用户名: 密码: 验证码:
新疆荒漠昆虫准噶尔小胸鳖甲耐寒机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准噶尔小胸鳖甲(Microdera punctipennis dzungarica)(拟步甲科鳖甲属)是一类分布于中亚古尔班通古特沙漠的荒漠昆虫。准噶尔小胸鳖甲(以下简称小胸鳖甲)成虫避光喜暗,白天栖居于沙土中,夜晚积极活动,在早春季节冰雪尚未完全融化时就可交配产卵,具有很高的耐寒性。产生抗冻蛋白(antifreeze protein,AFP)是荒漠拟步甲昆虫所广泛采取的抗冻机制,避冻昆虫在过冬条件下往往处于过冷却状态使体内蒸汽压高于外界冰的蒸汽压,因而机体面临失水的压力。因此,避冻昆虫的过冷却程度与其抗脱水能力之间的平衡决定了其耐寒性。为研究小胸鳖甲的抗冻策略和抗冻生理机制,检测了不同季节和不同发育阶段的小胸鳖甲的过冷却点(supercooling point,SCP)、体内含水量、体液渗透浓度和抗冻蛋白基因(antifreeze protein gene of Microdera punctipennis,Mpafp)的转录水平,并对这些参数进行了相关性分析。同时,为进一步研究低温和干旱对上述耐寒相关指标的影响,对昆虫分别进行低温和干旱处理,并检测上述指标。结果显示,小胸鳖甲过冬成虫的过冷却点是-18.7℃,在夏季上升到-8.0℃,表明其过冬成虫以降低过冷却点进入深度过冷却状态而过冬,由此判断小胸鳖甲是避冻型昆虫。含水量测定表明过冬状态的小胸鳖甲成虫体内失水量较少,仅降低约10%。表明荒漠甲虫具有很好的防止体内失水的机制,主要原因可归于虫体几丁质化的体壁具有很低的透水性,使虫体在失水或与冰雪接触的过程中具有了有效的保护作用。实时荧光定量PCR的结果显示,小胸鳖甲以合成大量抗冻蛋白(MpAFP)过冬,初秋季节抗冻蛋白就已开始合成,冬季达到高峰,相对转录水平是夏季的13.1倍。与此同时,体液的渗透浓度也从夏季的550 mOsm增加到冬季的1486 mOsm。分析Mpafp mRNA水平与SCP的相关性(相关系数r=-0.8080,相关指数R2=0.6528),表明Mpafp mRNA水平越高,虫体的过冷却点越低。即过冷却点的降低有65.28%是由抗冻蛋白引起的,抗冻蛋白是导致虫体在冬季产生过冷却现象的主要因素。由Mpafp mRNA水平与虫体总水含量的相关性分析得知r=-0.8256,R2=0.6816,表明Mpafp mRNA水平越高,虫体的含水量越低,也可以间接地反映出抗冻蛋白通过降低SCP,刺激水分蒸发而降低虫体含水量。
     本研究发现,4℃低温胁迫可促使Mpafp mRNA水平不同程度的上调,胁迫达到20d时,其转录水平达到峰值,是对照的8.23倍。而体液渗透浓度的变化趋势与抗冻蛋白转录水平的变化趋势基本一致,成虫在低温胁迫后体液渗透浓度的最大值(756 mOsm)是对照的1.35倍,极显著地高于对照组。含水量测定表明,在长期低温胁迫下,总水含量在3天之内快速下降,之后保持在50%左右。但自由水的含量在3天之内从对照的8.87%升高到了低温胁迫3天时的13.76%,之后保持在15%左右。相关性分析表明,Mpafp mRNA水平与自由水的含量有一定的相关性(r=0.7616,R2=0.5800)。4℃低温胁迫对准噶尔小胸鳖甲成虫的过冷却点无明显的影响。
     干旱胁迫也可促使Mpafp mRNA水平不同程度地上调,胁迫时间达到15d时,其转录水平达到峰值,是对照的3.53倍。而体液渗透浓度的变化趋势与转录水平的变化趋势一致,成虫在干旱胁迫后体液渗透浓度的最大值(646 mOsm)是对照的1.14倍,显著地高于对照组,但是比Mpafp mRNA水平的变化幅度小。Mpafp mRNA水平与总水含量、绝对水含量有显著相关性(对于总水:r=-0.8161,R2=0.6661,P=0.0476;对于绝对水:r=-0.8174,R2=0.6681,P=0.0470)。干旱胁迫对准噶尔小胸鳖甲成虫的过冷却点也无明显的影响。
     为了进一步确定在实验室内人工饲养的准噶尔小胸鳖甲是否会产生抗冻蛋白,产生的抗冻蛋白是否具有一定的规律,检测得到了10个不同发育阶段的准噶尔小胸鳖甲转录水平的变化特征。总的来说,在不同发育阶段,Mpafp mRNA水平在大龄幼虫和新孵化出的成虫中较高,并且比夏季(此时的转录水平最低)的还要高,而在幼虫和蛹中较低。Mpafp mRNA水平的最高值出现在成虫期,是卵期的2.1倍,而体液渗透浓度的变化趋势与转录水平的变化趋势基本一致,但比转录水平的变化幅度小。Mpafp mRNA水平与总水和绝对水含量没有相关性,但与SCP有极显著的相关性(r=-0.8595,R2=0.7387)。在实验室条件下饲养得到的蛹,其抗冻蛋白转录水平较低。准噶尔小胸鳖甲在实验室恒温的环境中生长时,不会经历严冬的考验,所以,就不需要产生较高浓度的抗冻蛋白。但是,还是需要表达一定量的抗冻蛋白,以防外界温度突然下降时对自身造成的伤害。
     根据研究结果,可以得到以下结论:准噶尔小胸鳖甲抗冻蛋白基因(Mpafp)在不同季节的转录水平不同,秋末冬初较高,夏季较低。体液渗透浓度的变化趋势与转录水平的变化趋势一致。过冷却点呈现出冬季较低、夏季较高的变化趋势。Mpafp mRNA水平与体内总水含量显著相关。由此表明Mpafp mRNA水平越高,虫体的含水量越低,也可以间接地反映出抗冻蛋白通过降低SCP,刺激水分蒸发,从而降低虫体的含水量。低温和干旱胁迫不同程度的增加了Mpafp mRNA水平,但低温胁迫更能提高Mpafp mRNA水平。Mpafp mRNA水平与过冷却点无明显相关性。在实验室内人工饲养的准噶尔小胸鳖甲也有抗冻蛋白的表达,并在大龄幼虫和成虫期的表达量较高,体液渗透浓度的变化趋势与转录水平的一致。Mpafp mRNA水平与过冷却点显著相关。
     由以上结论总结出准噶尔小胸鳖甲这种避冻型荒漠昆虫的耐寒机制是:当环境遭遇低温时,虫体合成一定量的抗冻蛋白,从而体液渗透浓度增加(而体液渗透浓度的增加主要是由抗冻蛋白的积累引起的),同时虫体的过冷却点降低(而过冷却点的降低进一步促进了抗冻蛋白的积累),刺激机体的水分以梯度的形式蒸发,从而虫体体内的含水量降低(而体内含水量的降低进一步促进了抗冻蛋白的积累),以上四个参数相互作用,致使虫体处于过冷却状态而不结冰,从而获得耐寒性,避免冰冻带来的伤害。
The desert beetle Microdera punctipennis dzungarica (Coleoptera: Tenebriondae) is a special species in Gurbantonggut Desert in Central Asia. M. punctipennis adults were nocturnal; they burrowed in the soil during the day but were active at night. They mate to lay eggs with high cold tolerance when remaining snow and ice are still there in the early spring. Production of antifreeze proteins (AFPs) is an antifreeze mechanism widely adopted by desert tenebrionid insects. Freeze-avoiding insects are often in a state of supercooling, which make a higher body vapor pressure than the ambient ice vapor pressure in winter conditions, so insect body often faces the problem of losing water. Therefore, the balance between the degree of supercooling and ability to resistance dehydration determines insect’s cold tolerance. To investigate the possible strategy and physiological mechanism that M. punctipennis employed for cold survival, the seasonal changes of supercooling point (SCP), body water content, body fluid osmolality and the expression of antifreeze protein gene (Mpafp) were measured over 13 months. The relationships among these parameters were analyzed by correlation analysis. In order to further study the effect of low temperature and drought stress on the above cold-related parameters, cold and dry stress treatment were conducted on the adult insects, respectively, and the measurements were performed accordingly. The results showed that SCP of M. punctipennis adult changed from -8.0°C in summer to lower than -18.7°C in winter, demonstrate that M. punctipennis adult became deep supercooling state in winter by the depression of supercooling point, therefore this insect was freezing avoidance. During winter, M. punctipennis adult endured moderate water loose which was only about 10%, suggesting that desert beetle M. punctipennis could effectively prevent the body water from losing. The mechanism may mainly attribute to the highly chitinized body wall of the desert insect which has very low water permeability. Thus, water loss or ingress in insect body could be greatly inhibited during winter. Real-time quantitative PCR revealed that Mpafp mRNA was actively synthesized in winter. The synthesis of antifreeze protein began as early as at the beginning of autumn, and the peak value was reached in winter. The Mpafp mRNA level was increased by 13.1 fold from mid-summer to early winter, meanwhile the body fluid osmolality increased accordingly from 550 mOsm to 1486 mOsm. The correlation coefficient of Mpafp mRNA level and SCP was -0.8080 (R2=0.6528), showed that the higher the level of Mpafp mRNA, the lower supercooling points of insect, and Mpafp mRNA explained 65.28% of the variation in SCPs, demonstrating that antifreeze protein as the major factor caused body supercooling in the early winter. On the other hand, the significant correlation (r=-0.8256, R2=0.6816) between antifreeze protein mRNA level and the total water reflected the indirect influence of antifreeze protein on water content via decreasing SCP of M. punctipennis, which in turn stimulated water evaporation, thus reduced the water content.
     The results showed that the level of Mpafp mRNA is up-regulated after treated by low temperature(4℃) to some degrees. The maximum mRNA level is 8.23- fold of the control after treated at low temperature for 20 days. Meanwhile, changes of body fluid osmolality was in consistent with the changes of mRNA levels in that the maximum concentration of body fluid osmolality (756 mOsm) is 1.35 fold of the control, very significantly higher than that of control insect. Determination of water content showed that total water content decreased rapidly within 3 days after cold treatment, then maintained at about 50%. However, the content of free water within 3 days after cold treatment was increased from 8.87% of the control to 13.76%, and maintained at 15%. Correlation analysis showed certain correlation between the mRNA level of Mpafp and the free water (r=0.7616, R2=0.5800). Cold treatment at 4℃showed less effect on the supercooling point of M. punctipennis adult.
     Our results showed that dry stress could up-regulated the relative transcription level of Mpafp. The Mpafp mRNA levels reached the peak after treated by dry stress for 15 days, which was 3.53 fold of the control. However, changes of body fluid osmolality was not so fast as the level of Mpafp mRNA, and the maximum value of body fluid osmolality (646 mOsm) was 1.14 fold of the control, very significantly higher than control. There were significant correlations between M. punctipennis antifreeze protein mRNA level and the total water or absolute body water content (for total water, r=-0.8161, R2=0.6661, P=0.0476; for absolute body water, r=-0.8174, R2=0.6681, P=0.0470). Dry stress showed less effect on the supercooling point of M. punctipenni adult.
     In order to further study whether the production of antifreeze protein was also regulated during larvae development under laboratory conditions, 10 different developmental period of M. punctipennis were reared and the mRNA levels were measured compared to the egg. The results showed that antifreeze protein in Microdera punctipennis was developmentally regulated. The mRNA level of Mpafp was high in the final larvae and newly emerged adult, and higher than summer with the lowest level of Mpafp mRNA, but low in young larvae and pupae. The peak value was in adult, which was 2.1 fold of the egg. Meanwhile, the body fluid osmolality changed in consistent with the Mpafp mRNA level, though the increament was not so large as the Mpafp mRNA level. Correlation analysis showed no correlation between antifreeze protein mRNA level and the total water or absolute body water content, but significant correlationship (r=-0.8595, R2=0.7387) between antifreeze protein mRNA level and SCP. Pupae reared under laboratory conditions produced low level of antifreeze protein. M. punctipennis reared under constant temperatures would not suffer severe winter cold, so there may not need for abundant antifreeze protein. But certain low level of antifreeze protein was needed in order to protect the insects from cold damage when the environment temperature falls suddenly.
     In conclusion, the expression of Microdera punctipennis antifreeze protein gene (Mpafp) changed with the seasonal temperatures. It was high in late autumn and eraly winter, and low in summer. Meanwhile, osmotic concentration of body fluid changed in accordance with the level of Mpafp mRNA. The seasonal supercooling point appeared the contrast trend in that it was low in winter and high in summer. The Mpafp mRNA level and total body water content was significantly correlated. It is suggested that the antifreeze protein may have influence on water content via decreasing SCP of M. punctipennis, which in turn stimulated water evaporation, thus reduced the water content. Low temperature and drought stress increased expression of Mpafp at different levels, but cold stress could increase largely the expression level of Mpafp. There were no significant correlation between Mpafp mRNA level and SCP in the cold treated insect. Microdera punctipennis reared under laboratory conditions also produced antifreeze proteins, while the Mpafp mRNA level was higher in old larvae and adults than in young larvae and pupae. The osmotic concentration of body fluid showed same pattern as the level of Mpafp mRNA during the development. There was significant correlation between Mpafp mRNA level and SCP.
     It is concluded from the above conclusion that the desert insects Microdera punctipennis with freezing avoidance type cold hardiness mechanism: when the environment encountered at low temperature, body produce a certain amount of antifreeze protein, there by increasing the concentration of body fluid osmolality (and the increasing of body fluid osmolality is mainly caused by the accumulation of antifreeze proteins), while the insect lower supercooling points (meanwhile the decreaseing of the supercooling point further promoted the accumulation of antifreeze proteins), stimulate the water content of body to evaporate with the form of gradient, so insect lower body water content (at the same time the decreasing body water content could further promote the accumulation of antifreeze proteins), the interaction of four parameters above, resulting in insect without ice in a state of supercooling to have cold hardiness, avoiding damage from freezing.
引文
[1]景晓红,康乐.昆虫耐寒性的测定与评价方法[J].昆虫知识,2004,40(1):7-10.
    [2] Sjursen H,Somme L. Seasonal changes in tolerance to cold and desiccation in Phauloppiap (Acari,Oribatida) from fines,Nprway[J]. Journal of Insect Physiology,2000,46:1387-1396.
    [3] Phillips S W,Bale J S,Tarchell G M. Overwintering adaptations in the lettuce root aphid Pemphigus bursarium[J]. Journal of Insect Physiology,2000,46:353-363.
    [4] Hanson S M ,Craig G B J r. Relationship between cold hardiness and supercooling point in Aedesalbopicrus eggs[J]. J American Mosq Cont rol Assoc,1995,11:35-38.
    [5] J in Q X ,Chen L J ,Zuo Z Y. Comparison of cold tolerance among different artemiast rains[J]. Acta Zoologica Sinica,1999,45(1):32-39.
    [6] Valerie A,Bennett,Todd Sformo,Kent Walters,Oivind Toien, Kennan Jeannet,Ronald Hochstrasser,Pan Qingfeng,Anthony S,Serianni,Brian M,Barnes and John G Duman. Comparative overwintering physiology of Alaska and Indiana populations of the beetle Cucujus clavipes(Fabricius):roles of antifreeze proteins,polyols,dehydration and diapause[J]. Journal of Experimental Biology,2005,208: 4467-4477.
    [7]吴孔明,郭予元.新疆棉铃虫的抗寒性研究[J].植物保护学报,2000,27(1):23-26.
    [8] Ring R A. Freezing-tolerant insects with low supercooling points[J]. Comparative Biochemical Physiology,1982(A),73:605-612.
    [9] Zachariassen K E. The water relations of overwintering insects[M], In R.E.Lee & D.L.Denlinger,eds. Insects at Low Temperature. Chapman and Hall,New York,1991,pp:47-63.
    [10] Storey K B,Storey J M. Freeze tolerance in animals[J]. Physiological Reviews,1988, 68:27-84.
    [11] Block W. Cold or drought-the lesser of two evils for terrestrial arthropods[J].European Journal of Entomology,1996,93:325-339.
    [12] Storey K B,Baust J G,Buescher P. Determination of water“bound”by soluble subcellular components during low-temperature acclimation in the gall fly larva, Eurosta solidaginis[J]. Cryobiology,1981,18: 315-321.
    [13] Holmstrup M,Bayley M,Raml?v H. Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates[J]. Proc.Natl.Acad.Sci.U.S.A.,2002,99(8):5716-5720.
    [14] Storey K B,Storey J M. Freeze tolerance in animals[J]. Physiological Reviews,1988,68:27-84.
    [15] Franks F. Biophysics and Biochemistry at Low Temperatures[M]. Cambridge University Press,Cambridge.1985.
    [16] Clegg J S. Cytoplasmic organization and the properties of cell water: Speculations on animal cell cryopreservation[M]. In D.E.Pegg & A.M.Karow,eds. The Biophysics of Organ Cryopreservation. Plenum,New York,1987,pp:79-81.
    [17] Ring R A, Danks H V. Desiccation and cryoprotection: Overlapping adaptations[J].Cryo-Letters,1994, 15:181-190.
    [18] Lundheim R,Zachariassen K E. Water balance of over-wintering beetles in relation to strategies for cold tolerance[J]. Journal of Comparative Physiology(B),1993,163:1-4.
    [19] Kroeker E M,Walker V K. A desiccation stress protein in Tenebrio molitor hemolymph[J]. Arch. Insect Biochemical Physiology,1991,17:169-182.
    [20]江幸福,罗礼智,李克斌,赵廷昌,胡毅.甜菜夜蛾抗寒与越冬能力研究[J].生态学报, 2001,21(10):1575-1582.
    [21] M ilonas P G, Savopoulou SoultaniM. Cold hardiness in diapause and non2diapause larvae of the summer fruit tortrix,Adoxophyesorana (Lepidoptera: Tortricidae) [J]. Eur.J.Entomol,1996,96:183- 187.
    [22]贾沁贤,陈立靖,左中原.比较不同品系卤虫耐寒力的比较[J].动物学报, 1999,45(1):32-39.
    [23] Lee R E J r,Chen C P,Denlinger D L. A rapid coldOhardening process in insects[J]. Science,1987,238:1415-1417.
    [24] Kelty J D,Lee R E J r. Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophilamel anogaster[J]. Journal of Insect Physiology,1999,45:719-726.
    [25] Danks H V. Dehydration in dormant insects[J]. Journal of Insect Physiology,2000,46:837-852.
    [26] Ring R A,Danks H V. The role of trehalose in cold-hardiness and desiccation[J]. CryoLetters,1998,19: 275-282.
    [27] Ring R A,Danks H V. Desiccation and cryoprotection: overlapping adaptations[J]. CryoLetters,1994, 15:181-190.
    [28] Miller L K,Smith J S. Production of threitol and sorbitol by an adult insect: association with freezing tolerance[J]. Nature,1975,258:519-520.
    [29] Ring R A. Cold-hardiness of the bark beetle, Scolytus ratzeburgi Jans.(Col., Scolytidae)[J]. Norwegian Journal of Entomology,1977,24:125-136.
    [30] Lee R E,Denlinger D L. Insects at low temperature[M]. Chapman and Hall,New York.1991.
    [31] Madura J D,Baran K,Wierzbicki A. Molecular recognition and binding of thermal hysteresis proteins to ice[J]. Journal of Molecular Recognition,2000,13:101-113.
    [32] Daley M E,Spyracopoulos L,Jia Z,Davies P L,Sykes B D. Structure and dynamics ofα-helical antifreeze protein[J]. Biochemistry,2002,41:5515-5525.
    [33] Wilson P W,Heneghan A F,Haymet A D J. Ice nucleation in nature: supercooling point (SCP) measurements and the role of heterogeneous nucleation[J]. Cryobiology,2003,46:88-98.
    [34] Wathen B,Kuiper M,Walker V,Jia Z. A new model for simulating 3D crystal growth and its application to the study of antifreeze proteins[J]. Journal of the American Chemical Society,2003,125:729-737.
    [35] Li N,Andorfer C A,Duman J G. Enhancement of insect antifreeze protein activity by solutes of low molecular mass[J]. Journal of Experimental Biology,1998,201:2243-2251.
    [36] Duman J G. The inhibition of ice nucleators by insect antifreeze proteins is enhanced by glycerol and citrate[J]. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology,2002,172:163-168.
    [37] Duman J G,Serianni A S. The role of endogenous antifreeze protein enhancers in the hemolymph thermal hysteresis activity of the beetle Dendroides canadensis[J]. Journal of Insect Physiology,2002,48:103-111.
    [38] DeVries A L. Antifreeze glycopeptides and peptides: Interactions with ice and water[J]. Methods Enzymol,1986,127:293-303.
    [39] Davis P L,Hew C L. Biochemistry of fish antifreeze proteins[J]. FASEB,1990,4(8):2460-2468.
    [40]景晓红,郝树广,康乐.昆虫对低温的适应—抗冻蛋白研究进展[J].昆虫学报,2002,45(5): 679-683.
    [41] Zachariassen K E,Husby J A. Antifreeze effect of thermal hysteresis agents protects highly supercooled insects[J]. Nature,1982,298:285-287.
    [42] Duman J G,Wu D W,Olsen T M. Thermal hysteresis proteins[J]. Adv. Low Temp.Biol.,1993,2:131-182.
    [43] Zachariassen K E. Physiology of cold tolerance in insects[J]. Physiol.Rev.,1985,65:832-977.
    [44] Olsen T M,Seass S J,Li N,et al. Factors contributing to seasonal incresaes in inoculative freezing resistance in overw intering firecolored beetle larvae Dendroides canadensis(Pyrochroidae)[J]. Journal of Experimental Biology,1998,201:1585-1594.
    [45] Gehrken V. Inoculative freezing and thermal hysteresis in the adult beetles IPS acuminatus and Rhagium inquisitor[J]. Journal of Insect Physiology,1992,38:519-524.
    [46] Olsen T M,Duman J G. Maintenance of the supercooled state in the gut fluid of overwintering pyrochroid beetle larvae,Dendroides canadensis: role of ice nucleators and antiffreeze proteins[J]. Journal of Comparative Physiology,1997(B),167-114.
    [47] Lee R ELee M R,Strong-Gunderson J M.Insect cold-hardiness and ice nucleating active microorganism sincluding their potential use for biological control[J] . Journal of Insect Physiology,1993,39:1-12.
    [48] Ba1e J S,Hansen T N,Baust J G.Nucleators and sites of nucleation in the freeze tolerant larvae of the galltly Eurosta solidaginis(Fitch)[J].Journal of Insect Physiology,1989,35:291-298.
    [49] Zachariassen K E .Nucleating agents in cold hardy insects[J] .Comparative Biochemical Physiology,l982(A),73:557-562.
    [50] Salt R W. Principles of insect cold hardiness[J]. Annu Rev Entomo,1961,l6:55-74.
    [51] Salt R W. Factors influencing nucleation in supercooled insects[J].Can J Zool, 1966,44:117-133.
    [52] Nenev L G,Duman J G,Low M G,Sehl L C,Castellino F J. Puri-Wcation and characterization of an insect hemolymph lipoprotein ice nucleator: evidence for the importance of phosphatidylinositol and apolipoprotein in the ice nucleator activity[J]. Cryobiology,1989,27:416-422.
    [53] S?mme L,Block W. Cold hardiness of Collembola at Signy Island,maritime Antarctic[J]. Oikos,1982,38:168-176.
    [54] Worland M R,LukenovàA. The effect of feeding on speciWc soil algae on the cold hardiness of two Antarctic micro-arthropods(Alaskozetes antarcticus and Cryptopygus antarcticus)[J]. Polar Biol.,2000,23:766-774
    [55] Shimada K. Ice nucleating activity in the alimentary canal of the freezing to lerant prepupae of(Hymenoptera: Tenthredinidae)[J]. Journal of Insect Physiology,1989,35:113-120.
    [56] Worland M R. Factors that inXuence freezing in the sub-Antarctic springtail Tullbergia antarctica[J]. Journal of Insect Physiology,2005,1:881-894.
    [57] Feng Y X,He W X. Preliminary studies on decrease the cold-hardiness of stored grain insects[J]. Agricultural Weather in China,1994,15(5):l-4.
    [58] Horton D R. Reduced cold-hardiness of pear psylla caused by exposure to external water and surfactants[J]. Can.Entomo1.,1996,128(5):825-83O.
    [59] Worland M R,Block W. Desiccation stress at subzero temperatures in polar terrestrial arthropods[J]. Journal of Insect Physiology,2003,49:193-203.
    [60] Molgaard P. Temperature observations in high arctic plants in relation to microclimate in the vegetation of Peary Land, north Greenland Arct[J]. Alp.Res.,1982,14:105-115.
    [61] Broufas G D,Koveos D S. Rapid cold hardening in the predatory mite Euseius(Amblyseius) finlandicus (Acari: Phytoseiidae)[J]. Journal of Insect Physiology,2001,47: 699-708.
    [62] LI Y P,He G,Park H Y,Goto M. Rapid cold hardening providing higher cold tolerance than cold acclimation in the pine needle gall midge Thecodiplosis japonensis larvae[J]. Entomologia Sinica,2001,8(1):81-88.
    [63] Li N G,Zachariassen K E. Water Balance and Adaptation Strategy in Insects of Central Yakutia to Extreme Climatic Conditions[J]. Biology Bulletin,2006,33(5):483-487.
    [64] Raml?v H,Lee R E. Extreme resistance to desiccation in overwintering larvae of the gall fly Eurosta solidaginis (Diptera, Tephritidae)[J]. Journal of Experimental Biology,2000,203:783-789.
    [65] Danks H V. Key themes in the study of seasonal adaptations in insects. Patterns of cold hardiness[J]. Appl.Entomol.Zool.,2005,40(2):199-211.
    [66] Sinclair B J. Field ecology of freeze tolerance: interannual variation in cooling rates,freeze-thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta quinquemaculata[J]. Oikos,2001,93(2):286-293.
    [67] Worland M R,Convey P. Rapid cold hardening in Antarctic microarthropods[J]. Functional Ecology,2001,15:515-524.
    [68] Crowe J H, Madin K. Anhydrobiosis in nematodes: evaporative water loss and survival[J]. Journal ofExperimental Zoology,1975,193:323-334.
    [69] Petersen C R,Holmstrup M,Malmendal A,Bayley M,Overgaard J. Slow desiccation improves dehydration tolerance and accumulation of compatible osmolytes in earthworm cocoons (Dendrobaena octaedra Savigny)[J]. Journal of Experimental Biology,2008,211:1903-1910.
    [70] Lillywhite H B. Plasticity of the water barrier in vertebrate integument[J]. International Congress Series,2004,1275:283-290.
    [71] Hoffmann A. Acclimation for desiccation resistance in Drosophila melanogaster and the association between acclimation responses and genetic variation[J].Journal of Insect Physiology,1990,36:885- 891.
    [72] Benoit J B,Lopez-Martinez G,Michaud M R,Elnitsky M A,Lee R E,Denlinger D L. Mechanisms to reduce dehydration stress in larvae of the Antarctic midge,Belgica antarctica[J]. Journal of Insect Physiology,2007,53:656-667.
    [73] Sjursen H,Bayley M,Holmstrup M. Enhanced drought tolerance of a soildwelling springtail by pre-acclimation to a mild drought stress[J]. Journal of Insect Physiology,2001,47:1021-1027.
    [74] Chown S L,Slabber S,McGeoch M A,Janion C,Leinass H P.Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods[M]. In:Proceedings of the Royal Society B,2007,274,pp:2531-2537.
    [1]黄人鑫,吴卫,毛新芳等.新疆荒漠昆虫区系及其形成与演变[M].乌鲁木齐:新疆科学技术出版社,2005:36-39.
    [2]任国栋,于有志,侯文军.中国荒漠半荒漠地区拟步甲的组成和分布特点[J].河北大学学报,1999,19(2):176-183.
    [3]陈亮,张富春,马纪.准噶尔小胸鳖甲抗冻蛋白基因(AP-AFP060116)表达规律的研究[J].新疆农业科学,2007,44(3):372-376.
    [4] McDonald J R,Head J,Bale J S,et al. Cold tolerance,overwintering and establishment potential of Thripspalmi[J].Physiol.Entomol.,2000,25:159-166.
    [5] Sámme L. The physiology of cold hardiness in terrestrial arthropods[J]. Eur. J. Entomol.,1999,96:1-10.
    [6] Salt R W. Principles of insect cold hardiness[J]. Ann Rev Entomol,1961,6:55(R)C7.
    [7] Sinclair B J. Insect cold tolerance: how many kinds of frozen[J] Eur J Entomo, 1999,l96:157(R)C16.
    [8]梅增霞,李建庆.昆虫抗寒性的生理机制及影响因子[J].滨州学院学报,2006,22(3):57-61.
    [9]景晓红,康乐.昆虫耐寒性研究[J].生态学报,2002,22(12):2202-2207.
    [10] Zachariassen K E,Kristiansen E. Ice nucleation and antinucleation in nature[J]. Cryobiology,2000,41: 257-279.
    [11] Kristiansen E,Pedersen S A,Hammel H T. Ice nucleation in solutions and freeze-avoiding insects– homogeneous or heterogeneous?[J]. Cryobiology,2004(a),48:309-321.
    [12] Zachariassen K E,Husby J A. Antifreeze effect of thermal hysteresis agents protects highly supercooled insects[J]. Nature,1982,298:285-287.
    [13] Duman J G,Wu D W,Olsen T M,et al. Thermal hysteresis proteins[J]. Adv. Low Temp. Biol.,1993,2: 131-182.
    [14] Zachariassen K E. Physiology of cold tolerance in insects[J]. Physiol. Rev., 1985,65:832-977.
    [15] Olsen T M,Seass S J , Li N,et al. Factors contributing to seasonal incresaes in inoculative freezing resistance in over wintering firecolored beetle larvae Dendroides canadensis(Pyrochroidae)[J]. Journal of Experimental Biology,1998,201:1585-1594.
    [16] Gehrken V. Inoculative freezing and thermal hysteresis in the adult beetles IPS acuminatus and Rhagium inquisitor[J]. Journal of Insect Physiology,1992,38:519-524.
    [17] Olsen T M ,Duman J G. Maintenance of the supercooled state in the gut fluid of overwintering pyrochroid beetle larvae,Dendroides canadensis: role of ice nucleators and antiffreeze proteins[J]. Journal of Comparative Physiology,1997(B),167:105-113.
    [18]秦玉川,杨建才.一种便携式测定昆虫过冷却点的方法[J].昆虫知识,2000,47(4)236-238.
    [19]韩瑞东,孙绪艮,许永玉.赤松毛虫越冬幼虫生化物质变化与抗寒性的关系[J].生态学报,2005,25(6):1352-1356.
    [20] Livak K J,Schmittgen T D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-[Delta][Delta]CT Method[J]. Methods, 2001,25(4):402-408.
    [21] Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Res.,2001,29(9):2002-2007.
    [22] Horigane M,Ogihara K,Nakajima Y,Honda H,Taylor D. Identification and expression analysis of an actin gene from the soft tick,Ornithodoros moubata (Acari : Argasidae )[J]. Arch. Insect Biochemical Physiology,2007,64(4):186-199.
    [23]焦健华,马磊,张东辉.白纹伊蚊β-肌动蛋白基因片段的克隆及其作为基因表达内参照的应用[J].中国病原生物学杂志,2007,12(6):454-456.
    [24]唐婷,柳峰松,任国栋.谢氏宽漠王β-actin基因cDNA克隆、序列分析及表达量检测[J].昆虫学报,2008,51(11):1210-1215.
    [25]刘红,任笑蒙,李君,陈兰英.果蝇组织总RNA的电泳谱型鉴定[J].医学研究通讯,2004,33(4):48-49.
    [26]刘红,任笑蒙,陈兰英,刘进.荧光差异显示PCR分离果蝇七氟醚敏感性相关基因[J].中国生物化学与分子生物学报,2003,19(6):715-722.
    [27] Krasnov B,Ayal Y. Seasonal changes in darkling beetle communities (Coleoptera: Tenbrionidae) in the Ramon Erosion Cirque Negev Highlands,Israel[J]. J Arid Environ.,1995,31:335-347.
    [28] Feng Y X,He W X. Preliminary studies on decrease the cold-hardiness of stored grain insects[J].Agricultural Weather in China,1994,15(5):l-4.
    [29] Horton D R. Reduced cold-hardiness of pear psylla caused by exposure to external water and surfactants[J]. Can.Entomo1.,1996,128(5):825-83O.
    [30]侯柏华,张润杰.桔小实蝇不同发育阶段过冷却点的测定[J].昆虫学报,2007,50(6):638-643.
    [31]刘奎,彭正强,李文德,符悦冠,金启安.椰心叶甲过冷却点的测定[J].植物检疫,2005,19(1):24-26.
    [32] Patterson J L,Duman J G. The role of thermal hysteresis producing proteins in the low temperature tolerance and water balance of larvae of the mealworm,Tenebrio molitor[J]. Journal of Experimental Biology,1978,74:37-45.
    [33] Horwath K L,Easton C M,Poggioli G J,Myers K, Schnorr I L. Tracking the profile of a specific antifreeze protein and its contribution to the thermal hysteresis activity in cold hardy insects[J]. Eur.J. Entomol.,1996,93:419-433.
    [34] Danks H V. Insect adaptations to cold and changing environments[J]. Can. Entomol.,2006,138:1-23.
    [35] Cloudsley-Thompson J L. Thermal and water relations of desert beetles[J]. Naturwissenschaften,2001, 88:447-460.
    [36] Cloudsley-Thompson J L. Multiple factors in the evolution of animal colouration[J]. Naturwissenschaften,1999,86:123-132.
    [37] Morrill W L,Gabor J W,Wichman D. Mortality of the wheat stem sawfly (Hymenoptera: Cephidae) at low temperatures[J]. Environ.Entomol.,1993,22:1358-1361.
    [38] Bennett V A,Sformo T,Walters K,Toien O,Jeannet K,Hochstrasser R,Pan Q F, Serianni A S,Barnes B M,Duman J G. Comparative overwintering physiology of Alaska and Indiana populations of the beetle Cucujus clavipes (Fabricius): roles of antifreeze proteins, polyols,dehydration and diapause[J]. Journal of Experimental Biology,2005,208:4467-4477.
    [39] Li N G,Zachariassen K E. Water Balance and Adaptation Strategy in Insects of Central Yakutia to Extreme Climatic Conditions[J]. Biology Bulletin,2006, 33(5):483-487.
    [40] Murphy D J. Freezing resistance in intertidal invertebrates[J]. Annual Review Physiology,1983,45: 289-299.
    [41] Danks H V. Dehydration in dormant insects[J]. J. Insect Physiol.,2000,46:837-852.
    [42] Worland M R,Block W. Desiccation stress at subzero temperatures in polar terrestrial arthropods[J]. Journal of Insect Physiology,2003,49:193-203.
    [43] Lundheim R,Zachariassen K E. Water balance of overwintering beetles in relation to strategies for cold tolerance[J]. Journal of Comparative Physiology,1993(B),163:1-4.
    [44] Raml?v H,Lee R E. Extreme resistance to desiccation in overwintering larvae of the gall fly Eurosta solidaginis (Diptera, Tephritidae)[J]. Journal of Experimental Biology,2000,203:783-789.
    [45] Barrett J. Thermal hysteresis proteins[J]. Int.J.Biochem.Cell Biol.,2001,33:105-117.
    [46] Andorfer C A, Duman J G. Isolation and characterization of cDNA clones encoding antifreeze proteins of the pyrochroid beetle Dendroides canadensis[J]. Journal of Insect Physiology,2000,46(3):365-372.
    [47] Graham L A, Walker V K, et al. Developmental and environmental regulation of antifreeze proteins in the mealworm beetle Tenebrio molitor[J]. European Journal of Biochemistry,2000,267(21):6452- 6458.
    [48] Pedersen S A,Kristiansen E,Hansen B H,Andersen R A,Zachariassen K E. Cold hardiness in relation to trace metal stress in the freeze-avoiding beetle Tenebrio molitor[J]. Journal of InsectPhysiology,2006, 52:846-853.
    [49] Doucet D,Tyshenko M G,Davies P L,Walker V K. A family of expressed antifreeze protein genes from the moth, Choristoneura fumiferana[J]. European Journal of Biochemistry, 2002, 269:38-46.
    [50] Wilkens C, Raml?v H. Seasonal variations in antifreeze protein activity and haemplymph osmolality in larvae of beetle Rhagium mordax(Coleoptera: cerambycidae)[J]. CryoLetters,2008,29(4):293-300.
    [51] Patterson J L,Duman J G. The role of thermal hysteresis producing proteins in the low temperature tolerance and water balance of larvae of the mealworm,Tenebrio molitor[J]. Journal of Experimental Biology,1978,74:37-45.
    [52] Tyshenko M G,Marc A,Davies P L,Daugulis A J,Walker V K. Challenges in the expression of disulfide bonded,threonine-rich antifreeze proteins in bacteria and yeast[J]. Protein Expression and Purifcation,2006,47:152-161.
    [53] Molgaard P. Temperature observations in high arctic plants in relation to microclimate in the vegetation of Peary Land, north Greenland Arct[J]. Alp. Res.,1982,14:105-115.
    [54] Broufas G D,Koveos D S. Rapid cold hardening in the predatory mite Euseius (Amblyseius) finlandicus (Acari: Phytoseiidae)[J]. Journal of Insect Physiology,2001,47:699-708.
    [55] LI Y P,He G,Park H Y,Goto M. Rapid cold hardening providing higher cold tolerance than cold acclimation in the pine needle gall midge Thecodiplosis japonensis larvae[J]. Entomologia Sinica,2001,8(1):81-88.
    [56] Salt R W. Effect of cooling rate on the freezing temperatures of supercooled insects[J]. Can JZool,1966,44:655-659.
    [57] Kelty J D, Lee R E. Induction of rapid cold hardening by ecologically relevant cooling rates in Drosophila melanogaster[J]. Journal of Insect Physiology,1999,45:719-726.
    [58] Miller L K. Freezing tolerance in relation to cooling rate in an adult insect[J]. Cryobiology,1978,15(3): 345-349.
    [59] Danks H V,Kukal O,Ring R A. Insect Cold-Hardiness: Insights from the Arctic[J]. Arctic,1994,47(4): 391-404.
    [60] Carrillo M A,Kaliyan N,Cannon C A,Morey R V,Wilcke W F. A simple method to adjust Cooling rates for supercooling point determination[J]. CryoLetters,2004,25:155-160.
    [61] Carrillo M A,Moon R D,Wilcke W F,Morey R V,Kaliyan N,Hutchison W D. Overwintering Mortality of Indianmeal Moth (Lepidoptera: Pyralidae) in Southern Minnesota[J].Environmental Entomol, 2006,35(40):843-855.
    [62] Danks H V. Key themes in the study of seasonal adaptations in insects. Patterns of cold hardiness[J]. Appl. Entomol. Zool.,2005,40(2):199-211.
    [63] Sinclair B J. Field ecology of freeze tolerance: interannual variation in cooling rates,freeze-thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta quinquemaculata[J]. Oikos,2001,93(2):286-293.
    [64] Graham L A,Bendena W G,Walker V K. Cloning and baculovirus expression of a desiccation stress gene from the beetle,Tenebrio molitor[J]. Insect Biochemistry and Molecular Biology,1996,26(2):127-133.
    [65] Qin W,Doucet D,Tyshenko M G. Transcription of antifreeze protein genes in Choristoneura fumiferana[J]. Insect Molecule Biological,2007,16,423-434.
    [66] Johnston S L, Lee R E. Regulation of supercooling and nucleation in a freeze intolerant beetle (Tenebrio molitor). Cryobiology,1990,27:562-568.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700