results show that the resolution was 0.10℃, and measurement error was 0.20℃of the FBG temperature sensing unit and array. Besides concentrating on the cross-sensitivity characteristic of temperature and pressure for FBG, the mathematical model and simulation results were achieved. The simulation results show that the value of cross-sensitive items reached 1pm when the temperature and pressure respectively changed to 90℃and 90MPa.
     ③According to the parameters involving thermodynamic parameters, gas-liquid- solid-biology multiphase flow parameters and structure parameters of the biomembrane reactor etc, the mathematical models of temperature and pressure distribution in the reactor were figured out which based on the models including the metabolic heat model of cell, seepage flow model of non-newtonian fluid in the capillary, and convection heat transfer equivalent model on expanding micro-plane of the capillary. Also, it focused particularly on the research of the theoretical modle between temperature distribution and degradation efficiency of the reactor.
     ④There were experimental studies on the temperature distribution of biofilm reactor including pre-start-up, early-start-up and after stable-start-up by adopting the system of FBG temperature sensor array. The results reveal that the radial temperature difference was from 0.80℃to 1.38℃and axial temperature difference from 2.08℃to 3.04℃when the start-up was from initial to stable (120h~360h) in the packing section. While the liquid fluid was with variable velocity, the upper part temperature of the packing section changed significantly with the increase of the liquid flow rate, finally, it tended to fluid inlet temperature. The lower part temperature rised accordingly with the increase of the liquid flow rate, and it was higher than that of the upper part when the liquid flow rate reached 45L/h.
引文
[1]马静颖,洪小平,马增益,等.高浓度有机废水处理中金属离子的离子色谱检测研究[J].计量学报,2007,28(2):180-183
    [2] Cox H H J, Deshusses M A. Biological waste air treatment in biotrickling filters [J]. Current Opinion in Biotechnology, 1998,9: 256-262
    [3] Cox H H J, Sexton T, Shareefdeen Z M, et al. Thermophilic biotrickling filtration of ethanol vapors [J]. Environ. Sic. Techno1. , 2001, 35:2612-2619
    [4] Baltzis B C, Mpanias C J, Bhattacharya S. Modeling the removal of VOC mixtures in biotrickling filters [J]. Biotechnology and Bioengineering, 2001, 72 (4):389-401
    [5] Joanna e Burgess, Simon a Parsons, Richard Mstuetz. Development in outdoor control and waste gas treatment biotechnology: a review [J]. Biotechnology advances, 2001, 19(1): 35-63
    [6]田鑫.净化低浓度有机废气生物膜滴滤塔传输及降解特性[D].重庆大学博士学位论文, 2005.10
    [7] Thorn R, Johansen G A, Hammer E A. Recent developments in three-phase flow measurement [J]. Meas. Sci. Technol, 1998, 8(7): 691-701
    [8] Jae-Eun Cha, Yeh-Chan Ahn, Moo-Hwan Kim. Flow measurement with an electromagnetic flowmeter in two-phase bubbly and slug flow regimes [J]. Flow Measurement and Instrumentation, 2002, 12 (5-6): 329-339
    [9]王化祥,郝魁红,徐丽荣,等.多相流分相含率检测[J].仪器仪表学报,2004, 25(3): 336-339
    [10]姚海元,宫敬,宋磊.多相流相分率的模型预测与检测方法[J].油气储运,2004,27(7):9-13
    [11] Scheers A M. Multiphase Flow Measurement Using Multiply Energy Gamma Ray Absorption (M EGAR) Composition Measurement, SPE36593, 1996
    [12]孙贺东,赵海鸿,周芳德.油气水三相流测量技术的最新进展[J].油气储运,2002,2l(3):31-37
    [13]李玉星,谭宁.多相流流速和相分率测试技术研究进展[J].管道技术与设备,l999(3):4-7
    [14] Jonathan Stuart Lund. Measuring a Gas Mass Fraction, UK Patent, GB 22336681, 2003.2.9
    [15] John D Marrelli, Farhan Siddiqui. Method and Apparatus for Determining Water-cut Fraction and Gas Fraction in Three Phase Mixtures of Oil, Water and Gas, US Patent, US 5576974,1996.11.19
    [16]徐苓安.相关流量计的设计与应用[M].天津:天津大学出版社,1992
    [17] Beck M S, Plaskowski A. Cross Correlation Flowmeters-Their Design and Application [M]. Bristol: Adam Hilger, 1987
    [18] Koppermann C. A Signal Model for Cress Correlation Flow meters to Analysis Systematic Measurement Errors [C]. Budpast: FLOMEKO, 1984,1ll-ll6
    [19] Knapp C H, Carter G C. The Generalized Correlation Method for Estimation of Time Delay [J]. IEEE Trans on ASSP, 1976,24(4):320-327
    [20] Braun H, Fug M, Schneider G. Theory and Application of an Alternative Correlation Flowmeter [J]. Chem Eng Technol, 1987,10:353-360
    [21] Jordan J. Correlation Algorithms, Circuits and Measurement Applications [J]. IEEE Proceedings, 1986,l:133
    [22]刘梦溪,卢春喜,储凌,等.中心气升式三相强化环流反应器内气含率分布的理论分析[J].高校化学工程学报,2005,19(3):332-337
    [23] A1-Qodah Z, AI-Hassan M. Phase holdup and gas-to-liquid mass transfer coefficient in magneto stabilized G-L-S airlift fermenter [J]. Chem Eng J, 2000,79:41-52
    [24] Bando Y, Nishimura M, Sota H, et al. Flow characteristics of three-phase fluidized bed with draft tube-effect of outer column diameter and determination of gas-liquid interracial area [J]. Journal of Chemical Engineering in Japan, 1990,23:587-592
    [25] Waters E A, Caruthers S D, Wickline S A. Correlation analysis of stenotic aortic valve flow patterns using phase contrast MRI [J]. Annals of Biomedical Engineering, 2005,33(7):878-887
    [26] Justin Rounce, Chris Lenn. Pinpointing fluid entries in producing wells, SPE 53249,1999
    [27]李昕,王子延.超声波多普勒流速测量方法的信息窗区域控制研究[J].西安交通大学学报, 2001,35(5): 455-458
    [28]夏卫生,雷廷武,刘春平,等.坡面薄层水流流速测量的比较研究[J].农业工程学报,2004,20(2):23-26
    [29] Eloranta H, Parssinen T, Saarenrinne P, et a1. On the fluid structure interaction of a splitter plate vibration modes and Reynolds number effects [J]. Experiments in Fluids, 2006,41:67-77
    [30]廖强,田鑫,朱恂.生物膜滴滤床内温度及其分布特性[J].化工学报,2006,57(7):1643-1648.
    [31]无锡轻工大学.微生物学.第2版[M].北京:中国轻工业出版社,1990,331-336
    [32] Wani A H, Branion R M R, Lau A K. Biofihration:a promising and cost-effective control technology for odors, VOCs and air toxics [J].Environ.Sci.Health,1997,A32(7):2027-2055
    [33] W u G, Conti B, Vie1 G, et al. A high performance biofilter for VOC emission contro1 [J]. Air Waste Manage. Assoc., 1999,49:185-192
    [34] Kong Z, Farhana L, Fulthorpe R R, et al. Treatment of volatile organic compounds in a biotrickling filter under thermophilic condition [J]. Environ. Sic. Techno1., 2001,35:4347-4352
    [35]桑军强,王占生.低温条件下生物陶粒反应器运行特性研究[J].环境科学,2003,24(2):112-115
    [36]刘硕,王宝贞,王正,等.合式膜生物反应器强化脱氮除磷的实验研究[J].现代化工,2006,26(5):40-44
    [37]田鑫,朱恂,廖强,等.生物膜滴滤床内温度分布特性实验研究[J].工程热物理学报,2005,26(4):662-664
    [38] Kanellopoulos S E, Handerek V A, Rogers A J. Simultaneous strain and temperature sensing with photogenerated in fiber grating [J]. Op . Lett. ,1995 , 20(3):333-335
    [39] Xu M G, Reekie L , Chow Y T et al. Optical In-fiber grating high pressure sensor [J]. Electron. Lett. , 1993 , 29 (4):398-399
    [40] Volanthen M, Geiger H , Cole M J et al. Measurement of arbitrary strain profiles within fibre gratings [J]. Electron. Lett. ,1996 , 32 (11) :1028-1029
    [41] Rao Y J. In-fiber Bragg grating sensors [J]. meas Sci. Technol,1997, 8:335-375
    [42] Davis M A, Kersey A D. Matched-filter interrogation technique for fiber Bragg grating arrays [J]. Electron Lett,1995,3l:822-823
    [43] Sun L M, Cai H W. Influences of Slope Gradient on Soil Erosion [J]. Chinese Journal of Lasers, 2006,33(1): 96
    [44] Xu M G,Archambault J L,Reekie L, et al. Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors [J]. Electron. Lett. ,1994,30:1085-1087
    [45] Bhatia V and Vengsarkar A M.Optical fiber long-period grating sensors [J]. Opt. Lett.,1996,21692-694
    [46] James S W,Dockney M L and Tatam R P. Independent measurement of temperature and strain using in fiber Bragg grating sensors [C]. Proc. 11th Int. Conf. on Optical Fiber Sensors (Sapporo, Japan), postdeadline paper:1996,Fr3-3
    [47] Du W C,Tao X M and Tam H Y. fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature [J]. IEEE Photon. Technol. Lett. , 1999,11:105-107
    [48] Guan B O, Tam H Y, Tao X M, et al. Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating [J]. IEEE Photonics Technology Letters, 2000,12:675-677
    [49]余有龙,赵洪霞,刘盛春,等.光纤光栅传感系统有源时域解调技术[J].中国激光,2004,31(8)983-987
    [50]申人升,于永森,张金,等.薄壁应变筒式光纤光栅压力传感器的研究[J].光电子·激光,2008,19(18):1433-1436
    [51] Volanthen M, Geiger H, Cole M J, et al. Measurement of arbitrary strain profiles within fibre gratings [J]. Electron. Lett. , 1996 , 32 (11) :1028-1029
    [52] Duck G, Ohn M M. Distributed Bragg grating sensing with a direct group-delay measurement technique [J]. Opt. Lett., 2000, 25(2): 90-92
    [53]朱丹丹,李伟欣,李志全,王建军.分布式光纤光栅应变和温度同时测量系统[J].计量学报,2003,29(1)29-32
    [54] Alonso C, Suidan M. T, Kim B. R, et al. Dynamical mathematical model for the biodegradation of VOCs in a biofilter. Biomass accumulation study [J]. Environmental Science and Technology, 1998, 32(20):3118-3123
    [55]畅广西,王辰涯.新型槽式液体分布器的开发与应用[J].炼油设计,1999,29(7):43-45,51
    [56]董谊仁,徐崇嗣.填料塔液体分布器分析[J].化学工程,1996,24(4):25-32
    [57]周海鹰,李鑫钢,张吕鸿.槽式液体分布器均布性能CFD模拟的可视化研究[J].化工进展,2002,Z1:186-189
    [58]朱玉峰,王薇,崔海亭.大型降膜蒸发器液体分布器的设计[J].食品与机械,2007,23(1):104-106,111
    [59]高云忠,徐丽美,赵汝文.国产大型塔器技术简评(上)[J].化学工程,2009,37(9):76-78
    [60]戴一堂.新型光纤布拉格光栅的研究与应用[D].清华大学,2006.10
    [61]田鑫,廖强,朱恂.陶瓷球填料生物膜滴滤塔挂膜启动工艺及对甲苯废气的净化性能实验研究[J].环境科学学报,2004,24(5):834-840
    [62]赵明富,廖强,陈艳,等.光纤生物量浓度在线检测传感器[J].光学精密工程,2007,15(4): 478-485
    [63]王景灏,李菊香.流体层流横掠多孔介质中等温平板的边界层分析[J].大庆石油学院学报,2009,33(1):68-71
    [64]戚以政,夏杰.生物反应工程[M].北京:化学工业出版社,2004.4
    [65]宋洪鹏,周屈兰,惠世恩.液幕状气液两相流传热特性的实验研究[J].西安交通大学学报,2004,38(5):533-536
    [66] Wu G, Conti B, Viel. G Leroux A, et al. A High Performance Biofilter for VOC Emission Control [J]. Air waste Manage Assoc, 1999,49:185-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700