用户名: 密码: 验证码:
基于~(137)Cs技术的中国北方农牧交错带土壤侵蚀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤侵蚀引起的土壤退化、水体污染等一系列的生态环境问题受到全世界的关注,是系到我国农业及生态环境可持续发展的重大问题。中国北方农牧交错带作为我国退耕还林、退牧还草的重点区,自然环境与社会经济条件表现出明显的过渡性特点,是农业和牧业相互渗透,交错分布的过渡区,它是遏制荒漠化的重要生态屏障,同时也是生态脆弱地带。
     本研究在我国北方农牧交错带中选取2个研究区兰州和大同,在研究区采集背景样和全样共64个样品,用美国ORTEC公司生产的型号为GMX50P4N型同轴型高纯锗γ探测器探测在不同土地利用方式下的土壤样品中的~(137)Cs含量,测得各土地利用类型中~(137)Cs含量从高到低的顺序为:平草地、平耕地、坡灌丛地、退坡耕地、果耕间作地、坡林地、坡耕地、坡草地;大同各种土地利用类型中~(137)Cs含量从高到低的顺序为:平草地、坡草地、平林地、坡耕地、平耕地、坡灌丛地。
     依据背景值确定原则,分别确定研究地区的~(137)Cs背景值,研究区背景值分别为:兰州1707.4Bq/m~2、大同1836.3Bq/ m~2。再根据所确定研究区~(137)Cs背景值与所测样品~(137)Cs含量,运用Walling和He提出的质量平衡模型及~(137)Cs深度分布的扩散和迁移复合过程物理模型分别计算耕作土壤与非耕作土壤侵蚀速率。兰州不同土地利用类型的土壤侵蚀速率范围为1200-76000t/k m~2·a,其中坡耕地侵蚀速率最高达76000 t/km~2·a,坡草地为8300 t/km~2·a,坡林地为7500 t/km~2·a,果耕间作地地为5200t/km~2·a,坡退耕地为4100 t/km~2·a,平耕地为2300 t/km~2·a,坡灌丛地侵蚀速率为1200 t/km~2·a,平草地产生了一定的堆积,堆积速率为2860 t/km~2·a。大同采样点不同土地利用类型的土壤侵蚀速率范围为600-17500t/km~2·a,其中以坡耕地和平耕地的侵蚀速率最高达17500 t/ km~2·a,坡灌丛地的侵蚀速率为7700 t/km~2·a,平林地的侵蚀速率为600 t/km~2·a,其中坡草地和平草地发生了一定程度的堆积,坡草地的堆积速率为620 t/km~2·a,平草地的堆积速率为1760 t/km~2·a。
     从引起土壤侵蚀的人为原因分析得知:无论地表形态是坡地还是平地,不管是农田、林地或者是灌丛,因为有了人类活动的参与,造成了不同程度的土壤颗粒的迁移,结果是导致这些土地利用类型产生了不同程度的土壤侵蚀。而基本没有人为活动影响的草地在一定程度上发生土壤侵蚀的机率比较小、程度也较弱,产生土壤堆积的机率较大。
     从自然原因分析土壤侵蚀,研究区的植被覆盖度,以及当地的降雨量,大风日数,都会对研究区不同土地利用类型土壤侵蚀产生一定的影响。
Soil erosion caused soil degradation, water pollution and a series of eco-environmental problems, which are not only the world’s attention, but also agriculture and eco-environmental sustainable development important problems. Farming-pastoral Transitional zone in north China, as our county returning farmland to forest and returning cropping land to grassland are the focus areas, natural environment and socio-economic conditions shown a clear transition characterized by the transition zone of the interpenetration and staggered distribution of agriculture and animal husbandry, which is curbing desertification important ecological barrier, but also ecologically fragile belts.
     In this study, two study areas Lanzhou and Datong are selected in the farming-pastoral Transitional zone of north China, and collected the background samples and the entire sample a total of 64 samples, with the United States produced by ORTEC model GMX50P4N-type coaxial high purity germaniumγdetector under different land use patterns of the ~(137)Cs content in soil samples, and learned that in Lanzhou ~(137)Cs content of the land-use types in descending order was as follows: flat grassland, flat farmland, slope shrub, slope farmland, the fruit between farming, slope woodland, slope farmland, and slope grassland, and in Datong the ~(137)Cs content of various land use types in descending order was as follows: flat grassland, slope grassland, flat woodland, slope farmland, flat abandoned lands, and slope scrub.
     In the study area, According to Background value principle respectively determined the background value of ~(137)Cs. the background value of the study area were as follows: Lanzhou(1707.4Bq/m~2), Datong(1836.3Bq/m~2). Then according to the study area identified by the background value of ~(137)Cs and ~(137)Cs content of the sample measured, using mass balance model and the proliferation of ~(137)Cs depth distribution and migration of complex process physical model are made by walling, and He, and respectively calculated soil erosion rate of farmland and non-tillage farmland. In Lanzhou different land use types of soil erosion rate range of 1200- 76000t/km~2·a, where slope farmland erosion rates of up to 76000 t/km~2·a, slope grassland of 8300 t/km~2·a, slope woodland for 7500 t/km~2·a, fruit farming intercropping for 5200t/km~2·a, slope abandoned lands for 4100 t/km~2·a, flat farmland for the 2300 t/km~2·a, slope shrub erosion rates for 1200 t/km~2·a , flat grassland produced a certain amount of accumulation, accumulation rate of 2860 t/km~2·a. In Datong soil erosion rate of different land use types range of 600-17500t/km~2·a, of which the erosion rates of slope farmland and flat farmland of up to 17500 t/km~2·a, the erosion rate of slope shrub 7700 t/km~2·a, flat woodland erosion rate of 600 t/km~2·a, where the slope grassland and flat grassland occurred in a certain degree of accumulation, which the accumulation rate of the grass slope 620 t/km~2·a, and the accumulation rate of flat grassland 1760 t/km~2·a.
     From the analysis of man-made cause soil erosion that Whether the surface shape is slope land or flat land, and regardless of farmland, woodland or scrub, because of the involvement of human activities, resulting migration of soil particle of varying degrees, the result is leading to these land-use types had different degrees of soil erosion. Basically no impact of human activities place on the grassland in a certain extent the chances of soil erosion is relatively small, the degree of weak, resulting in greater risk of soil accumulation.
     From the analysis of natural cause soil erosion, the study area's vegetation coverage, local rainfall, as well as strong wind days will be on the study area of soil erosion under different land use types have some impact.
引文
[1]刘宝元,谢云,张科利.土壤侵蚀预报模型[M].北京:中国科学技术出版社.2001:1.
    [2]邓祥征,战金艳.农牧交错带土地利用变化驱动力的尺度效应分析[J].地理与地理信息科学.2004,20(3).
    [3]邹亚荣,张增祥,王长有.中国风水侵蚀交错区分别特征分析[J].干旱区研究. 2004,20(1).
    [4]张俊飚.中国土壤侵蚀影响因素及其危害分析[J].云南环境科学.2001(20).
    [5]程序.农牧交错带研究中的现代生态学前沿问题[J].资源科学,1999,(5):1-8.
    [6]唐克丽.黄土高原水蚀风蚀交错区治理的重要性与紧迫性[J].中国水土保持,2000,17(11):11-1
    [7] EI-Baz,F., Maingue,M., and Robinson,C. Fluvio-aeolian dynamics in the north-eastern Sahara: the relationship between fluvial/Aeolian systems and ground-water concentration. Journal of Arid Environments, 2000,44(2):173-183.
    [8]海春兴.河北坝上土地利用与土壤风蚀的动力学过程研究[M].北京师范大学博士学位论文,2003.
    [9]廖允成,付增光,贾志宽等.中国北方农牧交错带土地沙漠化成因与防治技术[J].干旱地区农业研究,2006,20(2):95-98.
    [10]王静爱,徐霞,刘培芳等.中国北方农牧交错带土地利用与人口负荷研究[J].资源科学,1999,(5):19-24.
    [11]唐克丽等,中国水土保持[M].科学出版社.2004.3-7.
    [12] Brown R B,Kling G F,Cutshall N H.Agricultural erosion indicated by ~(137)Cs redistribution:II.estimates of erosion rates.soil science society of America journal,1981,45:1191-1197.
    [13] Campbell B L,Airey P L,Calf G E.Use of isotopic techniques in hydrological and erosion-sedimentation studies in tropical and temperate zones of the Asian-Pacific region.In:Gardiner V.(ed.) , Intemational geomorphology ,Part1.London:Wiley,1987,PP751-766.
    [14] de Jong E,Begg C M,Kachanoski R G Estimates of soil erosion and deposition from some Saskatchewan soils ,Canadian Journal of soil Science,1983,63:607一617.
    [15] He Q,walling D E.The distrion of fallou ~(137)Cs and 210Pb in undisturbed and cultivated soils.Appl.Radiat.Isot.,1997,48:677-690.
    [16] Lowrance R J,McintyreS,LaneeC.Erosion and deosition in a field/forest system
    [17] estimated using cesium-137 activity.Journal of soi1 and waterConservation.1988,43:195-199.
    [18] McHenry J R,Bubenzer G D.Field erosion estimated from ~(137)Cs activity measurements.Transactions of American Society of Agricultural Engineers,1985,28:480-483.
    [19] Pennock D J,de Jong E.The influence of slope curvature on soi1 erosion and deposition in hummock.terrain.soi1Seienee,1987,144:209-217.
    [20] Quine T A,wa11ing D E,Zhang X etal.Investigation of soi1erosionon terraced field near Yangting,Sichuan Province,China Using caesium-137.Erosion,Debris Flows and Environment in Mountain Regions,IAHS publ,1992,209:155-168.
    [21] Ritchie J C,McHenry J R,Gill A C.Fallou ~(137)Cs in the soils and sediments of three small watersheds.Ecology,1974,55:887-890.
    [22] Ritchie J C , spraberry J A,McHenry J R,Estimating soi1 erosion from the redistribution of fallout Cs-l37.Soil Science Society of Ametica Proceedings,1974,38:137-139.
    [23] Wa11brink P J,Murray A S.Determining soil loss using the inventory ratio of excess lead-210 to cesium-137.soi1 Science Society of Anleriea Journal , 1996 ,60:1201-1208.
    [24] Wa11ing D E , Roman J S , Bradley S B.Sediment associated transport and redistribution of Chernobyl fallout radionuclides.IAHS Publ,1989,184:37- 45.
    [25] Yang H,Du M,Chang Q etal.Quantitative model of soi1 erosion rates using ~(137)Cs for uncultivated soi1.soi1 Science,1998,163:248-257.
    [26]汪阳春,张信宝,李少龙等.黄土峁坡侵蚀的~(137)Cs法研究[J]。水土保持通报,1991(3):34-37.
    [27]杨浩,杜明远,赵其国等.利用~(137)Cs示踪农业耕作土壤侵蚀速率的定量模型[J].土壤学报,2000,37(3):296-304.
    [28]严平,董光荣,董治宝等.青海共和盆地达连海湖积物~(137)Cs示踪的初步结果[J].地球化学,2000,5:469-473.
    [29] Wan G J,santschi P H,strum M etal. Natural(210Pb,7Be)and fallout (~(137)Cs,239,240Pu,90Sr)radionuclides as geochemical tracers of sedimentation in Greifensee,Switzerland.Chemical Geology,1987,63:181-196.
    [30] ZaPata F.Handbook for the assessment of soi1 erosion and sedimentation using environmental radio nuclides.Kluwer Academic Publishers , Dordrecht/Boston/ London,2003,ppZ19.
    [31] Lal,R..Soil management in developing countries. Soil Science, 2000,165:7-72.
    [32] F.Zapata ,Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides, Kluwer academic publishers, 2002,7.
    [33] Pourchet,M.,Pinglot,J.F.,Reynauld,L. and Holdsworth,G..Identification of Chemobyl fallout as a new reference level in Northern Hemisphere glaciers.Journal of Glaciology, 1988,34:183-187.
    [34] Walling D E, He Q. The global distribution of bomb-derived ~(137)Cs reference inventories. Final Report to IAEA Technical Contract 10361/RO-R1, University of Exeter, 2000.
    [35] Evans,E.J. and Dekker,A.I. Plant uptake of Cs-137 from nine Canadian soils. Canadian Journal of soil science,1966,46:167-176.
    [36] Coleman,N.T.,R.J.Lewis & D.Craig. Sorption of cesium by soils and its displacement by salt solutions. Soil Sci.Soc.Am.Proc. 1963,27:290-294.
    [37] Squire,H.M. & L.J.Middleton.Behaviour of Cs-137 in soil and pastures: a long term experiment. Radiation Botany .1966,6:413-423.
    [38] McHenrry,J.R. & J.C.Ritchie. Physical and chemical parameters affecting transport of Cs-137 in arid watersheds. Water Resour.Res. 1977,13:923-927.
    [39] Livens,F.R. & D.L.Rimmer. Physico-chemcal controls on artificial radionuclides in soils. Soil Use and Management. 1988,4:63-69.
    [40] He Qingping. Interpretation of fallout radionuclide profiles in sediments from lake and floodplain environments. The theis for the degree of doctor of philosophy, University of Exter.1993,55-75.
    [41] Adrian Chappell & Andrew Warren, Spatial scales of ~(137)Cs-derived soil flux by wind in a 25km2 arable area of eastern England. Catena, 2003,52:209-234.
    [42] Alberts,J.J. & R.N.Muller. The distribution of 239,240Pu,238Pu,and ~(137)Cs in various particle size classes of Lake Michigan sediments.[J].Environ.Qual. 1979,8:20-22.
    [43] Walling,D.E. & J.C.Woodward. Use of radiometric fingerprints to derive information on suspended sediment sources. In: Erosion and Sediment Transport Monitoring Programmers in River Basins,.1992,153-164.
    [44] Esser,K.B.,J.G.Bockheim & P.A.Helmke. Trace element distribution in soils formed in the Indiana dunes, U.S.A..Soil Sci. 1991,152:340-350.
    [45] Tamura,T. Selective sorption reactions of caesium-137 with soil minerals. Nucl.Safety, 1964,53:262-268.
    [46] Prout, W.E.. Adsorption of radioactive wastes by Savannah River Plant soil. Soil Sci. 1958,86:13–17.
    [47] Walling D.E. & A.L.Collins. Integrated assessment of catchment sediment budgents:a technical manual, department for international development,2000:70.
    [48] Brown RB,kling G F.Cutshall N H. Agricultural erosion indicatie by ~(137)Cs redistributionII:Estimating rates of erosion rates [J].soil sci soc Am,1981,45(6):1191-1197.
    [49] Owens P.N.&Walling , D.E. Spatial variability of caesium-137 inventories atReference sites: an example from two contrasting sites in England and Zimbabwe.applied Radiation and Isotopes,1996.47,699-707.
    [50] Sutherland R.A.Caesium-137 areal activities in control(uneroded)locations.Sail Techonology.1996,4,33-50.)
    [51] Gareia一Agudo,E.Globla distribution of ~(137)Cs inputs for soil erosion and sedimentation studies.In Use of ~(137)Cs in the study of soil erosion Sedimentation,1998,IAEA-T28(117-121)..
    [52] Peirson,D.H. & L.Salmon. Gamma radiation from deposited fallout. Nature. 1959, 184: 1678 - 1679.
    [53] Mishra,U.C. & S.Sadasivan.Fallout radioactivity in Indian soils. Health Phys. 1972,23:55-62.
    [54] Nevissi,A.E.. Measurement of Pb-210 atmospheric flux in the Pacific northwest. Health Phys. 1985,48:169-174.
    [55] Ritchie,J.C. & J.R.Mchenry. Allpication of radioactive fallout Cs-137 for measuring soil ersion and sediment accumulation rates and patterns: a review. J.Environ.Qual. 1991,19:215-233.
    [56]杨浩,杜明远,赵其国,等.基于~(137)Cs地表富集作用的土壤侵蚀速率的定量模型[J],土壤侵蚀与水土保持学报,1999(5)3:42-48.
    [57] Owens,P.N., Walling,D.E., He.Q.,et al.The use of caesium-137 measurement to establish a sediment budget for the Start catchment, Devon,UK. Hydrological Sciences,1997,42:405~423
    [58] He Qingping. Interpretation of fallout radionuclide profiles in sediments from lake and floodplain environments. The theis for the degree of doctor of philosophy, University of Exter.1993,55-75.
    [59] Cawse,P.A. & Horrill,A.D..A survey of Cs-137and plutonium in British soil in 1977. 1986,AERE Harwell Report R-10155,HMSO.
    [60]魏欣.东北黑土区小流域土壤侵蚀空间分异规律研究,北京师范大学博士毕业论文[D],2007,69
    [61] Walling D E, He Q.Models for converting ~(137)Cs measurements to estimates of soil redistribution rates on cultivated and undisturbed soils(including software for model implementation)Report to IAEA. Univ. of Exeter, Exeter, UK, 2001.
    [62] Sarmiento, J.L. and E. Gwinn. Strontium 90 fallout prediction. J. Geophys. Res. 1986,91: 7631-7646.
    [63]方华军,杨学明,张晓,等.~(137)Cs示踪技术研究坡耕地黑土侵蚀和沉积特征[J],生态学报,2005,25(6):1376-1382.
    [64]苏永青,张信宝,贺秀斌,等.中国铯137本底值区域分布研究[J],核技术,2006(29)1:42-50.
    [65]郑永春,王世杰~(137)Cs技术定量侵蚀速率常用模型及其讨论.山地学报,2002,20(5):600-605)
    [66]高军,欧阳志云. 137 C s技术测量土壤侵蚀速率常用模型讨论,水土保持通报[J], 2006,2 6(1)
    [67] Walling D E,He Q.Improved models for estimating soil erosion rates from caesium-137 measurements[ J ].Journal of environmental Quality, 1999, 28(2); 611-622.
    [68]严平.~(137)Cs法在土壤风蚀研究中的应用-以青海共和盆地为例[J].中国沙漠,2000,20(1):102.
    [69]严平.北京市大兴县榆垡乡土壤风蚀与土地风沙化研究[D]中国科学院兰州沙漠研究所硕士学位论文,1991.
    [70]严平.土壤风蚀的~(137)Cs研究.北京师范大学博士后研究工作报告[D].2001.
    [71]杨浩,杜明远,赵其国,等.基于~(137)Cs地表富集作用的土壤侵蚀速率的定量模型[J],土壤侵蚀与水土保持学报,1999(5)3:42-48.
    [72]杨泰运,陈广庭.农牧交错带土地生产力退化的初步探讨[J].干旱区资源与环境,1991,(3):75-83.
    [73]刘鸿雁,田育红,丁登.内蒙古浑善达克沙地和河北坝上地区不同地表覆盖类型对北京沙尘天气物源的贡献[J].科学通报,2003,48(11):1229-1232.
    [74]刘景涛,郑明倩.华北北部黑风暴的气候学特征[J].气象, 1998, 24 (2) : 39-44.
    [75]刘连友.区域风沙蚀积量和蚀积强度初步研究-以晋陕蒙接壤区为例[J].地理学报1999,54(1):59-64.
    [76]刘清泗.中国北方农牧交错带全新世环境演变与全球变化[J].北京师范大学学报(自然科学版),1994,30(4):504-510.
    [77]刘贤万.实验风沙物理与风沙工程学[M].北京:科学出版社.1995.
    [78]刘燕华.脆弱生态环境初探,生态环境综合治理和恢复技术研究,第一集[M].北京:北京科学技术出版社.1993:1-10.
    [79]马世威.风沙流结构的研究[J].中国沙漠,1988,8(2):8-22.
    [80]马玉堂.呼化贝尔草原土壤风蚀研究[J].中国草原,1981,2(3):67-74.
    [81]牛生杰,章澄昌.贺兰山地区沙尘暴沙尘起动和垂直输送物理因子的综合研究[J].气象学报,2002,60(2):194-204。
    [82]濮励杰,包浩生,彭补拙等.~(137)Cs法应用于我国西部风蚀地区土地退化的初步研究-以新疆库尔勒地区为例[J].土壤学报,1998,35(4):441-449.
    [83]戚隆溪,王柏懿.土壤侵蚀的流体力学机制(II)-风蚀[J].力学进展,1996,26(1):41-53.
    [84]钱正安,贺慧霞,瞿章,等.我国西北地区沙尘暴的分级标准和个例谱及其统计特征[A].方宗义.中国沙尘暴研究[C].北京:气象出版社, 1997.1-10.
    [85]张兰生,方修琦,任国玉等.我国北方农牧交错带全新世环境演变[J].地学前缘,1997,(4):127-135.
    [86]张殿发,卞建民.中国北方农牧交错区土地荒漠化的环境脆弱性机制分析[J].干旱区地理,2000,(2):133-137.
    [87]杨秀春.旱作农田土壤风蚀防治的保护性耕作技术研究[D].北京师范大学博士学位论文,2004.
    [88]吴正,凌裕泉.风沙运动的若干规律及防止风沙危害问题的初步研究[J].治沙研究,1965,7:7-14.
    [89]吴正.风沙地貌学[M].北京:科学出版社.1987.
    [90]徐斌,刘新民,赵学勇.内蒙古奈曼旗中部农田土壤风蚀及其防治[J].水土保持通报,1993,7(2):75-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700