用户名: 密码: 验证码:
自絮凝颗粒酵母BHL01的絮凝特性及表观生长动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发酵动力学的提出有助于自絮凝颗粒酵母乙醇发酵工艺的设计与放大。该乙醇发酵体系中除了常规的乙醇、葡萄糖、生物量三项指标外,絮凝颗粒的粒径分布也是重要的影响因素。本文以具有絮凝性状的基因工程酵母菌株BHL01为研究对象,基于聚焦式激光反射测量系统(Focused beam reflectance measurement, FBRM)在线检测絮凝颗粒的粒径分布,进行了以下三方面的研究:
     1.对比了BHL01与游离亲本株ATCC4126在连续乙醇发酵过程中的性能
     在相同的发酵条件下,分析两者稳态时的各发酵参数和发酵液组分,发现两者单位生物量的发酵效果相似。具有絮凝性状的BHL01受反应器的截留作用,生物量积累高,相应的其乙醇生产能力强;而絮凝形成带来的传质阻力影响,使得BHL01的比生长速率和比乙醇生产速率要明显低于游离酵母ATCC4126。
     2.考察了各种物理化学因素对BHL01絮凝性状的影响
     采用FBRM对特定物理化学条件下的BHL01絮凝颗粒粒径分布进行实时检测,发现大部分实验结果与其絮凝亲本株SPSC01相似。同时观察到了新的实验现象:BHL01絮凝的最佳pH范围拓宽为3-7.5;乙醇浓度影响上限提高到了30%(v/v);BHL01的絮凝仅对甘露糖敏感,受其他糖类的影响较弱。综合分析,BHL01属于Flo1型絮凝,其絮凝机理符合类外源凝集素假说。
     3.建立了BHL01乙醇发酵体系的表观生长动力学模型
     通过两步法研究了自絮凝颗粒酵母BHL01的表观生长动力学。首先通过提高发酵罐搅拌速率来减小颗粒粒径,消除内扩散影响,获得了本征生长动力学模型。进而结合经典的传质理论,基于颗粒内部薄壳物料衡算,建立了表观生长动力学模型。通过不同底物浓度和粒径分布条件下的发酵实验数据拟合,获得了表观生长动力学模型参数,并验证了其可靠性。在此基础上,研究了内扩散效应导致颗粒内部可能出现死区的影响,绘制了发酵初始糖和粒径影响的操作图,并分析了这一发酵体系的性能。结果表明,死区的出现对比生长速率影响显著,且葡萄糖传质是影响表观生长动力学最主要的因素。最后,基于此模型提出了多级串联系统各发酵罐中,自絮凝颗粒酵母粒径分布相应调控的过程工程策略:主发酵罐适宜于较大粒径自絮凝颗粒酵母体系,以利于固定化,提高发酵罐中细胞密度和生产强度;而后发酵罐适宜于较小粒径自絮凝颗粒酵母体系,以减轻底物内扩散影响,保持所需的发酵活性。
     综上所述,自絮凝颗粒酵母BHL01应用于乙醇连续发酵工艺优势明显。结合经典的本征生长动力学与传质理论,建立包含粒径分布在内的表观生长动力学模型,为乙醇工艺过程优化提供了有益的参考。
Ethanol fermentation with self-flocculating yeast immobilized within bioreactor is considered as a prospective method to improve the performance of fuel ethanol production. The process development is necessary for industrial application. Process design and amplification is based on the dynamics to quantitatively analyze and predicate the parameters during the ethanol fermentation. Besides ethanol, residual sugar and biomass, the size distribution of flocs is also concerned in the fermentation system. The genetically modified self-flocculating yeast BHL01 was selected as a model strain in this study, and the focused beam reflectance measurement system (FBRM) was used for on-line monitoring size distribution of flocs. In this work, we
     1. Compared the performances of continuous ethanol fermentation systems using flocculating yeast BHL01 and free yeast ATCC4126
     Under the same conditions, the fermentation parameters and main by-products were analyzed. It was observed that both strains showed similar fermentation performance. Meanwhile, due to the rector's retention, the biomass of BHL01 was higher and the ethanol production capacity of BHL01 was more efficient. However, the specific growth rate of BHL01 was significantly lower because of the mass transfer resistance caused by flocs.
     2. Discussed the effects of physical and chemical factors on the floculation of BHL01
     The impacts of stirring speed, biomass, temperature, pH, monovalent and bivalent cations, saccharides and ethanol concentration on flocculation of BHL01 was investigated. It was found that most of the experimental results were very similar with its parent strain SPSC01. Moreover, new experiment phenomenons was identified, such as pH range extended to 3-7.5, no influence on the flocs below 30% (v/v) ethanol concentration, only sensitive to mannose. The strain BHL01 is classified as Flol flocculation and the mechanism corresponds with zymolectin hypothesis.
     3. Developed observed growth kinetic model for BHL01 continuous ethanol fermentation
     An observed growth kinetic model for flocculating yeast BHL01 was developed through two parameter estimating strategies. First, the impact of mass transfer resistance was eliminated by increasing stirring speed of the fermentor to reduce the size of yeast flocs, and an intrinsic growth kinetic model was established. Based on the shell mass balance theory, an observed growth kinetic model was then proposed and model parameters which were verified reliability were obtained through experimental data collecting under the condition of different substrate concentrations and size distribution of yeast flocs. The effects of dead zone which caused by shortfall of glucose and toxicity of ethanol were analyzed, and the operating diagrams were mapped based on the data which generated from the growth model simulation.
     The analytical results of the yeast flocs kinetic behavior indicate that the size distribution in each tank should be controlled separately in the tanks-in-series system for continuous ethanol fermentation. Large yeast flocs are preferred for the main tanks where higher sugar concentrations could prevent the occurrence of mass transfer resistance, while small yeast flocs should be applied for the rear tanks to maintain yeast flocs' viability and fermentability in which the sugar depletion significantly increases the risk of mass transfer resistance on yeast flocs. Therefore, comprehensive consideration of all the engineering aspects such as the separation of yeast flocs from the fermentation broth by sedimentation, the effective immobilization of yeast flocs within the tanks by retention and their size distribution are necessary.
     In conclusion, self-flocculating yeast BHL01 is adopted competitively in the ethanol industry. The observed growth kinetics which is established by combining with the intrinsic growth kinetics and classic mass transfer theory provides beneficial reference for the ethanol process optimization.
引文
[1]Von Blottnitz H, Curran M A. A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environment life cycle perspective [J]. Journal of Cleaner Production,2007,15 (7):607-619
    [2]Mitigating Climate Change in the Global Transport Sector:Seizing the Biofuels Opportunity at the COP15 in Copenhagen[R]. Copenhagen cop15, Copenhagen,2009.
    [3]Krylova A, Kozyukov E, Lapidus A. Ethanol and diesel fuel from plant raw materials:A review [J]. Solid Fuel Chemistry,2008,42(6):358-364.
    [4]Goldemberg J, Patricia G. Are biofuels a feasible option? [J]. Energy Policy,2009,37(1):10-14.
    [5]Wang M, Saricks C, Santini D. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions[R]. Argonne National Laboratory,1999.
    [6]Ethanol Industry Overlook 2010[OL],2010:2-22. http://en.wikipedia.org/wiki/Renewable_Fuels_Association
    [7]John M. Urbanchuk. Contribution of the ethanol industry to the economy of the United StatesfR]. The Renewable Fuels Association,2010.
    [8]Ethanol Industry Overview [OL]. http://www.ethanolrfa.org/pages/statistics
    [9]Ethanol fuel in Brazil [OL]. http://en.wikipedia.org/wiki/Ethanol_fuel_in_Brazil.
    [10]Producao de Automoveis por Tipo e Combustivel-2010(Tabela 10) [OL]. [2011-1-27]. http://www.anfavea.com.br/tabelas/autoveiculos/tabelalO_producao.pdf
    [11]大力发展燃料乙醇产业 生物质能迎来发展春天[OL].[2011-3-9].http://www.in-en.com/newenergy/html/newenergy-1332133211952512.html
    [12]Global ethanol production to teach 23 billion gallons in 2011[OL]. [2011-2-15]. http://www.ethanolproducer.com/articles/7482/global-ethanol-production-to-reach-23-billion-gallons-in-2011
    [13]Global Ethanol Production Forecast to Reduce Green House Gas Emissions by 105 Million Tons in 2011 [OL]. [2011-3-23] http://ncga.com/global-ethanol-production-forecast-reduce-green-house-gas-emissions-105-million-to ns-2011-3-23-11
    [14]Bai FW. Process oscillations in continuous ethanol fermentation with Saccharomyces cerevisiae [D]. Ontario:University of Waterloo,2007.
    [15]McAloo A, Taylor F, Yee W, Ibsen K, et al. Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks [R]. National Renewable Energy Laboratory. Golden, CO, USA, 1999
    [16]Cardona C A, Oscar J S. Fuel ethanol production:Process design trends and integration opportunities [J]. Bioresource Technology,2007,98(12):2415-2457.
    [17]Fargione J, Hill J, Tilman D et al. Land clearing and the biofuel carbon debt[J]. Science,2008, 319(5867):1235-1238.
    [18]Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel [J]. Applied Energy,2009,86:2273-2282.
    [19]Katharine Sanderson. US biofuels:A field in ferment [J]. Nature,2006,444:673-676.
    [20]J. Goettemoeller, A. Goettemoeller. Sustainable Ethanol:Biofuels, Biorefineries, Cellulosic Biomass, Flex-Fuel Vehicles, and Sustainable Farming for Energy Independence [M]. Prairie Oak Publishing, Maryville, Missouri,2007:42.
    [21]D. Budny, P. Sotero. Brazil Institute Special Report:The Global Dynamics of BiofuelsfR]. Earlham College Model United Nations Conference,2011.
    [22]Gnansounou E, Dauriat A, Wyman CE. Refining sweet sorghum to ethanol and sugar:economic trade-offs in the context of North China [J]. Bioresource Technology,2005,96:985-1002.
    [23]Caimi P G, McCole M L, Klein T M, et al. Fructan accumulation and sucrose metabolism in transgenic maize endosperm expressing a bacillus amyloliguefaci-ens SacB gene [J].Plant Physiol, 1996,110:355-363
    [24]Sun XH, Ao GM,Yu JJ, et al.Transfer of high Lysine-rich gene into maize inbred lines and the detection of transgenic plants [J].J Agricul Biotech,2001,9(2):156-158.
    [25]E. H. Chowdhury, H. Kuribara, A. Hino, et al. Detection of corn intrinsic and recombinant DNA fragments and CrylAb protein in the gastrointestinal contents of pigs fed genetically modified corn Btll[J]. J. Anim. Sci.,2003,81:2546-2551.
    [26]美国将大面积种植“乙醇玉米”[OL].[2011-02-22].http://www.feedtrade.com.cn/yumi/international/20110222094700.html
    [27]Kim S, Dale B E. Global potential bioethanol production from wasted crops and crop residues [J]. Biomass and Bioenergy,2004,26(4):361-375.
    [28]Industry Partners Move Cellulosic Ethanol Technology Forward [R], NREL,2008, http://www.nrel.gov/news/press/2008/600.html.
    [29]刘晨光.氧化还原电位对高浓度乙醇发酵的影响[D].大连:大连理工大学,2011.
    [30]Himmel M E, Ding S-Y, Johnson D K Biomass recalcitrance:engineering plants and enzymes for biofuels production [J]. Science,2007,315(5813):804-807.
    [31]Rubin EM. Genomics of cellulosic biofuels [J]. Nature,2008,454:841-845.
    [32]McCaig R, McKee J, Pfisterer EA, et al. Very high gravity brewing-laboratory and pilot plant trials [J]. Journal of the American Society of Brewing Chemists,1992,50:18-26.
    [33]Casey GP, Ingledew WM. Ethanol Tolerance in Yeasts [J]. Critical Reviews in Microbiology,1986, 13:219-280.
    [34]Thomas K C, Ingeldew W M. Production of 21% (v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes [J]. Journal of Industrial Microbiology,1992,10(1):61-68.
    [35]Thomas KC, Hynes SH, Ingledew WM. Practical and theoretical considerations in the production of high concentrations of alcohol by fermentation [J]. Process Biochemistry,1996,31:321-331.
    [36]葛旭萌.自絮凝酵母颗粒在线表征与发酵过程动力学[D].大连:大连理工大学,2006.
    [37]Devantier R, Scheithauer B, Villas-Boas S G, et al. Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations [J]. Biotechnology and Bioengineering,2005, 90(6):703-714.
    [38]申渝.酵母细胞超高浓度乙醇连续发酵振荡行为的研究[D].大连:大连理工大学,2009.
    [39]Thomas KC, Ingledew WM. Fuel alcohol production:effects of free amino nitrogen on fermentation of very-high-gravity wheat mash [J]. Applied and Environmental Microbiology,1990,56:2046-2050.
    [40]Bafrncova P, Smogrovicova D, Slavikova 1, et al. Improvement of very high gravity ethanol fermentation by media supplementation using Saccharomyces cerevisiae [J]. Biotechnology Letters, 1999,21:337-341.
    [41]Majara M, OconnorCox ESC, Axcell BC. Trehalose-An osmoprotectant and stress indicator compound in high and very high gravity brewing [J]. Journal of the American Society of Brewing Chemists,1996,54:149-154.
    [42]李凡.絮凝酵母重复批次高浓度乙醇发酵的研究[D].大连:大连理工大学,2010.
    [43]Bayrock DP, Ingledew WM. Application of multistage continuous fermentation for production of fuel alcohol by very-high-gravity fermentation technology [J]. Journal of Industrial Microbiology& Biotechnology,2001,27:87-93.
    [44]Bai F W, Chen L J, Zhang Z, et al. Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions [J]. Journal of Biotechnology,2004, 110(3):287-293.
    [45]Bai FW, Chen LJ, Anderson WA, et al. Parameter oscillations in a very high gravity medium continuous ethanol fermentation and their attenuation on a multistage packed column bioreactor system [J]. Biotechnology and Bioengineering,2004,88:558-566.
    [46]Jobses IML, Egberts GTC, Luyben KCAM, Roels JA. Fermentation kinetics of Zymomonas mobilis at high ethanol concentrations:Oscillations in continuous cultures [J]. Biotechnology and Bioengineering,1986,28:868-877.
    [47]Shen Y, Zhao XQ, Ge XM, et al. Metabolic flux and cell cycle analysis indicating new mechanism underlying process oscillation in continuous ethanol fermentation with Saccharomyces cerevisiae under VHG conditions [J]. Biotechnology Advances,2009,27:1118-1123.
    [48]Rees EMR, Stewart GG. The effects of increased magnesium and calcium concentrations on yeast fermentation performance in high gravity worts [J]. Journal of the Institute of Brewing,1997,103: 287-291.
    [49]Birch RM, Walker GM. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae [J]. Enzyme and Microbial Technology,2000,26:678-687.
    [50]Zhao XQ, Xue C, Ge XM, et al. Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation [J]. Journal of Biotechnol,2009,139:55-60.
    [51]Zhao XQ, Bai FW. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production [J]. Journal of Biotechnology,2009,144:23-30.
    [52]Alper H, Moxley J, Nevoigt E, et al. Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production [J]. Science,2006,314:1565-1568.
    [53]Na D, Kim TY, Lee SY. Construction and optimization of synthetic pathways in metabolic engineering [J]. Current Opinion in Microbiology,2010,13(3):363-370.
    [54]赵心清,姜如娇,白凤武.启动子和细胞全局转录机制的定向进化在微生物代谢工程中的应用[J].生物工程学报,2009,25(9):1312-1315.
    [55]Bro C, Regenberg B, Forster J, et al. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production [J]. Metabolic Engineering,2006,8(2):102-111
    [56]Verbelen PJ, De Schutter DP, Delvaux F, et al. Immobilized yeast cell systems for continuous fermentation applications [J]. Biotechnology Letters,2006,28:1515-1525.
    [57]Karel SF, Libicki SB, Robertson CR. The immobilization of whole cells:Engineering principles [J]. Chemical Engineering Science,1985,40:1321-1354.
    [58]白凤武.无载体固定化细胞的研究进展[J].生物工程进展,2000,20(2):32-36.
    [59]Atkinson B, Mavituna F.Biochemical engineering and biotechnology handbook.[M].1982:992.
    [60]Purwadi R, Brandberg T, Taherzadeh MT. A possible industrial solution to ferment lignocellulosic hydrolyzate to ethanol:continuous cultivation with flocculating yeast [J]. Int J Mol Sci,2007,8: 920-32.
    [61]Ma K, Wakisaka M, Sakai K, et al. Flocculation characteristics of an isolated mutant flocculent Saccharomyces cerevisiae strain and its application for fuel ethanol production from kitchen refuse [J]. Bioresour Technol,2009,100:2289-2292.
    [62]靳艳,白凤武,冯朴荪等.融合株SPSC发酵生产酒精的工艺研究[J].微生物学报,1996,36(2):115-120.
    [63]白凤武,靳艳,冯朴荪等.融合株SPSC发酵生产酒精的工艺研究一自絮凝细胞颗粒粒径分布、细胞生长和产物酒精生成动力学[J].生物工程学报,1999,15(4):455-460.
    [64]Zhao XQ, Bai FW. Yeast flocculation:New story in fuel ethanol production [J]. Biotechnology Advances,2009,27:849-856.
    [65]王付转等.絮凝酿酒酵母的构建及其发酵特性[J].化工学报,2008,59(2):437-442.
    [66]Verstrepen KJ, Derdelinckx G, Verachtert H, et al. Yeast flocculation:what brewers should know [J]. Applied Microbiology and Biotechnology,2003,61:197-205.
    [67]Stratford M, Assinder S. Yeast flocculation:Flol and NewFlo phenotypes and receptor structure [J]. Yeast,1991,7(6):559-574.
    [68]Heine F, Stahl F, Strauber H, et al. Prediction of flocculation ability of brewing yeast inoculates by flow cytometry, proteome analysis, and mRNA profiling [J]. Cytometry Part A,2009,75 A(2): 140-147.
    [69]Ge XM, Zhao XQ, Bai FW. On-line monitoring and characterization of flocculating yeast cell floes during continuous ethanol fermentation [J].Biotechnol. Bioeng.,2005,90:523-531.
    [70]Ge XM, Zhang L, Bai FW. Impacts of temperature, pH, divalent cations, sugarsand ethanol on the flocculating of SPSCOl[J]. Enzyme and Microbial Technology,2006:7119-7124.
    [71]Teunissen A W R H, Van Den Berg J A, et al. Transcriptional regulation of flocculation genes in Saccharomyces cerevisiae [J]. Yeast,1995,11(5):435-446.
    [72]Stratford M. Yeast flocculation:Reconciliation of physiological and genetic viewpoints [J]. Yeast, 1992,8(1):25-38.
    [73]Claro FB, Rijsbrack K, Soares EV. Flocculation onset in Saccharomyces cerevisiae:effect of ethanol, heat and osmotic stress [J]. Journal of Applied Microbiology,2007,102(3):693-700.
    [74]Amory DE, Rouxhet PG, Dufour JP. Flocculation of brewery yeast and their surface properties: chemical composition, electrostatic charge and hydrophobicity [J]. Journal of the Institute of Brewing, 1988,84:79-84.
    [75]Straver M H, Aar P C, Smit G, et al. Determinants of flocculence of brewer's yeast during fermentation in wort [J]. Yeast,1993,9(5):527-532.
    [76]Lawrence, S J, Gibson, et al. Expression of the cell wall mannoprotein genes CWP and DAN during industrial-scale lager fermentations [M]. Saint Paul, MN, ETATS-UNIS:American Society of Brewing Chemists,2009.
    [77]Stratford M. Yeast flocculation:Calcium specificity [J]. Yeast,1989,5:487-496.
    [78]Kuriyama H, Umeda I, Kobayashi H. Role of cations in the flocculation of Saccharomyces cerevisiae and discrimination of the corresponding proteins [J]. Canadian Journal of Microbiology,1991,37: 397-403.
    [79]Li F, Zhao XQ, Ge XM, et al. An innovative consecutive batch fermentation process for very high gravity ethanol fermentation with self-flocculating yeast [J]. Applied Microbiology and Biotechnology, 2009,84(6):1079-1086.
    [80]Liu C G, Ge X M, Bai F W. On-line monitoring and the mechanism of the de-flocculation of flocculating yeast cells during continuous yeast culture processes [J]. Journal of Biotechnology,2008, S136:421.
    [81]白凤武,冯朴荪.气升环流生物反应器放大过程.化学工程,1993,21(5):30-34.
    [82]谢健,白凤武,云战友等.自絮凝酵母颗粒连续发酵生产酒精的新工艺.微生物学报,1999,39:367-372.
    [83]Xu TJ, Zhao XQ, Bai FW. Continuous ethanol production using self-flocculating yeast in a cascade of fermentors [J]. Enzyme Microb Technol,2005,37:634-40.
    [84]Karen A M, Alan P J, Shaelyn H. Characterization of plant suspension cultures using t he focused beam reflectance technique [J]. Biotechnology Letters,2001,23:317-324.
    [85]Swift J D, Simic K, et al. A study of the polymer flocculation reaction in a linear pipe wit h a focused beam reflectance measurement probe [J]. Int J Miner Process,2004,73:103-118.
    [86]Gibson BR, Lawrence SJ, Leclaire JP, et al. Yeast responses to stresses associated with industrial brewery handling [J]. FEMS Microbiol Rev,2007,31:535-69.
    [87]Hu CK, Bai FW, An LJ. Effect of the flocculating of a self-flocculating yeast on its ethanol tolerance and corresponding mechanisms [J]. Chin J Biotechnol,2005,21:123-128.
    [88]Lei JJ, Zhao XQ, Ge XM, et al. Ethanol tolerance and the variation of plasma membrane composition of yeast floe populations with different size distribution[J]. J Biotechnol,2007,131:270-275.
    [89]Smukalla S, Caldara M, Pochet N, et al. FLO1 is avariable green beard gene that drives biofilm-like cooperation in budding yeast[J]. Cell,2008,135:726-37.
    [90]Groot WJ, Kraayenbrink MR, Waldram RH, et al. Kinetics of ethanol production by baker's yeast in an integrated process of fermentation and microfiltration [J]. Bioprocess and Biosystems Engineering, 1992,8:39-47.
    [91]Ge XM, Bai FW. Intrinsic kinetics of continuous growth and ethanol production of a flocculating fusant yeast strain SPSC01 [J]. Journal of Biotechnology,2006,124:363-372.
    [92]秦金来,白凤武等.絮凝颗粒酵母均匀悬浮体系生长动力学的研究[J].生物工程学报,1995,11(2):139-144.
    [93]秦金来,白凤武等.粟酒裂殖酵母絮凝颗粒均匀悬浮体系酒精生成动力学[J].化工学报,1995,46(1):20-26.
    [94]戚以政,汪叔雄.生化反应动力学与反应器[M].北京:化学工业出版社,1999:81-86.
    [95]Ge XM, Bai FW. Impacts of yeast floe size distributions on their observed rates for substrate uptake and product formation [J]. Enzyme and Microbial Technology,2005:7068-7075.
    [96]张春明SPSC01废液全循环乙醇连续发酵及发酵副产物对酵母生长和乙醇发酵的影响研究[D].大连:大连理工大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700