用户名: 密码: 验证码:
转基因聚合提高烟草耐盐性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐胁迫是自然界中主要的非生物胁迫之一,目前已经严重影响到世界范围内许多重要作物的产量。利用基因工程技术提高作物耐盐性是解决这一问题的最有效途径之一。目前,通过向植物中转入耐盐相关基因可在一定程度上改善植物的耐盐性。然而,由于植物的耐盐性是受多基因控制的复杂遗传性状,依赖于多个基因之间的相互作用,是多种耐盐生理性状的综合体现,因此,转入单个耐盐相关基因只能部分提高植物的耐盐性。一般认为,将多个耐盐相关基因聚合到同一植物中有可能会大大提高转基因植物抵抗盐胁迫的能力。
     来源于大肠杆菌的betA基因,编码胆碱脱氢酶,转入植物后可提高细胞甘氨酸甜菜碱含量;来自于盐芥的TsVP基因编码V-H~+-PPase,该基因过表达可提高液泡膜逆浓度梯度转运离子的能力;AtNHX1基因编码拟南芥液泡膜Na~+/H~+反向转运蛋白,该蛋白可将胞质中过高的Na~+转运到液泡内积累。已有的基因工程研究表明,分别过量表达这三个单基因都可以明显改善植物的耐盐性。
     本工作以分别转betA基因烟草(BL)、转TsVP基因烟草(TL)和转AtNHX1基因烟草(AL)为材料,通过有性杂交方法获得聚合有2个不同转基因的烟草植株,即betA×TsVP(BT)、betA×AtNHX1(BA)。PCR、Southern blot、RT-PCR和检测甘氨酸甜菜碱含量、V-H~+-PPase水解活性及Na~+含量的测定结果都表明,两个转基因稳定存在于转基因聚合的烟草植株中,并进行了活跃表达。通过对转单基因植株和转基因聚合植株在植株和细胞水平上的一系列耐盐性分析,确定了细胞水平与植株水平的耐盐性存在一致性,转基因聚合植株与转单基因植株相比具有较高的耐盐性,但未表现出耐盐程度大幅度提高。主要结果和结论如下:转基因聚合烟草BT(betA×TsVP)的耐盐性分析
     在加有相同浓度NaCl的培养基上,转基因聚合株系(BT)表现出相对较高的种子萌发率和较好的小苗长势,植株单株鲜重最大;而转单基因株系(分别转betA基因和TsVP基因)次之,未转基因对照最差。表明转基因聚合相比转单基因提高了烟草在种子萌发阶段及小苗生长阶段的耐盐性。
     在正常的生长条件下,转betA基因植株与未转基因植株的生物量相似;250mM NaCl胁迫处理14天后,转betA基因植株的生物量高于未转基因植株。而无论在正常生长条件下还是盐胁迫处理后,转TsVP基因植株和转基因聚合植株都比未转基因植株生长快,具有旺盛的地上部分和发达的根系,其中转基因聚合植株的生物量最高。在正常生长条件下,转TsVP基因植株和转基因聚合植株的净光合速率显著高于未转基因对照和转betA基因植株的,而TsVP转基因植株和转基因聚合植株之间以及未转基因植株和转betA基因植株之间在光合能力上没有显著差异。250 mM NaCl的胁迫处理导致所有株系植株的光合活性下降,但转基因植株的净光合速率和Fv/Fm都比未转基因植株的高,表明转基因植株的光合效率较高。其它光合作用参数的测定结果也表明转基因植株在盐胁迫条件下比未转基因植株具有更好的光合能力,但转基因聚合植株与转单基因植株相比差异不大。
     在盐胁迫条件下,转基因植株和未转基因植株叶片内Na~+和Cl~-含量都有所增加,但含有TsVP基因的烟草植株中积累了更多的Na~+和Cl~-,Na~+和Cl~-含量显著高于未转基因植株和转betA基因植株的。转基因聚合植株与转TsVP基因植株相比Na~+和Cl~-含量差异不显著。利用激光扫描共聚焦显微镜结合Sodium Green荧光指示剂对液泡中Na~+的积累进行检测,发现盐胁迫导致所有株系的细胞中荧光强度明显升高,意味着Na~+的积累量增加。转TsVP基因细胞和转基因聚合细胞液泡中的Na~+积累量显著高于未转基因对照的和转betA基因细胞的,而转基因聚合细胞与转TsVP基因细胞相比,荧光强度无显著差异,说明二者的Na~+含量相似。这与盐胁迫后植株叶片中Na~+含量的测定结果是相一致的,表明TsVP的表达增加了转基因细胞中Na~+在液泡内的积累量。
     盐分胁迫使膜系统受到伤害,导致不同株系植株的叶片MDA含量和细胞电解质外渗率大幅度升高。未转基因植株的MDA含量和细胞电解质外渗值最大,而转基因聚合植株的最小,并且与转单基因植株间存在不同程度的差异,表明未转基因植株细胞受到的伤害最重,而转基因聚合细胞受害程度最小。在细胞学水平上对盐胁迫下细胞活力和线粒体膜完整性的测定结果得出同样的结论,即在相同的胁迫条件下,转基因株系受害程度低,原生质体活力高和线粒体膜完整性好。
     利用pH敏感的荧光探针BCECF-AM结合激光扫描共聚焦显微镜技术检测了盐胁迫对叶肉细胞质和液泡pH值的影响。在相同浓度的NaCl胁迫下,转基因细胞,尤其是TsVP基因过表达的细胞,pH变化幅度较小,说明其能够更好的维持细胞内环境的相对稳定。根据能斯特方程计算跨液泡膜的质子电势(△Ψ(H~+))。在胁迫前和胁迫后,转TsVP基因细胞和转基因聚合细胞中的△Ψ(H~+)值都要显著高于未转基因的和转betA基因细胞的。表明在含有外源TsVP基因的细胞中,V-H~+-PPase通过水解PPi来酸化液泡,从而维持了细胞中高的跨液泡膜质子电势。高的跨液泡膜电势能够促进Na~+在液泡中的区隔化,这与Na~+在液泡中积累增加的实验结果相一致。
     转基因聚合烟草BA(betA×AtNHX1)的耐盐性分析
     在含有相同盐浓度的培养基上,转基因株系的种子萌发率和小苗生长状态优于未转基因植株的。在相同的盐浓度下,转基因聚合烟草种子(BA)的萌发率最高,其单株鲜重略高于转单基因植株的(分别转betA基因和AtNHX1基因),但差异达不到显著水平。表明在种子萌发和幼苗生长阶段转基因聚合株系的耐盐性略高于转单基因株系的。
     盐胁迫增加了所有植株中的Na~+含量,含有AtNHX1基因的植株叶片中的Na~+含量显著高于未转基因植株和转betA基因植株的。Sodium Green标记显示,在盐胁迫条件下液泡内Na~+积累量在转AtNHX1基因的烟草细胞中显著高于未转基因细胞和转betA基因细胞的,而转基因聚合细胞与转AtNHX1基因细胞在液泡内Na~+积累量上差异不显著。这与叶片Na~+含量的测定结果是相一致的,表明在含有AtNHX1基因的细胞中,AtNHX1基因的表达加速了Na~+在液泡中的积累。对胞质和液泡pH值及跨液泡膜电势的计算结果也表明转基因细胞维持内环境稳定的能力要高于未转基因细胞的。转基因细胞在盐胁迫条件下表现出较高活力和较好的线粒体膜的完整性,但转基因聚合细胞和转单基因细胞间差异不显著。盐处理使植株叶片的丙二醛含量和离子渗漏率都有所上升,但转基因植株的测定值显著低于未转基因植株。这些结果表明在盐胁迫下转基因细胞与未转基因对照相比具有明显提高的抗逆性,但betA×AtNHX1植株与转单基因植株相比耐盐性提高幅度不大。
     尽管在转基因聚合植株中,各外源基因分别通过各自的方式对提高植株的耐盐性做出了贡献,但转基因聚合植株的耐盐性与转单基因植株相比提高幅度有限。虽然转基因聚合在一定程度上改善了转单基因植株的耐盐性,但与单基因分别提高植株耐盐程度之和相差很大,有可能植物的耐盐性是多个代谢活动的综合反应,而某些制约环节决定植株对盐胁迫的敏感性。因此,尽管将控制不同代谢途径的耐盐相关基因聚合是提高植物耐盐性的重要途径,但深入了解与不同植株耐盐性相关的代谢活动及其调控机制十分必要,从而拟订出针对性强易于操作的植物抗逆基因工程策略。另外,本工作结果提示,利用突变体来确定某个基因的生物学功能时有可能因调控网络和代谢网络的破坏导致基因功能的放大,因此,在基因功能分析中应注意不同遗传背景下目标基因的功能差异。
Salt stress is one of the major abiotic stresses in nature,and can severely affect the productivity of crops all over the world.Improving the salt tolerance of plants through genetic engineering is one of the most effective strategies to solve this problem.Until now,improved salt tolerance of plants has been achieved by genetic transformation of salt tolerance-related genes.The tolerance to salt stress of plants is a complex trait that is modulated by multiple genes and requires the coordination of many genes.Therefore,the transformation of single gene into a plant can only enhance salt tolerance partially.In general introducing genes from different salt responses into a single plant by gene pyramiding is considered as an efficient approach for engineering extreme salt tolerance,which could be achieved either by cross-breeding plants containing different salt-tolerant genes or by transformation with multiple genes.
     The betA gene from Escherichia coli,which encodes chroline dehydrogenase (CDH),could increase the betaine content in transgenic plants;the TsVP gene from salt cress(Thellungiella halophila),which encodes vacuolar H~+-translocating inorganic pyrophosphatase,would enhance the transport across the vacuolar membrane;the AtNHX1 gene from Arabidopsis thaliana,which encodes vacuolar Na~+/H~+ antiporter,could sequestrate excessive Na~+ into vacuoles.It has been reported that overexpressing each gene alone can improve the salt tolerance of plants.
     In this study,the beta gene,TsVP gene and AtNHX1 gene transformed tobaccos were named BL,TL and AL,respectively.The transgene pyramiding tobacco plants were obtained by sexual crossing,including two genes that undergo different mechanisms of salt tolerance(betA×TsVP(named BT),betA×AtNHX1(named BA)). PCR,Southern blot,RT-PCR,and the determination of betaine content,V-H~+-PPase hydrolytic activity and Na~+ concentration indicated that the two genes were integrated into the genome and expressed functionally in transgene pyramiding tobacco plants. The analysis of salt tolerance at the whole plant level and cellular level were performed,which confirmed the consistency between the cellular level and the whole plant level.The transgene pyramiding plants showed higher salt tolerance than single gene transgenics,though the extent was not great.The main results of this study were summarized as follows:
     Studies on salt tolerance of betA×TsVP(BT)tobacco
     On the medium containing the same concentration of NaCl,the transgene pyramiding tobacco line(BT)showed the highest percentage of seed germination,the best growth and the highest seedling fresh weight.In contrast those of the single gene transgenic lines(BL and TL)were moderate and those of the non-transgenic control line were the lowest.These results indicated that transgene pyramiding could further enhance tobacco salt tolerance than the transformation of single gene at the seed germination and seedlings growth stage.
     Under normal conditions,the biomass of betA-transgenics(BL)and the wild-type(WT)plants were similar.The fresh weight and dry weight of BL were both higher than those of WT after the treatment of 250 mM NaCl for 14 days.The TsVP-transgenics and the transgene pyramiding plants showed more developed shoot and root systems compared with WT under both normal and salt stress conditions,and the biomass of betA×TsVP plants was the highest.The TsVP-transgenic tobacco plants (TL and BT)showed significantly higher net photosynthetic rate than wild-type and betA-transformed plants under normal conditions.There was no significant difference on the photosynthesis between TL and BT,and the photosynthesis of WT and BL plants were also comparable in the absence of NaCl.Salt stress decreased the photosynthetic activities of both transgenic and wild-type plants,while the transgenic plants exhibited higher photosynthetic rate and Fv/Fm ratio than wild-type,implying the higher photosynthetic efficiency in transgenies.The results of the measurement on other photosynthesis features also indicated the transgenic plants had higher photosynthetic capacity than the wild-type ones under salt stress conditions,but the difference in photosynthesis between transgene pyramiding plants and single gene transgenics was not significant.
     Salinity stress increased the Na~+ and Cl~- concentrations in all plants,but the TsVP-transgenics(TL)and the transgene pyramiding plants(BT)accumulated significantly more Na~+ and Cl~- than wild-type and betA-transgenic plants.There was no significant difference on Na~+ and Cl~- contents between BT and TL plants.The accumulation of Na~+ in vacuoles was measured using Sodium Green fluorescent indicator and laser scanning confocal microscopy.Higher fluorescent signals(i.e. higher Na~+ concentration)were observed in both transgenic and wild-type cells under salt stress than in the absence of NaCl.It was found that the Ts VP-transgenic and the transgene pyramiding cells accumulated significantly higher Na~+ than wild-type and betA-transgenic cells under salinity stress,but there was no obvious difference on Na~+ accumulation between the transgene pyramiding cells and TsVP-transgenic cells, which was consistent with the measurement result of Na~+ in the leaves.These results suggested that the functional expression of TsVP enhanced the sequestration of Na~+ in vacuoles.
     Salt stress resulted in membrane injury and caused MDA content and electrolyte leakage rising in both transgenic and wild-type plants.The wild-type plants exhibited higher MDA content and relative conductance than the transgenics under saline conditions,suggesting the higher salt tolerance in transgenic tobacco plants.The transgene pyramiding plants showed the highest salt tolerance for the lowest MDA content and ion leakage of leaves under salinity stress.Such results were in line with the observations of cell viability and the integrity of mitoehondrial membrane at the cellular level.The transgenic tobacco cells showed higher cell viability and better integrity of mitochondrial membrane than wild-type cells under the same NaCl treatment,which also suggested the improved salt tolerance in transgenic cells.
     The cytoplasmic and vacuolar pH values were recorded by means of the pH-sensitive,cell-permeant fluorescent indicator BCECF-AM.The transgenic cells, especially TsVP transgenic cells,showed the less change of pH,which suggested that they could maintain the intracellular environment homeostasis better than wild-type under salt stress.The vacuolar pH values in TL and BT cells were lower than those in wild-type ones.The membrane potential produced by pH difference across the vacuolar membrane(△Ψ(H~+))was calculated using Nernst equation.The△Ψ(H~+) values of TsVP-transgenic and transgene pyramiding cells were significantly higher than those of wild-type and betA-transgenic cells,both before and after salt stress. These results suggested that the V-H~+-PPase could acidify vacuoles and maintain higher proton electrochemical gradient across the vacuolar membrane in TsVP transgenic cells.The higher△Ψ(H~+)would provide more motive force for the V-Na~+/H~+ antiporter to sequestrate Na~+ within vacuoles,which was proved by the determination of sodium ion in vacuoles.
     Studies on salt tolerance of BA(betA×AtNHX1)tobacco
     The transgenic tobacco lines exhibited higher percentage of seed germination.In addition,they grew better than the wild-type when placed on medium supplemented with the same concentration of NaCl.The seed germination percentage of the transgene pyramiding line(BA)was the highest,and the BA fresh weight per seedling was slightly higher than single gene transgenics(BL and AL),suggesting improved salt tolerance in the transgene pyramiding line.
     The AtNHX1-transgenic plants(AL)and the betA×AtNHX1 transgene pyramiding plants(BA)accumulated more Na~+ content than wild-type and betA-transgenic plants under salinity stress.Salt stress resulted in increasing Na~+ accumulation in the AtNHX1 transgenie cells(AL and BA)compared with that in WT or BL cells measured with Sodium Green,and the difference was significant. Alternatively,there was no distinct difference between AL and BA cells in the Na~+ content.The results were in agreement with the findings of Na~+ in leaves,indicating that the heterologous expression of AtNHX1 accelerated the sequestration of Na~+ within vacuoles.The calculation of cytoplasmic pH,vacuolar pH and the△Ψ(H~+) across the vacuolar membrane also indicated that the transgenic cells could maintain the homeostasis of intracellular environment better than WT ones.The transgenic cells showed higher protoplast viability and better mitochondrial integrity than wild-type cells under saline conditions.But no significant difference was found between the transgene pyramiding and single gene transgenic cells.Salt stress increased MDA content and relative conductance in all plants.However,the values of transgenic plants measured were much lower than those of wild-type.These results indicated that the transgenic cells showed enhanced salt tolerance compared with wild-type under salt stress conditions,but the improved salt tolerance of betA×AtNHX1 transgene pyramiding plants was not greater than that of single gene transgenics(BL and AL).
     In transgene pyramiding plants,the transgenes increased the salt tolerance of tobacco by different tolerance mechanisms,respectively.But the improved salt tolerance of transgene pyramiding plants compared with single gene transformed plants was much less than the additive effects of the two genes alone.It is presumably because plant salt tolerance is a polygenie trait which requires the cooperation of many genes,and some elements restricted the sensitivity of plants to salinity stress. Although the pyramiding of genes involved in different salt tolerance mechanisms is an important approach for enhanced plant salinity tolerance,it is necessary to deeply understand the metabolic and regulatory mechanisms for plant tolerance to salt stress. As a consequence,strategies for plant stress-tolerance genetic engineering could be made with better pertinency and maneuverability.Furthermore,our work implied that the roles of genes might be enlarged due to the damage of regulatory networks when their biological functions were studied by mutants.Therefore,functional differences of target genes should be considered under different genetic backgrounds.
引文
1.赵可夫,冯立田(2001)中国盐生植物资源.北京:科学出版社,pp.18.
    2.赵可夫(1993)植物抗盐生理.北京:中国科学技术出版社,pp.132-163.
    3.Serrano R,Gaxiola R(1994)Microbial models and salt stress tolerance in plants.Crit Rev Plant Sci,13(2):121-138.
    4.赵可夫,李法曾(1999)中国盐生植物.北京:科学出版社.
    5.Munns R(2005)Genes and salt tolerance:bringing them together.New Phytol,167(3):645-663.
    6.Munns R(1993)Physiological processes limiting plant growth in saline soil:some dogmas and hypotheses.Plant Cell Environ,16:15-24.
    7.Munns R(2002)Comparative physiology of salt and water stress.Plant Cell Environ,25:239-250.
    8.赵可夫,范海(2005)盐生植物及其对盐渍生境的适应生理.北京:科学出版社.
    9.Nelson DE,Shen B,Bohert HJ(1998)Salinity tolerance mechanistic models and the metabolic engineering of complex traits.Genetic Engineering,20:153-76.
    10.Johnson MK,Johnson EJ,MacElroy RD,Speer HL,Bruff BS(1968)Effects of salts on the halophilic alga Dunaliella viridis.J Bacteriol,95(4):1461-1468.
    11.Galinski EA(1993)Compatible solutes of halophilic eubacteria:molecular principles,water-solute interaction,stress protection.Cell Mol Life Sci,49(6-7):487-496.
    12.余叔文,汤章城(1998)植物生理与分子生物学(第二版).北京:科学出版社,pp.752-769.
    13.Yancey PH,Clark ME,Hand SC,Bowlus RD,Somero GN(1982)Living with water stress:Evolution of osmolyte systems.Science,217:1214-1222.
    14.Smirnoff N(1998)Plant resistance to environmental stress.Curr Opin Biotechnol,9:214-219.
    15.Sakamoto A,Murata N(2002)The role of glycine betaine in the protection of plants from stress:clues from transgenic plants.Plant Cell Environ,25:163-171.
    16.Apel K,Hirt Heribert(2004)Reactive oxygen species:metabolism,oxidative stress,and signal transduction.Annu Rev Plant Biol,55:373-399.
    17.Gupta AS,Heinen JL,Holaday AS,Burke JJ,Allen RD(1993)Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase.Proc Natl Acad Sci USA,90(4):1629-1633.
    18.Ericson MC,Alfinito SH(1984)Proteins Produced during Salt Stress in Tobacco Cell Culture.Plant Physiol,74:506-509.
    19.Xu D,Duan X,Wang B,Hong B,Ho THD,Wu R(1996)Expression of a late embryogenesis abundant protein gene,HVA1,from barley confers tolerance to water deficit and salt stress in transgenic rice.Plant Physiol,110:249-257.
    20.Francois C,Menachem M,Mark JD(2005)Regulation of plant aquaporin activity.Biol Cell,97:749-764.
    21.Suga S,Komatsu S,Maeshima M(2002)Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings.Plant Cell Physiol,43:1229-1237.
    22.Boursiac Y,Chert S,Luu DT,Sorieul M,Niels D,Maurel C(2005)Early effects of salinity on water transport in Arabidopsis roots.Molecular and cellular features of Aquaporin expression.Plant Physiol,139:790-805.
    23.Sanders D,Brownlee C,Harper JF(1999)Communicating with calcium.Plant Cell,11:691-706.
    24.杨洪强,梁小娥(2001)蛋白激酶与植物逆境信号传递途径.植物生理学通讯,37(3):185-191.
    25.粱建生,张建华(1998)根系逆境信号ABA的产生和运输及其生理作用.植物生理学通讯,34(5):329-338.
    26.Shinozaki K,Yamaguchi-Shinozaki K(1997)Gene expression and signal transduction in water-stress response.Plant Physiol,115:327-334.
    27.程艳丽,宋纯鹏(2005)植物细胞H_2O_2的信号转导途径.中国科学(C辑),35(6):480-489.
    28.Guan LM,Zhao J,Scandalios JG(2000)Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress:H_2O_2 is the likely intermediary signaling molecule for the response.Plant J,22(2):87-95.
    29.Choi H,Hong J,Ha J,King J,Kim SY(2000)ABFs,a family of ABA-responsive element binding factors.J Biol Chem,275(3):1723-1730.
    30.Kasuga M,Liu Q,Miura S,Yamaguchi-Shinozoki K,Shinozoki K(1999)Improving plant drought,salt and freezing tolerance by gene transfer of a single stress inducible transcription factor.Nat Biotechnol,17(3):287-291.
    31.Abe H,Urao T,Ito T,Seki M,Shinozaki K,Yamaguchi-Shinozaki K(2003)Arabidopsis AtMYC2(bHLH)and AtMYB2(MYB)function as transcriptional activators in abscisic acid signaling.Plant Cell,15(1):63-78.
    32.Yamaguchi-Shinozaki K,Shinozaki K(1994)A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought,low-temperature,or high-salt stress.Plant Cell,6(2):251-264.
    33.Rhodes D,Hanson AD(1993)Quaternary ammonium and tertiary sulfonium compounds in higher plants.Annu Rev Plant Physiol Plant Mol Biol,44:357-384.
    34.McNeil SD,Nuccio ML,Hanson AD(1999)Betaines and related osmoprotectants.Targets for metabolic engineering of stress resistance.Plant Physiol,120(4):945-949.
    35.Grumet R,Hanson AD(1986)Genetic evidence for an osmoregulatory function of glycinebetaine accumulation in barley.Aust J Plant Physiol,18:317-327.
    36.Saneoka H,Nagasaka C,Hahn DT,Yang WJ,Premachandra GS,Joly RJ,Rhodes D(1995)Salt tolerance of glycinebetaine-deficient and-containing maize lines.Plant Physiol,107(2):631-638.
    37.Harinasut P,Tsutsui K,Takabe T,Nomura M,Takabe T,Kishitani S(1996)Exogenous glycinebetaine accumulation and increased salt-tolerance in rice seedlings.Biosci Biotechnol Biochem,60:366-368.
    38. Hayashi H, Alia, Sakamoto A, Nonaka H, Chen THH, Murata N (1998) Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene (codA) for choline Oxidase. J Plant Res, 111: 357-362.
    39. Sakamoto A, Murata N (2001) The use of bacterial choline Oxidase, a glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol, 125: 180-188.
    40. Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving Photosystem II complex. Photosynth Res, 44: 243-252.
    41. Byerrem RU, Sato CS, Ball CD (1956) Utilization of betaine as a methyl group donor in tobacco. Plant Physiol, 31: 374-377.
    42. Skiba WE, Taylor MP, Wells MS, Mangum JH, Awad Jr WM (1982) Human hepatic methionine biosynthesis. Purification and characterization of betaine: homocysteine S-methyltransferase. J Biol Chem, 257(24): 14944-14948.
    43. White RF, Demaine AL (1971) Catabolism of betaine and its relationship to cobalamin overproduction. Biochim Biophys Acta, 237: 112-119.
    44. Korstee GJ (1970) The aerobic decomposition of choline by microorganisms. Arch Microbiol, 71: 235-234.
    45. Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol, 5(3): 250-257.
    46. Burnet M, Lafontaine PJ, Hanson AD (1995) Assay, purification, and partial characterization of choline monooxygenase from spinach. Plant Physiol, 108(2): 581-588.
    47. Rathinasabapathi B, Burnet M, Russell BL, Gage DA, Liao PC, Nye GJ, Scott P, Golbeck JH, Hanson AD (1997) Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: Prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci USA, 94(7): 3454-3458.
    48. Hanson AD, May AM, Grumet R, Bode J, Jamieson GC, Rhodes D (1985) Betaine synthesis in chenopods: Localization in chloroplasts. Proc Natl Acad Sci USA, 82(11): 3678-3682.
    49. Weretilnyk EA, Bednarek S, McCue KF, Rhodes D, Hanson AD (1989) Comparative biochemical and immunological studies of glycine betaine synthesis pathway in diverse families of dicotyledons. Planta, 178: 342-352.
    50. Rathinasabapathi B, McCue KF, Gage DA, Hanson AD (1994) Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta, 193(2): 155-162.
    51. Wilken DR, McMacken ML, Rodriquez A (1970) Choline and betaine aldehyde oxidation by rat liver mitochondria. Biochim Biophys Acta, 216: 305-317.
    52. Landfald B, Strain AR (1986) Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli.J Bacteriol,165(3):849-855.
    53.Lamark T,Kaasen I,Eshoo MW,Falkenberg P,McDougall J,Strom AR (1991)DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli.Mol Microbiol,5(5):1049-1064.
    54.Ikuta S,Imamura S,Misaki H,Horiuti Y(1977)Purification and characterization of choline oxidase from Arthrobacter globiformis.J Biochem (Tokyo),82(6):1741-1749.
    55.Nyyssola A,Kerovuo J,Kaukinen P,von Weymarn N,Reinikainen T(2000)Extreme halophiles synthesize betaine from glycine by methylation.J Biol Chem,275(29):22196-22201.
    56.Waditee R,Tanaka Y,Aoki K,Hibino T,Jikuya H,Takano J,Takabe T,Takabe T(2003)Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica.J Biol Chem,278(7):4932-4942.
    57.Russell BL,Rathinasabapathi B,Hanson AD(1998)Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth.Plant Physiol,116(2):859-865.
    58.沈义国,杜保兴,张劲松,陈受宜(2001)山菠菜胆碱单氧化物酶基因(CMO)的克隆和分析.生物工程学报,17(1):1-6
    59.Nuccio ML,Russell BL,Nolte K,Rathinasabapathi B,Gage DA,Hanson AD (1998)The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase.Plant J,16:487-496.
    60.Shen YG,Du BX,Zhang WK,Zhang JS,Chen SY(2002)AhCMO,regulated by stresses in Atriplex hortensis,can improve drought tolerance in transgenic tobacco.Theor Appl Genet,105(6-7):815-821.
    61.Boyd LA,Adam L,Peicher LR,Mchughen A,Hirji R,Selvarai G(1991)Characterization of an Escherichia coli gene encoding betaine aldehyde dehydrogenase(BADH):structure similarity to mammlian ALDHs and a plant BADH.Gene,103:45-52.
    62.Weretilnyk EA,Hanson AD(1990)Molecular cloning of a plant betaine-aldehyde dehydrogenase,an enzyme implicated in adaptation to salinity and drought.Proc Natl Acad Sci USA,87(7):2745-2749.
    63.McCue KF,Hanson AD(1992)Salt-inducible betaine aldehyde dehydrogenase from sugar beet:cDNA cloning and expression.Plant Mol Biol,18:1-11.
    64.Ishitani M,Nakamura T,Han SY,Takabe T(1995)Expression of betaine aldehyde dehydrogenase gene in barely in response to osmotic stress and abscisic acid.Plant Mol Biol,27:307-315.
    65.肖岗,张耕耘,刘凤华,王军,陈受宜,李聪,耿华珠(1995)山菠菜甜菜碱醛脱氢酶基因研究.科学通报,40(8):741-745.
    66.Nakamura T,Yokota S,Muramoto Y,Tsutsui K,Oguri Y,Fukui K,Takabe T (1997)Expression of a betaine aldehyde dehydrogenase gene in rice,a glycine betaine non-accumulator,and possible localization of its protein in peroxoisomes. Plant J,22:1115-1120.
    67.郭岩,张莉,肖岗,曹守云,谷冬梅,田文忠,陈受宜(1997)甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究.中国科学(C辑),27(2):151-155.
    68.Kishitani S,Takanami T,Suzuki M,Oikawa M,Yokoi S,Ishitani M,Alvarez-Nakase AM,Takabe T,Takabe T(2000)Compatibility of glycinebetaine in rice plants:evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley.Plant Cell Environ,23:107-114.
    69.郭北海,张艳敏,李洪杰,杜立群,李银心,张劲松,陈受宜,朱至清(2000)甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达.植物学报,42(3):279-283.
    70.李银心,常风启,杜立群,郭北海,李洪杰,张劲松,陈受宜,朱至清(2000)转甜菜城醛脱氢酶基因豆瓣菜的耐盐性.植物学报,42(5):480-484.
    71.Jia GX,Zhu ZQ,Chang FQ,Li YX(2002)Transformation of tomato with the BA DH gene from Atriplex improves salt tolerance.Plant Cell Rep,21:141-146.
    72.Zhou SF,Chen XY,Xue XN,Zhang XG,Li YX(2007)Physiological and growth responses of tomato progenies harboring the betaine aldehyde dehydrogenase gene to salt stress.J Integr Plant Biol,49(5):1-5.
    73.Yang X,Liang Z,Lu C(2005)Genetic engineering of the biosynthesis of glyeinebetaine enhances photosynthesis against high temperature stress in transgenie tobacco plants.Plant Physiol,138:2299-2309.
    74.Yang X,Wen X,Gong H,Lu Q,Yang Z,Tang Y,Liang Z,Lu C(2007)Genetic engineering of the biosynthesis of glycinebetaine enhances therrnotolerance of photosystem Ⅱ in tobacco plants.Planta,225(3):719-733.
    75.Holmstrom KO,Welin B,Mandal A,Kristiansdottir I,Teeri TH,Lamark T,Strom AR,Palva ET(1994)Production of the Escherichia coli betaine-aldehyde dehydrogenase,an enzyme required for the synthesis of the osmoprotectant glycine betaine,in transgenic plants.Plant J,6(5):749-758.
    76.Nomura M,Ishitani M,Takabe T,Rai AK,Takabe T(1995)Synechococcus sp.PCC7942 transformed with Escherichia coli bet genes produces glycine betaine from choline and acquires resistance to salt stress.Plant Physiol,107(3):703-708.
    77.Lilius G,Holmberg N,Bulow L(1996)Enhanced NaCI stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase.Bio/Technol,14:177-180.
    78.Holmstrom KO,Somersalo S,Mandal A,Palva TE,Welin B(2000)Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine.J Exp Bot,51(343):177-185.
    79.Hayashi H,Alia,Mustardy L,Deshnium P,Ida M,Murata N(1997)Transformation of Arabidopsis thaliana with the codA gene for choline oxidase;accumulation of glycinebetaine and enhanced tolerance to salt and cold stress.Plant J,12(1):133-142.
    80.Yilmaz JL,Bulow L(2002)Enhanced stress tolerance in Escherichia coli and Nicotiana tabacum expressing a betaine aldehyde dehydrogenase/choline dehydrogenase fusion protein.Biotechnol Prog,18(6):1176-1182.
    81.Quan RD,Shang M,Zhang H,Zhao YX,Zhang JR(2004a)Improved chilling tolerance by transformed with betA gene for the enhancement of glycinebetaine synthesis in maize.Plant Sci,166:141-149.
    82.Quan RD,Shang M,Zhang H,Zhao YX,Zhang JR(2004b)Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize.Plant Biotechnol J,2:477-486.
    83.Lv SL,Yang AF,Zhang KW,Wang L,Zhang JR(2007)Increase of glycinebetaine synthesis improves drought tolerance in cotton.Mol Breeding,20(3):233-248.
    84.Alia,Hayashi H,Chen THH,Murata N(1998)Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth.Plant Cell Environ,21(2):232-239.
    85.Sakamoto A,Valverde R,Alia,Chen THH,Murata N(2000)Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants.Plant J,22(5):449-453.
    86.Deshnium P,Los DA,Hayashi H,Mustardy L,Murata N(1995)Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress.Plant Mol Biol,29:897-907.
    87.Sakamoto A,Alia,Murata N(1998)Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold.Plant Mol Biol,38(6):1011-1019.
    88.Su J,Hirji R,Zhang L,He C,Selvaraj G,Wu R(2006)Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine.J Exp Bot,57(5):1129-1135.
    89.Park EJ,Jeknic Z,Sakamoto A,DeNoma J,Yuwansiri R,Murata N,Chen THH(2004)Genetic engineering of glycinebetaine synthesis in tomato protects seeds,plants,and flowers from chilling damage.Plant J,40(4):474-487.
    90.Park EJ,Jeknic Z,Chen THH,Murata N(2007)The coda transgene for glycinebetaine synthesis increases the size of flowers and fruits in tomato.Plant Biotechnol J,5(3):422-430.
    91.Park EJ,Jeknic Z,Pino MT,Murata N,Chen THH(2007)Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress.Plant Cell Environ,30(8):994-1005.
    92.Papageorgiou GC,Fujimura Y,Murata N(1991)Protection of the oxygen-evolving Photosystem Ⅱ complex by glycinebetaine.Biochim Biophys Acta,1057:361-366.
    93.Murata N,Mohanty PS,Hayashi H,Papageorgiou GC(1992)Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex.FEBS Lett,296:187-189.
    94.Mamedov MD,Hayashi H,Murata N(1993)Effects of glycinebetaine and unsaturation of membrane lipids on heat stability of photosynthetic electron-transport and phosphorylation reactions in Synechocystis PCC6803. Biochim Biophys Acta,1142:1-5.
    95.Alia,Kondo Y,Sakamoto A,Nonaka H,Hayashi H,Saradhi PP,Chen THH,Murata N(1999)Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase.Plant Mol Biol,40(2):279-288.
    96.Ohnishi N,Murata N(2006)Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp.PCC 7942.Plant Physiol,141:758-765.
    97.Flowers TJ,Troke PF,Yeo AR(1977)The mechanism of salt tolerance in halophytes.Annu Rev Plant Physiol,28:89-121.
    98.Pollard A,Wyn Jones RG(1979)Enzyme activities in concentrated solutions of glycinebetaine and other solutes.Planta,144:291-298.
    99.Incharoensakdi A,Takabe T,Akazawa T(1986)Effect of betaine on enzyme activity and subunit interaction of ribulose-1,5-bisphosphate carboxylase/oxygenase from Aphanothece halophytica.Plant Physiol,81:1044-1049.
    100.Nomura M,Hibino T,Takabe T,Sugiyama T,Yokota A,Miyake H,Takabe T (1998)Transgenically produced glycinebetaine protects ribulose 1,5-bisphosphate carboxylase/oxygenase from inactivation in Synechococcus sp.PCC7942 under salt stress.Plant Cell Physiol,39:425-432.
    101.Nishida I,Murata N(1996)Chilling sensitivity in plants and cyanobacteria:the crucial contribution of membrane lipids.Annu Rev Plant Physiol Plant Mol Biol,47:541-568.
    102.Gorham J(1995)Betaines in higher plants-biosynthesis and role in stress metabolism.In Amino Acids and Their Derivatives in Higher Plants(ed.RM Wallsgrove),Cambridge University Press,Cambridge,pp.171-203.
    103.Chen WP,Li PH,Chen THH(2000)Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L.Plant Cell Environ,23:609-618.
    104.Deshnium P,Gombos Z,Nishiyama Y,Murata N(1997)The action in vivo of glycine betaine in enhancement of tolerance of Synechococcus sp.strain PCC 7942 to low temperature.J Bacteriol,179:339-344.
    105.Niu X,Bressan Ram Hasegawa PM,Pardo JM(1995)Ion homeostasis in NaCl stress environments.Plant Physiol,109:735-742.
    106.Blumwald E,Aharaon GS,Apse MP(2000)Sodium transport in plant cells.Biochim Biophys Acta,1465(1-2):140-151.
    107.Binzel ML,Hess FD,Bressan RA,Hasegawa PM(1988)Intracellular compartmentation of ions in salt adapted tobacco cells.Plant Physiol,86:607-614.
    108.Luttge U,Ratajczak R(1997)The physiology,biochemistry,and molecular biology,biochemistry,and molecular biology of the plant vacuolar ATPase.Adv Bot Res,25:253-296.
    109.PalmgrenM G,Harper JF(1999)Pumping with plant P-type ATPase.J Exp Bot,50:883-893.
    110.Portillo F(2000)Regulation of plasma membrane H~+-ATPase in fungi and plants. Biochim Biophys Acre,1469(1):31-42.
    111.Morsomme P,Boutry M(2000)The plant plasma membrane H~+-ATPase:structure,function and regulation.Biochim Biophys Acta,1465:1-16.
    112.Sondergaard TE,Schulz A,Pahngren MG(2004)Energization of transport processes in plants.Roles of the plasma membrane H~+-ATPase.Plant Physiol,136:2475-2482.
    113.Kuhlbrandt W(2004)Biology,structure and mechanism of P-type ATPases.Nat Rev Mol Cell Biol,5:282-295.
    114.Palmgren MG(1998)Proton gradients and plant growth:role of the plasma membrane H~+-ATPase.Adv Bot Res,28:1-70.
    115.Kerkeb L,Donaire JP,Rodrignez-Rosales MP(2001)Plasma membrane H~+-ATPase activity is involved in adaption of tomato calli to NaCI.Physiol Plant,111:483-490.
    116.Rober-Kieber N,Albrechtov JTP,Fleig S,Huck N,Michalke W,Wagner E,Speth V,Neuhaus G,Fischer-Iglesias C(2003)Plasma membrane H~+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development.Plant Physiol,131:1302-1312.
    117.Zhao R,Dielen F,Kinet JM,Boutry M(2000)Cosuppression of a plasma membrane H~+-ATPase isoform impairs sucrose translocation,stomatal opening,plant growth and male fertility.Plant Cell,12:535-546.
    118.Wu J,Seliskar D(1998)Salinity adaptation of plasma membrane H~+-ATPase in the salt marsh plant Spartina patens:ATP hydrolysis and enzyme kinetics.J Exp Bot,49:1005-1013.
    119.Serrano R(1989)Structure and function of plasma membrane ATPase.Annu Rev Plant Physiol,40:61-94.
    120.Braun Y,Hassidim M,Lerner H,Reinhold L(1986)Salinity during growth modulates the proton pump in the halophyte Atriplex nummularia.Plant Physiol,81:1050-1056.
    121.Kerkeb L,Donaire JP,Venema K,Rodriguez-RosalesMP(2001)Tolerance to NaCl induces changes in plasma membrane lipid composition,fluidity and H~+-ATPase of tomato calli.Physiol Plant,113:217-224.
    122.Niu X,Narasimhan ML,Salzman RA,Bressan RA,Hasegawa PM(1993)NaCl regulation of plasma membrane H~+-ATPase gene expression in a glycophyte and a halophyte.Plant Physiol,103:713-718.
    123.Sibole JV,Cabot C,Michalke W,Posehenrieder C,Bareel6 J(2005)Relationship between expression of the PM H~+-ATPase,growth and ion partitioning in the leaves of salt-treated Medicago species.Planta,221:557-566.
    124.Gaxiola RA,Palmgren MG,Sehumacher K(2007)Plant proton pumps.FEBS Lett,581:2204-2214.
    125.夏朝晖,陈咖(1998)胁迫反应中的液泡膜H~+-ATPase.植物生理学通讯,34:168-174
    126.Low R,Rockei B,Kirsch M,Ratajczak R,Hortensteiner S,Martinoia E,Luttge U,Rausch T(1996)Early salt stress effects on the differential expression of vacuolar H~+-ATPase genes in roots and leaves of Mesembryanthemum crystallinum.Plant Physiol,110:259-265.
    127.Golldaek D,Dietz KJ(2001)Salt-induced expression of the vacuolar H~+-ATPase in the common ice plant is developmentally controlled and tissue specific.Plant Physiol,125:1643-4654.
    128.Narasimhan ML,Binzei ML,Perez-Prat E,Chen Z,Nelson DE,Singh NK,Bressan RB,Hasegawa PM(1991)NaCl regulation of tonoplast ATPase 70-kilo-dalton subunit mRNA in tobacco cells.Plant Physiol,97,562-568.
    129.Kirseh M,An Z,Viereck R,Low R,Rausch T(1996)Salt stress induces an increased expression of V-type H~+-ATPase in mature sugar beet leaves.Plant Mol Biol,32:543-547.
    130.Lehr A,Kirsch M,Viereck R,Schiemann J,Rauseh T(1999)cDNA and genomic cloning of sugar beet V-type H~+-ATPase subunit A and c isoforms:evidence for co-ordinate expression during plant development and co-ordinate induction in response to high salinity.Plant Mol Biol,39:463-475.
    131.Fukuda A,Chiba K,Maeda M,Nakamura A,Maeshima M,Tanaka Y(2004)Effect of salt and osmotic stresses on the expression of genes for the vacuolar H~+-pyrophosphatase,H~+-ATPase subunit A,and Na~+/H~+ antiporter from barley.J Exp Bot,55:585-594.
    132.Kluge C,Golldack D,Dietz KJ(1999)Subunit D of the vacuolar H~+-ATPase of Arabidopsis thaliana.Biochim Biophys Acta,1419:105-110.
    133.Maeshima M(2000)Vacuolar H~+-pyrophosphatase.Biochim Biophys Acta,1465:37-51.
    134.Kieber JJ,Signer ER(1991)Cloning and characterization of an inorganic pyrophosphatase gene from Arabidopsis thalina.Plant Mol Biol,16:345-348.
    135.Jardin PD,Rojas-Beltran J,Cebhardt C,Brasseur R(1995)Molecular cloning and characterization of a soluble inorganic pyrophosphatase in potato.Plant Physiol,109:853-860.
    136.Jiang SS,Fan LL,Yang SJ,Kno SY,Pan RL(1997)Purification and characterization of thylakoid membrane-bound inorganic pyrophosphatase from Spinacia oleraciaL.Arch Biochem Biophys,346(1):105-112.
    137.Zancani M,Macri F,Dal Belin Peruffo A,Vianello A(1995)Isolation of the catalytic subunit of a membrane-bound H~+-pyrophosphatase from pea stem mitochondria.Eur J Biochem,228(1):138-143.
    138.Taiz L(1992)The plant vacuole.J Exp Biol,172:113-122.
    139.Rea PA,Poole RJ(1993)Vacuolar H~+-translocating pyrophosphatase.Annu Rev Plant Physiol Plant Mol Biol,44:157-180.
    140.Sarafian V,Kim Y,Poole RJ,Rea PA(1992)Molecular cloning and sequencing of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana.Proc Natl Acad Sci USA,89:1775-1779.
    141.Tanaka Y,Chiba K,Maeda M,Maeshima M(1993)Molecular cloning of cDNA for vacuolar membrane proton-translocating inorganic pyrophosphatase in Hordeum vulgare.Biochem Biophys Res Commun,190(3):1110-1114.
    142.Kim Y,Kim EJ,Rea PA(1994)Isolation and characterization of cDNAs encoding the vacuolar H~+-Pyrophosphatase of Beta vulgaris.Plant Physiol,106: 375-382.
    143.Lerchl J,Konig S,Zrenner R,Sonnewald U(1995)Molecular cloning,characterization and expression analysis of isoforms encoding tonoplast-bound proton-translocating inorganic pyrophosphatase in tobacco.Plant Mol Biol,29(4):833-840.
    144.Sakakibara Y,Kobayashi H,Kasamo K(1996)Isolation and characterization of cDNAs encoding vacuolar H~+-pyrophosphatase isoforms from rice(Oryza sativa L.).Plant Mol Biol,31(5):1029-1038.
    145.Nakanishi Y,Maeshima M(1998)Molecular cloning of vacuolar H~+-Pyrophosphatase and its developmental expression in growing hypocotyl of Mung Bean.Plant Physiol,116:589-597.
    146.Maruyama C,Tanaka Y,Takeyasu K,Yoshida M,Sato MH(1998)Structural studies of the vacuolar H~+-Pyrophosphatase:sequence analysis and identification of the residues modified by fluorescent cyclohexylcarbodiimide and maleimide.Plant Cell Physiol,39(10):1045-1053.
    147.Guo S,Yin H,Zhang X,Zhao F,Li P,Chen S,Zhao Y,Zhang H(2006)Molecular cloning and characterization of a vacuolar H~+-pyrophosphatase gene,SsVP,from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis.Plant Mol Biol,60:41-50.
    148.Gao F,Gao Q,Duan XG,Yue GD,Yang AF,Zhang JR(2006)Cloning of an H~+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance.J Exp Bot,57(12):3259-3270.
    149.Davies JM,Poole RJ,Rea PA,Sanders D(1992)Potassium transport into vacuoles energized directly by a proton-pumping inorganic pyrophosphatase.Proc Natl.Acad Sci USA,89:11701-11705.
    150.Drozdowicz YM,Kissinger JC,Rea PA(2000)AVP2,a sequence-divergent,K~+-insensitive H~+-translocating inorganic pyrophosphatase from Arabidopsis.Plant Physiol,123:353-362.
    151.Maeshima M(1990)Development of vacuolar membranes during elongation of cells in mung bean hypocotyls.Plant Cell Physiol,31:311-317.
    152.Smart LB,Vojdani F,Maeshima M,Wilkins TA(1998)Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated.Plant Physiol,116:1539-1549.
    153.Suzuki Y,Maeshima M,Yamaki S(1999)Molecular cloning of vacuolar H~+-pyrophosphatase and its expression during the development of pear fruit.Plant Cell Physiol,40(8):900-904.
    154.Colombo R,Cerana R(1993)Enhanced activity of tonoplast pyrophosphatase in NaCl-grown cells of Daucus carota.J Plant Physiol,142:226-229.
    155.Wang BS,Luttge U,Ratajczak R(2001)Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa.J Exp Bot,52:2355-2365.
    156.Zhang Y,Wang L,Liu Y,Zhang Q,Wei Q,Zhang W(2006)Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na~+/H~+ antiport in the tonoplast.Planta,224:545-555.
    157.Palma DA,Biumwald E,Plaxton WC(2000)Upregulation of vacuolar H~+-translocating pyrophosphatase by phosphate starvation of Brassica napus (rapeseed)suspension cell cultures.FEBS Lett,486:155-158.
    158.Ohnishi M,Mimura T,Tsujimura T,Mitsuhashi N,Washitani-Nemoto S,Maeshima M,Martinoa E(2007)Inorganic phosphate uptake in intact vacuoles isolated from suspension-cultured cells of Catharanthus roseus(L.)G.Don under varying Pi status.Planta,225(3):711-718.
    159.Kasai M,Nakamura N,Kudo N,Sato H,Maeshima M,Sawada S(1998)The activity of the root vacuolar H~+-pyrophosphatase in rye plants grown under deficient conditions of mineral nutrients.Plant Cell Physiol,39:890-894.
    160.Carystinos GD,MacDonald HR,Monroy AF,Dhindsa RS,Poole RJ(1995)Vacuolar H~+-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice.Plant Physiol,108:641-649.
    161.Gaxiola RA,Rao R,Sherman A,Grisafi P,Alper S,Fink GR(1999)The Arabidopsis thaliana proton transporters,AtNhx1 and Avp1,can function in cation detoxification in yeast.Proc Natl Acad Sci USA,96:1480-1485.
    162.Gaxiola RA,Li J,Undurraga S,Dang LM,Allen GJ,Alper SL,Fink GR (2001)Drought-and salt-tolerant plants result from overexpression of the AVP1H~+-pump.Proc Natl Acad Sci USA,98:11444-11449.
    163.Li JS,Yan HB,Peer WA,Richter G,Blakeslee J,Bandyopadhyay A,Titapiwantakun B,Undurraga S,Khodakovskaya M,Richards EL,Krizek B,Murphy AS,Gilroy S,Gaxiola RA(2005)Arabidopsis H~+-PPase AVP1regulates auxin mediated organ development.Science,310:121-125.
    164.Park S,Li J,Pittman JK,Berkowitz GA,Yang H,Undurraga S,Morris J,Hirschi KD,Gaxiola RA(2005)Up-regulation of a H~+-pyrophosphatase (H~+-PPase)as a strategy to engineer drought-resistant crop plants.Proc Natl Acad Sci USA,102:18830-18835.
    165.Brini F,Hanin M,Mezghani I,Berkowitz GA,Masmoudi K(2007)Overexpression of wheat Na~+/H~+ antiporter TNHX1 and H~+-pyrophosphatase TVP1 improve salt and drought-stress tolerance in Arabidopsis thaliana plants.J Exp Bot,58:301-308.
    166.Li B,Wei A,Song C,Li N,Zhang J(2008)Heterologous expression of the TsVP gene improves the drought resistance of maize.Plant Biotechnol J,6:146-159.
    167.Pandan E,Sehuidiner S(1987)Intracelluler pH and membrane potential as regulator in the prokaryotic cell.J Membr Biol,95:189-198.
    168.Kruiwich TA(1983)Na~+/H~+ antiporters.Biochim Biophys Acta,726:245-264.
    169.Blumwald E,Poole RJ(1985)Na~+/H~+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris.Plant Physiol,78:163-167.
    170.Nass R,Rao R(1998)Novel localization of a Na~+/H~+ exchanger in a late endosomal compartment of yeast.Implications for vacuole biogenesis.J Biol Chem,273(33):21054-21060.
    171.Volkmar KM,Hu Y,Steppuhn H(1998)Physiological responses of plants to salinity:a review.Can J Plant Sci,78:19-27.
    172.Wu SJ,Lei D,Zhu JK(1996)SOS1,a genetic locus essential for salt tolerance and potassium acquisition.Plant Cell,8:617-627.
    173.Liu J,Zhu Jig(1997)An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance.Proc Natl Acad Sci USA,94:14960-14964.
    174.Zhu JK(2000)Genetic analysis of plant salt tolerance using Arabidopsis thaliana.Plant Physiol,124:941-948.
    175.Shi H,Ishitani M,Kim C,Zha Jig(2000)The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na~+/H~+ antiporter.Proc Natl Acad Sci USA,97:6896-6901.
    176.Liu J,Ishitani M,Halfter U,Kim CS,Zhu JK(2000)The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance.Proc Natl Acad Sci USA,97:3730-3734.
    177.Ishitani M,Liu J,Halfter U,Kim CS,Shi W,Zhu JK(2000)SOS3 function in plant salt tolerance requires N-mydstoylation and calcium-binding.Plant Cell,12:1667-1678.
    178.Shi H,Zhu JK(2002)SOS4,a pyddoxal kinase gene,is required for root hair development in Arabidopsis.Plant Physiol,129(2):585-593.
    179.Shi H,Kim YS,Guo Y,Stevenson B,Zhu JK(2003)The Arabidopsis SOS5locus encodes a cell surface adhsion protein and is required for normal cell expansion.Plant Cell,15:19-32.
    180.Zhu JK(2002)Salt and drought stress signal transduction in plants.Annu Rev Plant Biol,53:247-273.
    181.Qiu QS,Barkla BJ,Vera-Estrella R,Zhu JK,Schumaker KS(2003)Na~+/H~+exchange activity in the plasma membrane of Arabidopsis thaliana.Plant Physiol,132:1041-1052.
    182.Shi H,Quintero FJ,Pardo JM,Zhu JK(2002)The putative plasma membrane Na~+/H~+ antiporter SOS1 controls long-distance Na~+ transport in plants.Plant Cell,14:465-477.
    183.Shi H,Lee BH,Wu SJ,Zhu JK(2003)Overexpression of a plasma membrane Na~+/H~+ antiporter gene improves salt tolerance in Arabidopsis thaliana.Nat Biotechnol,21:81-85.
    184.Guo Y,Halfter U,Ishitani M,Zhu JK(2001)Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance.Plant Physiol,13:1383-1400.
    185.Gong D,Guo Y,Jagendorf AT,Zhu JK(2002)Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance.Plant Physiol,130:256-264.
    186.Xiong L,Zhu JK(2002)Salt tolerance.In:The Arabidopsis Book.EM Meyerowitz and CR Somerville eds.American Society of Plant Biologists.doi/10.1199/tab.0048.http://www.aspb.org/publications/arabidopsis/
    187.Tester M,Davenport R(2003)Na~+ tolerance and Na~+ transport in higher plants.Ann Bot,91:503-527.
    188.Blumwald E(2000)Sodium transport and salt tolerance in plants.Curr Opin Cell Biol,12:431-434.
    189.Yamaguchi T,Apse M,Shi H,Blumwaid E(2003)Topological analysis of a plant vacuolar Na~+/H~+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity.Proc Natl Acad Sci USA,100(21):12510-12515.
    190.Yokoi S,Quintero FJ,Cubero B,Ruiz MT,Bressan RA,Hasegawa PM,Pardo JM(2002)Differential expression and function of Arabidopsis thaliana NHX Na~+/H~+ antiporters in the salt stress response.Plant J,30(5):529-539.
    191.Yamaguehi T,Aharon GS,Sotosanto JB,Blumwald E(2005)Vacuolar Na~+/H~+antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca~(2+)-and pH-dependent manner.Proc Natl Acad Sci USA,102(44):16107-16112.
    192.Apse MP,Aharon GS,Snedden WA,Blumwald E(1999)Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport in Arabidopsis.Science,285:1256-1258.
    193.Zhang HX,Blumwald E(2001)Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit.Nat Biotechnol,19:765-768.
    194.Zhang HX,Hodson JN,Williams JP,Blumwald E(2001)Engineering salt-tolerant Brassica plants:characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation.Proc Natl Acad Sci USA,98(22):12832-12836.
    195.Yin XY,Yang AF,Zhang KW,Zhang JR(2004)Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1gene.Acta Botanica Sinica,46(7):854-861.
    196.Xue ZY,Zhi D,Xue GP,Zhang H,Zhao YX,Xia GM(2004)Enhanced salt tolerance of transgenic wheat(Tritivum aestivum L.)expressing a vacuolar Na~+/H~+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na~+.Plant Sci,167:849-859.
    197.Yang AF,Duan XG,Gu XF,Gao F,Zhang JR(2005)Efficient transformation of beet(Beta vulgaris)and production of plants with improved salt-tolerance.Plant Cell,Tissue and Organ Culture,83:259-270.
    198.He C,Yan J,Shen G,Fu L,Holaday AS,Auld D,Blumwald E,Zhang H (2005)Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field.Plant Cell Physiol,46(11):1848-1854.
    199.Ohta M,Hayashi Y,Nakashima A,Hamada A,Tanaka A,Nakamura T,Hayakawa T(2002)Introduction of a Na~+/H~+ antiporter gene from Atriplex gmelini confers salt tolerance to rice.FEBS Lett,532:279-282.
    200.Wang J,Zuo K,Wu W,Song J,Sun X,Lin J,Li X,Tang K(2004)Expression of a novel antiporter gene from Brassica napus resulted in enhanced salt tolerance in transgenie tobacco plants.Biol Plant,48(4):509-515.
    201.Lu SY,Jing YX,Shen SH,Zhao HY,Ma LQ,Zhou XJ,Ren Q,Li YF(2005)Antiporter gene from Hordum brevisubulatum(Trin.)Link and its overexpression in transgenic tobaccos.J Integr Plant Biol,47(3):343-349.
    202.Rajagopai D,Agarwal P,Tyagi W,Singla-Pareek SL,Reddy MK,Sopory SK (2007)Pennisetum glaucum Na~+/H~+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea.Mol Breeding,19(2):137-151.
    203.Verma D,Singla-Pareek SL,Rajagopal D,Reddy MK,Sopory SK(2007)Functional validation of a novel isoform of Na~+/H~+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice.J Biosci,32(3):621-628.
    204.Qiao WH,Zhao XY,Li W,Luo Y,Zhang XS(2007)Overexpression of AeNHX1,a root-specific vacuolar Na~+/H~+ antiporter from Agropyron elongatum,confers salt tolerance to Arabidopsis and Festuca plants.Plant Cell Rep,26(9):1663-1672.
    205.Rios G,Ferrando A,Serrano R(1997)Mechanisms of salt tolerance conferred by overexpression of the HAL1 gene in Saccharomyces cerevisiae.Yeast,13(6):515-528.
    206.Yang SX,Zhao YX,Zhang Q,He YK,Zhang H,Luo D(2001)HAL1 mediate salt adaptation in Arabidopsis thaliana.Cell Res,11(2):142-148.
    207.Cervera M,Ortega C,Navarro A,Navarro L,Pena L(2000)Generation of transgenie citrus plants with the tolerance-to-salinity gene HAL2 from yeast.J Hort Sci Biotechnol,75(1):26-30.
    208.Francois IE,JA,Broekaert WF,Cammue BPA(2002)Different approaches for multi-transgene-staeking in plants.Plant Sci,163:281-295.
    209.Halpin C,Barakate A,Askari BM,Abbott JC,Ryan MD(2001)Enabling technologies for manipulating multiple genes on complex pathways.Plant Mol Biol,47:295-310.
    210.Biumwald E,Arif A(2006)Gene pyramiding through genetic engineering for increase salt tolerance in wheat.http://www7.nationalacademies.org/dsc/Blumwald Report 2006.pdf.
    211.Gleave AP,Mitra DS,Mudge SR,Morris BAM(1999)Selectable marker-free transgenic plants without sexual crossing:Transient expression of cre recombinase and use of a conditional lethal dominant gene.Plant Mol Biol,40:223-235.
    212.Ebinuma H,Sugita K,Matsunaga E,Yamakado M(1997)Selection of marker-free transgenic plants using the isopentenyl transferase gene.Proc Natl Acad Sci USA,6:2117-2121.
    213.Pelletier J,Sonenberg N(1988)Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA.Nature,334:320-325.
    214.Wagstaff MJD,Lilley CE,Smith J,Robinson MJ,Coffin RS,Latchmann DS (1998)Gene transfer using a disabled herpes virus vector containing the EMCV IRES allows multiple gene expression in vitro and in vivo.Gene Ther,5:1566-1570.
    215.Urwin P,Yi L,Martin H,Atkinson H,Gilmartin PM(2000)Functional characterization of the EMCV IRES in plants.Plant J,24:583-589.
    216.Bohnert HJ,Golldack D,Ishitani M,Kamasani UR,Rammesmayer G,Shen B,Sheveleva E,Jensen RG(1996)Salt tolerance engineering requires multiple gene transfers.Ann NY Acad Sci,792(1):115-125.
    217.苏金,朱汝财(2001)渗透胁迫调节的转基因表达对植物抗旱耐盐性的影响.植物学通报,18(2):129-136.
    218.Holmberg N,Billow L(1998)Improving stress tolerance in plants by gene transfer.Trends Plant Sci,3(2):61-66.
    219.刘俊君,黄绍兴,彭学贤,柳维波,王海云(1995)高度耐盐双价转基因烟草的研究.生物工程学报,11(4):381-384.
    220.王慧中,黄大年,鲁瑞芳,刘俊君,钱前,彭学贤(2000)转mtlD/gutD双价基因水稻的耐盐性.科学通报,45(7):724-729.
    221.Watanabe Y,Oshima N,tamai Y(2005)Co-expression of the Na~+/H~+-antiporter and H~+-ATPase genes of the salt-tolerant yeast Zygosaccharomyces rouxii in Saccharomyces cerevisiae.FEMS Yeast Res,5(4-5):411-417.
    222.Zhao FY,Zhang XJ,Li PH,Zhao YX,Zhang H(2006)Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1.Mol Breeding,17(4):341-353.
    223.刘晶,周树峰,陈华,韩和平,李银心(2005)农杆菌介导的双价抗盐基因转化番茄的研究.中国农业科学,38(8):1636-1644
    224.Zhou S,Chen X,Zhang X,Li Y(2008)Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na~+/H~+ antiporter gene SeNHX1.Biotechnol Lett,30:369-376.
    225.Li WY,Wong FL,Tsai SN,Phang TH,Shao GH,Lam HM(2006)Tonoplast-located GmCLCl and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow(BY)-2 cells.Plant Cell Environ,29(6):1122-1137.
    226.Volkov RA,Panchuk Ⅱ,Schoffl F(2003)Heat-stress-dependency and developmental modulation of gene expression:the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR.J Exp Bot,54(391):2343-2349.
    227.Dhindsa RS,Matowe W(1981)Drought tolerance in two mosses:correlated with enzymatic defence against lipid peroxidation.J Exp Bot,32:79-91.
    228.Rizhsky L,Hallak-Herr E,Van Breusegem F,Rachmileviteh S,Barr JE,Rodermel S,Inze D,Mittler R(2002)Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase.Plant J,32:329-342.
    229.Jones GP(1986)Estimates of solutes accumulating in plants by ~1H nuclear magnetic resonance spectroscopy.Aust J Plant Physiol,13:649-658.
    230.Xing W,Rajashekar CB(2001)Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana.Envir Exp Bot,46:21-28.
    231.Luttge U,Pfeifer T,Fischer-Schliebs E,Ratajczak R(2000)The role of vacuolar malate-transport capacity in crassulacean acid metabolism and nitrate nutrition.Higher malate-transport capacity in ice plant after crassulacean acid metabolism-induction and in tobacco under nitrate nutrition.Plant Physiol,124:1335-1347.
    232.Brandford MM(1976)A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem,72:248-254.
    233.Qiu NW,Chen M,Guo JR,Bao HY,Ma XL,Wang BS(2007)Coordinate up-regulation of V-H~+-ATPase and vacuolar Na~+/H~+ antiporter as a response to NaCl treatment in a C_3 halophyte Suaeda salsa.Plant Sci,172:1218-1225.
    234.Lin TI,Morales MF(1977)Application of a one-step procedure for measuring inorganic phosphate in the presence of proteins:the actomyosin ATPase system.Anal Biochem,77:10-17.
    235.Storey R(1995)Salt tolerance,ion relations and the effects of root medium on the response of Citrus to salinity.Aust J Plant Physiol,22:101-114.
    236.Potrykus I,Shillito RD(1986)Protoplasts:isolation,culture,plant regeneration.In:Weissbach A,Weissbach H(eds)Plant molecular biology.Methods in enzymology,vol 118.Academic Press,Orlando,Fla.,pp.549-578.
    237.Widholm JM(1972)The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells.Stain Technol,47:189-194.
    238.Wu FS(1987)Localization of mitochondria in plant cells by vital staining with rhodamine 123.Planta,171:346-357.
    239.Nathalie GG,Pierre JN,Jean V,Spencer B(1996)Flow cytometdc analysis of cytosolic pH of mesophyll cell protoplasts from the crabgrass Digitaria sanguinalis.Cytometry,23:241-249.
    240.Swanson SJ,Jones RL(1996)Gibberellic acid induces vacuolar acidification in barley aleurone.Plant Cell,8:2211-2221.
    241.Haugland RP(2004)Handbook of fluorescent probes and research products.Ninth Edition.Molecular Probes Inc,Eugene,Oreg.,USA
    242.Sze H(1985)H~+-translocating ATPase:Advances using membrane vesicles.Ann Rev Plant Physiol,36:175-208.
    243.Szmacinski H,Lakowicz JR(1997)Sodium Green as a potential probe for intracellular sodium imaging based on fluorescence lifetime.Anal Biochem,250:131-138.
    244.Kader MA,Lindberg S(2005)Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice,Oryza sativa L.determined by the fluorescent dye SBFI.J Exp Bot,56:3149-3158.
    245.Frieker MD,White NS,Obermeyer G(1997)pH gradients are not associated with tip growth in pollen robes of Lilium.J Cell Sci,110:1729-1740.
    246.Song CP,Guo Y,Qiu Q,Lambert G,Galbraith DW,Jagendorf A,Zhu JK (2004)A probable Na~+(K~+)/H~+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana.Proc Natl Acad Sci USA,101(27):10211-10216.
    247.Seandalios JG(1993)Oxygen stress and superoxide dismutase.Plant Physiol,101:7-12.
    248.Noble CL(1983)The potential for breeding salt-tolerant plants.Proc R Soc Victoria,95:133-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700