用户名: 密码: 验证码:
小偃54和8602及其杂交后代小偃41和小偃81旗叶光合特性及光破坏防御能力比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦旗叶的光合速率及光合有效时间是影响小麦产量的重要因素之一。大田生产中,外在的环境因素很难控制,因此,通过栽培和育种等手段改善叶片自身的光合特性和光破坏防御能力,是提高其光合速率,延长其光合有效时间的有效途径之一。
     本研究通过测定叶绿体色素含量、叶片气体交换参数、叶绿素荧光参数、820nm吸收参数、抗氧化酶活性、D1蛋白及PsaA蛋白的含量,比较了小偃54(XY54)和8602及其杂交后代小偃41(XY41)和小偃81(XY81)花后旗叶光合特性及光破坏防御能力的差异。主要结果如下:
     (1)在开花期,4个品种(系)的叶绿素含量不同,基本表现为杂交后代高于双亲,且以XY81为最高;8602品系的光合速率(Pn)和羧化效率(CE)最高,XY41品系的气孔导度(Gs)最低,而XY54品种的CE最低。4个小麦品种(系)的胞间CO2浓度(Ci)、K点可变荧光(F_K)占F_J–F_O荧光振幅的比率(Wk)、光系统II(PSII)最大量子效率(Fv/Fm)、电子传递到Q_A下游的概率(Ψo)、电子从系统间电子传递体传递给光系统I受体侧电子受体的概率(δRo)、820nm相对可变透射光(ΔI/Io)及PSII的实际光化学效率(ΦPSII)无显著差异。小麦开花后,XY54的叶绿素含量、Pn、Gs、CE、F_v/F_m、δRo及ΔI/Io的下降幅度和Wk的上升幅度显著大于其他3个品系,但Ci、Ψo和ΦPSII与其他3个品系没有显著差异。8602和两个杂交后代的上述参数的变化趋势在整个发育期内基本相同。当叶绿素含量相同时,XY54的Pn相对其他3个品系较高。在灌浆后期,4个小麦品种的光合速率及光合光反应的日变化基本相同。以上结果表明,与XY54相比,XY41和XY81的光合速率下降幅度较小,可能与他们的光合暗反应能力不同有关,而不是由于三者的叶绿素含量、气孔导度及光反应的能力不同所造成,杂交后代XY81和XY41可能遗传了8602品系较高的光合暗反应特性。
     (2)在开花期,两个杂交后代XY81和XY41的类胡萝卜素含量高于8602,但与XY54基本相同;4个品种(系)的ΦPSII/ΦCO_2、非光化学猝灭(NPQ)、D1蛋白和PsaA蛋白的含量、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)的活性都没有显著差异;XY54超氧化物歧化酶(SOD)的活性较其他3个品系低。小麦开花后,XY81和XY41类胡萝卜素含量的下降速率较XY54慢,但与8602类似;4个品种(系)的NPQ逐渐增加,增加幅度基本相同;XY54的SOD活性的绝对值在花后的整个衰老过程中低于其他3个品系,且上升幅度显著高于其他3个品系;APX活性的下降幅度却比其他3个品系大;4个品种(系)CAT的活性的变化基本相同。在开花后期,与其他3个品系相比,XY54的ΦPSII/ΦCO_2增加的幅度更快,D1蛋白和PsaA蛋白的降解幅度加快。以上结果表明,两个杂交后代XY81和XY41可能遗传了其亲本XY54较高的类胡萝卜素含量,但是其类胡萝卜素的降解却与8602的某些性状相关。在开花后期,XY54依赖光抑制的热耗散的比例可能更高。小偃54的抗氧化酶活性相对其他3个品系较低,对超氧阴离子及过氧化氢的清除能力比较弱,从而加重了对XY54的光破坏。
Photosyntheis and its active period are important factors determing wheat production. In wheat production, it is hard to control the external conditions that affect photosynthesis. However, it is feasible to enhance photosynthesis and extend its active period by perfecting the photosynthetic characteristics and photoprotection capacity of wheat leaves through cultivating and breeding.
     In this study, gas exchange, chlorophyll fluorescence, 820nm transmission, pigments, antioxidant enzymes, D1 protein and PsaA protein were assayed to compare photosynthetic characteristics and capacity of photoprotection of flag leaves of Xiaoyan 54 (XY54) and 8602, and their hybrids, Xiaoyan 41 (XY41) and Xiaoyan 81 (XY81) after anthesis. In this way, we expect to clear the differences in photosynthetic characteristics and photoprotection capacity between the parients and their hybrids, and then provide some valuable information for wheat breeding. The main results are as follows:
     (1) At the period of anthesis, there were some differences among these four cultivars (lines) in the content of chlorophylls. The pigment contents were higher in the hybrids, especially XY81, than their parents. Photosynthetic rate (Pn) and carboxylation efficiency (CE) were the highest in 8602 whereas stomatal conductance (Gs) was lower in XY41 and CE was the lowest in XY54. These four cultivars (lines) had similar intercellular CO2 concentration (Ci), ratio of variable F_K to the amplitude F_J–F_O (Wk), the maximum quantum yield of PSII (F_v/F_m), efficiency that an electron moves further than QA (Ψo), efficiency with which an electron from the intersystem electron carriers moves to reduce end electron acceptors at the PSI acceptor side (δRo), relative variable transmission at 820nm (ΔI/Io), and actually photochemical efficiency of PSII (ΦPSII). After anthesis, decreases in the pigment contents, Pn, CE, Gs, Fv/Fm,δRo andΔI/Io, and increases in Wk were faster in XY54 in contrast with other three cultivars (lines). No difference was detected in Ci,Ψo, orΦPSII among these four cultivars (lines). The change of above parameters were similar in 8602 and the hybrids during the whole period after anthesis. With similar chlorophyll contents, Pn was higher in XY54 in contrast with other three cultivars (lines). At late filling period, the four cultivars (lines) exhibited identically diurnal change in Pn and photosynthetic light reactions. The above results indicate that, compared with XY 54, the relatively slower decrease in photosynthetic rate in XY41 and XY81 was not correlated with their chlorophyll contents, stomatal conductance and photosynthetic light reaction capacities, but with their different dark reaction capacities. XY41 and XY81 may inherit the high dark reaction capacity from 8602, one of their parents.
     (2) At the period of anthesis, the content of carotenoids in XY81 and XY41 was similar as that in XY54, but higher than that in 8602. No differences were found among the four cultivars (lines) in terms of ratio ofΦPSII/ΦCO_2, non-photochemical quenching (NPQ), the content of D1 protein and PsaA protein, and the activity of catalase (CAT) or ascorbate peroxidase (APX). However, the activity of superoxide dismutase (SOD) was higher in XY54 compared with other three cultivars (lines). After anthesis, the content of carotenoids in XY81 and XY41 decreased slower than that in XY54, but identically with that in 8602. NPQ increased similarly in the four cultivars (generations). The activity of SOD increased whereas that of APX decreased faster in XY54 in contrast with those three generations. CAT showed a similar activity in the four cultivars (lines) after anthesis. At the late stage after anthesis, compared with those three cultivars (lines), XY54 had a faster increase in ratio ofΦPSII/ΦCO_2 and more pronounced degradation of D1 protein and PsaA protein. The above results suggest that the two hybrids might inherbit the higher carotenoids contents of XY54, but their degradation of carotenoids was correlated with the genetic characteristics from 8602. At the late stage after anthesis, heat dissipation depedent on photoinhibition was more predominant in XY54. XY54 might enhance its Mehler reaction to consume more absorbed light energy. During Mehler reaction, more produced superoxide anion was converted to hydrogen peroxide by SOD in XY54. Nevertheless, such accumulated hydrogen peroxide was not scavenged timely by APX. As a result, the photodamage became more severe in XY54.
引文
程建峰,马为民,陈根云,胡美君,沈允钢,李振声,童依平,李滨,李宏伟。小偃54和京411及其杂交后代稳定优选株系光合特性的动态变化。作物学报,2009,35(6):1051-1058
    郭翠花,高志强,苗果园。花后遮阴对小麦旗叶光合特性及籽粒产量和品质的影响。作物学报,2010,36(4):673-679
    胡美君,王义芹,张亮,王超,沈允钢,李振声,李宏伟,童依平,李滨。不同基因型小麦及其优选杂交后代的光合作用特性。作物学报,2007,33(11):1879-1883
    胡延吉,赵檀方。小麦光合作用的遗传和改良潜力的初步研究。中国农业科学,1995,28(1):14-21
    江华,王宏炜,苏吉虎,石晓冰,沈允钢,李振声,魏其克,张锡梅,李滨,李鸣,张吉军。小麦杂交后代的光合作用。作物学报,2002,28(4):451-454
    李茂松,王春艳,宋吉青,迟永刚,王秀芬,武永锋。小麦进化过程中叶片气孔和光合特征演变趋势。生态学报,2008,28(11)5385-5391
    李鹏民,高辉远,Strasser R. J.。快速叶绿素荧光诱导动力学分析在光合作用研究中的应用。植物生理与分子生物学学报,2005,31(6)59-566
    李跃建,朱华忠,伍玲。不同小麦品种剑叶的光合速率、影响因素及其与穗重关系的研究。四川大学学报(自然科学版),2003,40(3):578-581
    李秧秧,刘文兆。灌水对小麦旗叶光合功能衰退的影响。西北植物学报,2001,21(1):75-80
    隋娜,李萌,田纪春,孟庆伟,赵世杰。超高产小麦品种(系)生育后期光合特性的研究。作物学报,2005,31(06):808-814
    隋娜,李萌,韩伟,赵世杰,田纪春。超高产小麦生育后期旗叶生理特性的研究。麦类作物学报,2009,29(06):1039-1042
    王士红,荆奇,戴廷波,姜东,曹卫星。不同年代懂小麦旗叶光合特性和产量的演变特征。应用生态学报,2008,19(06):1255-1260
    王健,朱锦懋,林青青,李晓娟,滕年军,李振声,李滨,张爱民,林金星。小麦茎秆结构和细胞壁化学成分对抗压强度的影响。科学通报,2006,51(6):679-685
    魏爱丽,张英华,黄琴,王志敏。小麦不同绿色器官光合速率与碳同化酶活性及其基因型差异研究。作物学报,2007,33(09):1426-1431
    吴会杰,魏学宁,周新力,曹双河,李宏伟,王献平,童依平,井金学,张相岐。小偃54和小偃81高温抗条锈性及其与几丁质酶基因表达的关系。麦类作物报,2007,27 (6):1117-1122
    许大全,丁勇,武海。田间小麦叶片光合效率日变化与光合“午睡的关系”。植物生理学报,1992,18(3):279-284
    许大全。光系统Ⅱ反应中心的可逆失活及其生理意义。植物生理学通讯,1999,35(4):273-276
    邹铁祥,戴廷波,姜东,荆奇,曹卫星。氮、钾水平对小麦花后旗叶光合特性的影响。作物学报,2007,33(10):1667-1673
    Aebi H.. Catalase in vitro. Method Enzymol, 1984, (105): 121-126
    Anderson J. M., Park Y. I. and Chow W. S.. Photoinhibition and photoprotection of photosystem II in nature. Physiol. Plant, 1997, (100): 214-223
    Andersson B. and Barber J.. Mechanisms of photodamage and protein degradation during photoinhibition of photosystem II. In: Baker NR (ed). Photosynthesis and the Environment. Dordrecht: Kluwer Academic, 1996, 101-117
    Apel K. and Hirt H.. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plan.t Biol., 2004, (55): 373-399
    Aro E. M., Kettunen R. and Tyystj-Yrvi E.. ATP and light regulated D1 protein modification and degradation. Role of D1 in photoinhibition. FEBS. Let.t, 1992, (297): 29-33
    Aro E. M., Virgin I. and Andersson B.. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta., 1993, (1143): 113-134
    Arnon D. L.. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris L. Plant Physiol., 1949, (24): 1-15
    Asada K..The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physio.l Plant Mo.l Biol., 1999, (50): 601-639
    Asada K.. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physio.l, 2006, (141): 391-396
    Baker N. R.. Possible role of photosystem II in environmental perturbations of photosynthesis. Plant Physiol., 1991, (81): 563-570
    Bartley G. E. and Scolnik P.A.. Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell, 1995, (7): 1027-1038
    Bota J., Medrano H. and Flexas J.. Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol., 2004, (162): 671-681
    Brodribb T. J. and Holbrook N.M.. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol., 2003, (132): 2166-2173
    Caemmerer S. and von Farquhar G.D.. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 1981, (153): 376-387
    Chen H. X., An S. Z., Li W. J.,Gao H. Y. and Zou Q.. Enhancement of the Mehler–peroxidase reaction in salt–stressed Rumex K–1 leaves. Acta. Bot. Sin., 2004, (46): 811-818
    Chen J., Wang P., Mi H. L., Chen G. Y. and Xu D.Q.. Reversible association of ribulose–1, 5–bisphosphate carboxylase / oxygenase activase with the thylakoid membrane depends upon the ATP level and pH in rice without heat stress. J. Exp. Bot., 2010, (61):2939-2950
    Cleland R., Melis A. and Neale P. J.. Mechanism of photoinhibition: photochemical reaction center inactivation in system II of chloroplasts. Photosynth Res., 1986, (9): 79-88
    Collatz G. D.. Influence of certain environmental factors on photosynthesis and photorespiration in Simmondsia chinensis. Planta, 1977, (134): 127-132
    Cornic G.. Drought stress and high light effects on leaf photosynthesis. In: Baker, NR (Ed), Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field, BIOS, Oxford, 1994, 297-313
    Crafts–Brandner S. J. and Salvucci M. E.. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc. Natl. Acad. Sci. USA, 2000, (97): 13430-13435
    Dai J., Gao H., Dai Y. and Zou Q.. Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence. Plant Biol., 2004, (6): 171-177
    Dangl J. L., Dietrich R. A. and Thomas H.. Senescence and programmed cell death.– In: Buchanan B. B., Gruissem W., Jones R. L. (eds), Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD, 2000, 1044-1100
    Darkóé., Váradi G., Lemoine Y. and Lehoczki E.. Defensive strategies against high light stress in wild and D1 protein mutant biotypes of Erigeron canadensis. Aust. J. Plant Physiol., 2000, ( 27): 325-333
    del Río L. A., Pastori G. M., Palma J. M., Sandalio L. M., Sevilla F., Corpasm F. J., Jiménez A., López-Huertas E. and Hernández J.A.. The activated oxygen role of peroxisomes in senescence. Plant Physiol., 1998, (116): 1195-1200
    Demmig-Adams B. and Adams WWIII. Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol. Plant Mol. Biol., 1992, (43): 599-626
    Demmig-Adams B. and Adams WWIII. Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta, 1996, (198): 460-470
    Demmig-Adams B. and Adams WWIII, Hebber U. Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by DTT in spinach leaves and chloroplast. Plant Physiol., 1990, (92): 293-301
    Eichelmann H., Talts E., Oja V., Padu E. and Laisk A.. Rubisco in planta kcat is regulated in balance with photosynthetic electron transport. J. Exp. Bot., 2009, (60): 4077-4088
    Eskling M., Arvidsson P.O. and Akerlind H.E.. The xanthophylls cycle, its regulation and components. Physiol. Plant, 1997, (100): 806-816
    Feller U., Anders I. and Mae T.. Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J. Exp. Bot., 2008, (59): 1615-1624
    Flexas J. and Medrano H.. Drought–inhibition of photosynthesis in C3 plants: stomatal and non–stomatal limitations revisited. Ann. Bot., 2002, (89): 183-189
    Foyer C. H. and Noctor G.. Oxygen processing in photosynthesis: regulation and signalling. New. Phytol., 2000, (146): 359-388
    Foyer C. H. and Noctor G.. Oxidant and antioxidant signaling in plants: a re–evaluation of the concept of oxidative stress in a physiological context. Plant. Cell. Environ., 2005, (28): 1056-1071
    Foyer C. H. and Shigeoka S.. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant. Physiol., 2011, (155): 93-100
    Fryer M. J., Andrews J. R., Oxborough K., Blowers D. A. and Baker N. R.. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol., 1998, (116): 571-580
    Genty B., Briantais J. M. and Baker N. R.. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta., 1989, (990): 87-92
    Giannopolitis C. N. and Ries S. K.. Superoxide dismutases. I. Occurrence in higher plants. Plant Physiol., 1977, (59): 309-314
    Gounaris K., Brain A. R. R. and Quinn P. J.. Structural and functional changes associated with heat–induced phase separation of non–bilayer lipids in chloroplast thylakoid menbrane. FEBS. Lett., 1983, (153): 47-52
    Hammerschmidt R., Nuckles E. and Kuc J.. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol., 1982, (20): 73-82
    Horton P. and Ruban A.V.. Regulation of PSII. Photosynthe Res., 1992, (34): 375-385
    Horton P., Ruban A. and Walters R. G.. Regulation of light harvesting in green plants: indication by non-photochemical quenching of chlorophyll fluorescence. Plant Physiol., 1994, (106): 415-420
    Hong S. S and Xu D. Q.. Light–induced increase in initial chlorophyll fluorescence Fo level and the reversible inactivation of PS II reaction centers in soybean leaves. Photosynth Res., 1999, (61): 269-280
    Johnson X., Wostrikoff K. and Finazzi G.. MRL1, a conserved pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis. Plant Cell. 2010, (22): 234-248
    Keren N., Berg A. and Van Kan P. J. M.. Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: the role of back electron flow. Proc. Natl. Acad. Sci USA, 1997, (94): 1579-1584
    Klein R. R. and Mullet J. E.. Control of gene expression during higher plant chloroplast biogenesis. Protein synthesis and transcript levels of psbA, psaA–psaB and rbcl in dark–grown and illuminated barley seedings. J. Biol. Chem, 1987, (262): 4341-4348
    Krause G. H. and Weis E.. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Phys. Plant Mol. Biol., 1991, (42): 313-349
    Kyle D. J., Ohad I. and Arntzen C. J.. Membrane protein damage and repair: Selective loss of a quinine–protein function in chloroplast membranes. Proc. Natl. Acad. Sci. USA, 1984, (81): 4070-4074
    Law R. D. and Crafts–Brandner S. J.. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose–1,5–bisphosphate carboxylase/oxygenase. Plant Physiol., 1999, (120): 173-181
    Lazár.. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct. Plant .Biol., 2006, (33): 9-30
    Lee H. Y., Hong Y. N. and Chow W. S.. Photoinactivation of photosystem II complex and photoprotection by non–functional neighbours in Capsicum annuum L. leaves. Planta, 2001, (212): 332-342
    Li J., Pandeya D., Nath K., Zulfugarov I. S., Yoo S. C., Zhang H., Yoo J. H., Cho S. H., Koh H. J., Kim D. S., Seo H. S., Kang B. C., Lee C. H. and Paek N. C.. ZEBRA-NECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. Plant J., 2010, (62): 713-725
    Li P. M., Cai R. G., Gao H. Y., Peng T. and Wang Z. L.. Partitioning of excitation energy in two wheat cultivars with different grain protein contents grown under three nitrogen applications in the field. Physiol. Plant, 2007, (129): 822-829
    Li P. M., Cheng L., Jiang C. D., Strasser R. J., Gao H. Y. And Peng T.. Heterogeneous behavior of PSII in soybean (Glycine max) leaves with identical PSII photochemistry efficiency under different high temperature treatments. J. Plant Physiol., 2009, (166): 1607-1615
    Limousin J., Misson L., Lavoir A., Martin N. K. and Rambal S.. Do photosynthetic limitations of evergreen Quercus ilex leaves change with long–term increased drought severity? Plant Cell Environ., 2010, (33): 863-875
    Lu C., Lu Q., Zhang J. and Kuang T.. Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field. J. Exp. Bot., 2001, (52): 1805-1810
    Lu Q., Lu C., Zhang J. and Kuang T.. Photosynthesis and chlorophyll a fluorescence during flag leaf senescence of field–grown wheat plants. J. Plant Physiol., 2002, (159): 1173-1178
    Mate C. J., Hudson G. S., von Caemmerer S., Evans J. R. and Andrew T. J.. Reduction of ribulose bisphosphate carboxylase activase levels in tobacco (Nicotiana tabacum) by antisense and impairs photosynthesis. Plant Physiol., 1993, (102): 1119-1128
    Mattoo A. K. and Hoffman-Falk H., Marder J.B.. Intramembrane translocation and posttranslational palmitoylation of the chloroplast 32–kDa herbicide–binding protein.Proc. Natl. Acad. Sci. USA , 1987, (84): 1497-1501
    Munné–Bosch S., Jubany–MaríT. and Alegre L.. Drought–induced senescence is characterized by a loss of antioxidant defences in chloroplast. Plant Cell Environ., 2001, (24): 1319-1327
    Murchie E. H. and Niyogi K. K.. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol., 2011, (155): 86-92
    Nakano Y. and Asada K.. Hydrogen peroxide is scavenged by ascorbate–specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 1981, (22): 867-880
    Navabpour S., Morris K., Allen R., Harrison E., A–H–Mackerness S. and Buchanan–Wollaston V. Expression of senescence–enhanced genes in response to oxidative stress. J. Exp. Bot., 2003, (54): 2285-2292
    Nikolai G., Bukhov. and Robert C.. Hetergeneity of photosystem II reaction centers as influenced by heat treatment of barley leaves. Physiol. Plant, 2000, (110): 279-285
    Niyogi K.. Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, (50): 333-359
    Ohad I., Keren N. and Zer H.. Light–induced degradation of the photosystem II reaction center protein in vivo: An integrative approach. In: Baker N. R., Bowyer J. R. (eds), Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field. Oxford: BIOS, 1994, 161-177
    Ortiz–Lopez A., Ort D. R. and Boyer J. S.. Photophosphorylation in attached leaves of Helianthus annuus at low water potentials. Plant Physiol., 1991, (96): 1018-1025
    Palma J. M., Jiménez A., Sandalio L. M., Corpas F. J., Lundqvist M., Gómez M., Sevilla F. and del Río L. A.. Antioxidant enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants. J. Exp. Bot., 2006, (57): 1747-1758
    Palma J. M., Sandalio L. M., Corpas F. J., Romero–Puertas M. C., McCarthy I. and del Río L. A.. Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol. Biochem., 2002, (40): 521-530
    Prásil O., Adir N. and Ohad I.. Dynamics of photosystem II: mechanism of photoinhibition and recovery process. In: Barber NR, Bowyer JR (eds), Topics in Photosynthesis. Vol 11. The Photosystems: Structure, Function, and Molecular Biology. Oxford: Elsevier Scientific Publisher, 1992, 295-348
    Prochazkova D., Sairam R. K., Srivastava G. C. and Singh D. V.. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci., 2001, (161): 765-771
    Rockholm D. C. and Yamamoto H. Y.. Violaxanthin de–epoxidase. Plant Physiol., 1990, (110): 697-703
    Salvucci M. E., Osteryoung K. W., Crafts–Brandner S. J. and Vierling E.. Exceptionalsensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol., 2001, (127): 1053-1064
    Schansker G., Srivastava A., Govinjee and Strasser R. J.. Characterization of the 820nm transission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct. Plant .Biol., 2003, (30): 785-796
    Schansker G., Tóth S. Z. and Strasser R. J.. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim. Biophys. Acta., 2005, (1706): 250-261
    Schlüter U., Muschak M., Berger D. and Altmann T.. Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1‐1) under different light regimes. J. Exp. Bot., 2003, (54): 867-874
    Schrott E. L.. Carotenoids in plant photoprotection. Pure Appl. Chem, 1985, (57): 729-734 Shan X., Wang J., Chua L., Jiang D., Peng W. and Xie D.. The role of Arabidopsis Rubisco activase in jasmonate–induced leaf senescence. Plant Physiol, 2001, (155): 751-764
    Shinohara K. and Murakami A.. Changes in levels of thylakoid components in chloroplasts of pine needles of different ages. Plant Cell Physiol., 1996, (37): 1102-1107
    Singh M. and Satoh K.. Characterization of a phototolerant mutant of synechocystis sp PCC6803 created by random mutagenesis of ps–bAII gene. Bot. Soc. Japan., 1999, (63): 108-114
    Srivastava A., GuisséB., Greppin H. and Strasser R. J.. Regulation of antenna structure and electron transport in photosystem II of Pisum sativum at elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim. Biophys. Acta., 1997, (1320): 95-106
    Strasser B. J.. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res. 1997, (52): 147-55
    Strasser B. J. and Strasser R. J.. Measuring fast fluorescence transients to address environmental questions: the JIP test. In: Mathis P (ed), Photosynthesis: From light to Biosphere, vol V. Dordrecht: Kluwer Academy Publishers, 1995, 977-980
    Strasser R. J., Srivastava A. and Tsimilli–Michael M.. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M., Pathre U., Mohanty P. (Eds), Probing photosynthesis: mechanisms, regulation and adaptation. UK: Taylor and Francis, 2000, 445-83
    Strasser R. J., Tsimill–Michael M. and Srivastava A.. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G. C., Govindjee (Eds), Chlorophyll a fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration. Germany: Springer, 2004, 321-62
    Sun J., Zhang J., Larue C. T. and Huber S. C.. Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration–limited photosynthesisbut not Rubisco–limited photosynthesis in Arabidopsis null mutants of SPSA1. Plant Cell Environ., 2011, (34): 1-13
    Tompson J. E., Froese C. D., Madey E, Simth M. D. and Hong Y.. Lipid metabolism during plant senescence. Prog. Lipid. Res., 1998, (37): 119-141
    Tóth S. Z., Schansker G. and Strasser R. J.. In intact leaves, the maximum fluorescence level (FM) is independent of the redox state of the plastoquinone pool: A DCMU–inhibition study. Biochim. Biophys. Acta., 2005, (1708): 275-282
    Váradi G., Polyánka H., Darkóé., Lehoczki E.. Atrazine resistance entails a limited xanthophyll cycle activity, a lower PSII efficiency and an altered pattern of excess excitation dissipation. Physiol. Plant, 2003, (118): 47-56
    Wingler A., Lea P. J., Quick W. P. and Leegood R. C.. Photorespiration: metabolic pathways and their role in stress protection. Philos. Trans R. Soc. Lond. B. Biol. Sci., 2000, (355): 1517-1529
    Yamori W. and Caemmerer S.. Effect of Rubisco activase deficiency on the temperature response of CO2 assimilation rate and Rubisco activation state: insights from transgenic tobacco with reduced amounts of Rubisco activase. Plant Physiol., 2009, (151): 2073-2082
    Yang H. M., Zhang X. Y. and Wang G. X.. Relationships between stomatal character, photosynthetic character and seed chemical composition in grass pea at different water avail abilities. J. Agric. Sci., 2004, (142): 675-681
    Ye L., Gao H. Y. and Zou Q.. Responses of the antioxdiant systems and xanthophyll cylce in Phaseolus vulgaris to the combined stress of high irradiance and high temperature. Photosynthetica, 2000, (38): 205-210
    Yin Z., Meng F., Song H., Wang X., Xu X. and Yu D.. Expression quantitative trait loci analysis of two genes encoding Rubisco activase in soybean. Plant Physiol., 2010, (152): 1625-1637
    Yusuf M. A., Kumar D., Rajwanshi R., Strasser R. J., Tsimilli–Michael M., Govindjee and Sarin N. B.. Overexpression ofγ–tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. Biochim. Biophys. Acta., 2010, (1797): 1428-1438
    Zhang L. X., Paakkarinen V., van Wijk K. J. and Aro E. M.. Co–translational assembly of the D1 protein into photosystem II. J. Biol .Chem., 1999, (274): 16062-16067

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700