用户名: 密码: 验证码:
四维变分和集合卡尔曼滤波同化多普勒雷达资料的方法及其反演暴雨中尺度结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用两种四维同化方法:四维变分(4D-VAR)和集合卡尔曼滤波(EnKF),在云模式
    中同化多普勒雷达资料,并利用模拟雷达资料和实测雷达资料考察了两种同化技术的同化
    效果及其定量获取灾害天气中尺度信息的能力。主要研究内容和结果如下:
    (1) 利用Sun and Crook(1997) 建立的云模式和4D-VAR算法,同化模拟多普勒雷达资料,
    证明了4D-VAR同化技术能够从单(双)多普勒雷达资料反演大气三维风场、热力场
    利微物理场。各个变量反演精度高低与同化过程中变量受约束的大小程度相关。
    (2) 利用宜昌-荆州双多普勒雷达获得的长江中游一次梅雨锋暴雨过程的观测资料,证明
    了多普勒雷达资料4D-VAR同化技术定量获取暴雨中尺度结构信息的能力。反演结果
    显示,中尺度切变线是本次暴雨过程的主要动力特征;对流云表现为低层辐合、高层
    辐散并有垂直上升运动伴随:低层是低压区,高层为高压区;中部为暖区而上、下部
    为冷区;水汽、云水和雨水分别集中在对流云体内、上升气流区和强回波区。
    (3) 采用合肥-无为-马鞍山双/三多普勒雷达获得的长江下游一次梅雨锋暴雨过程的观
    测资料,进一步考察了4D-VAR同化算法反演暴雨中尺度结构的能力。结果表明:三
    部雷达两两组合以及各自单独反演结果大体上是一致的;中尺度辐合线是本次暴雨过
    程的主要动力特征:对流云表现为低层辐合、高层强辐散并伴有垂直上升运动:中低
    层是相对冷区和高压区,高层是相对暖区和低压区;对流云中下部为干冷空气,云水
    和雨水分别集中在上升气流区和强回波区。
    (4) 不考虑模式中的湿物理过程,采用干模式来4D-VAR同化反演低层水平风场。几个个
    例研究表明,利用干模式同化多普勒雷达资料反演的低层水平风场是可靠的。
    (5) 采用EnKF技术,在云模式中同化模拟多普勒雷达资料。结果显示:同化几个时次的
    资料后,EnKF分析结果接近真值,证明了EnKF同化多普勒雷达资料的可行性。
    (6) 利用多普勒雷达资料EnKF同化技术,分析了前面所述两次暴雨过程的中尺度结构,
    并将EnKF同化分析结果与4D-VAR同化反演结果进行了对比。结果表明:利用EnKF
    同化技术,可以从多普勒雷达资料分析出暴雨中尺度系统的三维风场、热力场和微物
    理场结构。尽管在某些细节上存在一些差别,EnKF和4D-VAR两种方法反演的暴雨
    中尺度结构特征大体是一致的。
Two methods: the four-dimensional variational (4D-VAR) and the ensemble Kalman filter (EnKF), are applied to assimilate Doppler radar data in a cloud model. The quality of retrieval and performances of the two techniques in obtaining quantitatively mesoscale information of hazardous weather systems, have been tested using simulated data and real observations. The major contents and conclusions are presented as follows:Firstly, the 4D-VAR technique and the cloud model developed by Sun and Crook (1997) , are used to assimilate data from a simulated convective storm. Experiments demonstrate that the 4D-VAR assimilation approach is able to retrieve the detailed structure of wind, thermodynamics, and microphysics using either dual-Doppler or single-Doppler radar data. The quality of retrieval depends strongly on the magnitude of constraint with respect to the variable.Secondly, the 4D-VAR method is applied to a Meiyu heavy precipitation in the middle Yangtze River reach, observed by the YICHANG- JINGZHOU dual-Doppler radars. The study has clearly demonstrated the ability of the 4D-VAR assimilation approach to drive the quantitative information of rainstorm mesoscale structure from real radar observations. It has been revealed in the assimilation results that the torrential rainfall is caused by the wind shear line at low level. The convective rainfall is often related to lower level convergence and upper level divergence coupled with an updraft, characterized by high pressure at lower level and low pressure at upper level. The temperature structure of convective system shows warmer at middle level and colder at lower and upper level than the environment. The water vapor, could water and rainwater are associated with the convective cloud, the updraft and the reflectivity, respectively.Thirdly, the mesoscale feature of a Meiyu front rainstorm over the lower Yangtze River basin is investigated by the 4D-VAR assimilation of data from the HEFEI- WUWEI -MAANSHAN dual / three -Doppler radars. The assimilations of data from three groups of dual radars, or single radar, produce generally similar mesoscale structures. The convergence line is primary dynamical characteristic of the Meiyu heavy precipitation. The convective system is characterized by lower level convergence and upper level
    
    divergence associated with the vertical motion. A region of cooling and high pressure occurs at lower and middle levels compared to warming and low pressure at upper level. The convective cloud is dry and cooling at lower and middle levels. The cloud water and rainwater are associated with the updraft and the reflectivity, respectively.Fourthly, Doppler radar radial velocity is 4D-VAR assimilated in a dry version of cloud model which excludes the moist process. A few case studies demonstrate the retrieved low-level wind fields are reliable through the assimilation of Doppler radar data in a dry version of cloud model.Fifthly, we explore the use of an ensemble Kalman filter (EnKF) to assimilate simulated Doppler radar data in a cloud model. It is found that the EnKF assimilation method is able to produce analyses that accurately approximate the true state after several assimilation cycles. Thus, the ability and feasibility of EnKF in assimilating radar data are demonstrated.Lastly, we adopt the EnKF assimilation technique to analyze the mesoscale structures of two rainstorms, which are then compared with those obtained by the 4D-VAR approach. The result indicates that the 3D wind, thermodynamical, and microphysical structures of rainstorm mesoscale convective system can be obtained from Doppler radar data using the EnKF technique. The mesoscale features of convective system revealed by the EnKF analyses, are also basically reflected in the 4D-VAR results although discrepancies existed in the detailed structure of the retrieval results.
引文
1 Armijo L. A theory of the determination of wind and precipitation velocities with Doppler radar. J.Atmos.Sci,1969,26(3):570-573.
    2 Atlas D et al. Bistatic microwave probing of a reflectivity perturbed clear atmosphere. J Atmos Sci, 1968,25(2):257-268
    3 Browning K A,Wexler R. The determination of kinematic properties of a wind field using Doppler radar. J.Appl.Meteor,1968, 7 (1) :105-113.
    4 Bousquet O,Chong M. A multiple-Doppler synthesis and continuity adjustment technique(MUSCAT) to recover wind components form Doppler radar measurement. J.Atmos. Oceanic Tech,1998,15(13):343~359.
    5 Chong M,Campos C. Extended overdetermined Dual-Doppler formalism in synthesizing air-born Doppler radar data. J.Atmos.Oceanic Tech, 1996,13(3):581-597.
    6 Chong M,O Bousquet. On the application of MUSCAT to a ground-based dual-Doppler radar system. Metero.Atmos.Phys,2001,78:133-139.
    7 Cohn S E, Parrish D F. The behavior of forecast error covariance for a Kalman filter in two dimensions. Mon Wea Rev, 1991, 119(8):1757-1785.
    8 Courtier P, Talagrand O. Variational assimilation of meteorological observations with the direct and adjoint shallow-water equations. Tellus, 1990, 42(A5): 531-549.
    9 Crook,A.,and J.D.Tuttle, Numerical simulation initialized with radar-derived winds.Part II: Forecasts of three gust-front cases.Mon Wea Rev., 1994,122,1204-1217.
    10 Crook and Sun. Assimilation and forecasting experiments on supercell storms. Part II: experiments with WSR-88D data. 2001.
    11 Dee D P. Simplification of the Kalman filter for meteorological data assimilation. Q J R Meteo Soc.1991,117 (498): 365-384.
    12 Easterbrook C.C. Estimating horizontal wind fields by two-dimensional curve fitting of single Doppler radar measurements. Preprints 16th Radar Meteorology Conference. Houston AMS.1975.214-219.
    13 Ehrendorfer M. Four-dimensional data assimilation: comparison of variational and sequential algorithms. Quart J R Met Soc, 1992, 118: 673 -713.
    14 Epstein E S. Stochastic dynamic prediction. Tellus, 1969,21(6):739-759
    15 Evensen,G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Montre Carlo methods to forecast error statistics. J.Geophys.Res.,1994,99(C5), 10143-10 142
    
    16 Evensen,G. Advanced data assimilation for strongly nonlinear dynamics. Mon Wea Rev ., 1997, 125:1342-1354.
    17 Evensen, G, van Leeuwen PJ. An Ensemble Kalman Smoother for nonlinear dynamics. Mon Wea Rev,2000, 128:1852-1867.
    18 Gal-Chen T. A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev. 1978.106:587-606
    19 Gal-Chen,T.and R.A.Kropfli. Buoyancy and pressure perturbations derived from dual-Doppler radar observations of the planetary boundary layer: applications for matching models with observations. J.Atmos.Sci. 1984,41,3007-3020.
    20 Gao J, M Xue, A Shapiro and K K Droegemeier. A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon Wea Rev 1999,127:2128-2142.
    21 Geng, B., K. Tsuboki, et al., Relationship between middle-level inflow and organization of mesoscale convective system. International GAME/HUBEX Workshop, Sapporo, Japan, 2000, 65-68.
    22 Ghil M, Malanotter-Rizzoli P. Data assimilation in meteorology and oceanography. Adv Geophys.l991,33(2):141-266
    23 Guo,Y.,Y.-H. Kuo,J.Duhia, Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong convective case. Mon.Wea.Rev., 2000,128,619-643.
    24 Hane,C.E.,and B.C.Scott, Temperature and pressure perturbations within convective clouds derived from detailed air motion information: Preliminary testing. Mon.Wea.Rev., 1978, 106,654-661.
    25 Hane.C.E.,R.B.WiIhelmson, and T.Gal-Chen. Retrieval of thermodynamic variables within deep convective clouds: Experiments in three dimensions. Mon.Wea.Rev. ,1981:109,564-576.
    26 Hauser,D.,and P.Amayenc, Retrieval of cloud water and water vapor contents form Doppler radar data in a tropical squall line.J.Atmos.Sci. 1986.43.823-838.
    27 Houtekamer,P.L. and H.L. Mitchell, Data assimilation using an ensemble Kalman filter technique. Mon Wea Rev, 1998,126, 796-811
    28 Houltekamer P L, Mitchell H L. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 2001, 129: 123-137
    29 Jones R H. Optimal estimation of initial conditions for numerical prediction. J. Atmos Sci. 1965,22(6):658-663
    30 Kalman R E. A new approach to linear filtering and prediction problems. Transaction of the ASME, Journal of Basic Engineering, 1960, 82D: 34-45.
    
    31 Kapitza,H., Numerical experiments with the adjoint of a nonhydrostatic mesoscale model. Mon.Wea.Rev. 1991,119,2993-3011.
    32 Keppenne CL, Rienecker M, Assimilation of Temperature into an isopycnal ocean general circulation model using a parallel Ensemble Kalman Filter. J Mar Sys, 2003, 40-41:363-380
    33 Laroche S. and I. Zawadzki. A variational analysis method for retrieval of three-dimensional wind field from single-Doppler radar data. J.Atmos.Sci., 1994, 51(18):2664-2684.
    34 LeDimet F X and Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus,1986, 38(A2): 97-110.
    35 Lewis J M, C Derber. The use of adjoint equations to solve a variational adjustment problem with advective constrains. Tellus, 1985, 37A: 309-322.
    36 Lhermitte RM, Atlas D. Precipitation motion by pulse Doppler. Preprints Ninth Weather Radar Conferece. Amer.Meteor Soc .,1961,218-223.
    37 Li J., Y.L.Chen and W.C. Lee, Analysis of a Heavy Rainfall Event during TAMEX. Mon. Wea. Rev. 1997, 125(6): 1060-1082 .
    38 Lin Y, P S Ray, K W Johnson. Initialization of a modeled convective storm using Doppler radar derived fields. Mon. Wea.Rev.,1993,121 :2757-2775.
    39 Liu D C and J Nocedal, 1989, On the limited memory BFGS method for large scale optimization. Math Programming 45. 503-528.
    40 Lorenc A C. Analysis methods for numerical weather prediction. Quart J R Met Soc, 1986, 112: 1177-1194.
    41 Michelson,S.A.,and N.L.Seaman, Assimilation of NEXRAD-VAD winds in summertime meteorological simulations over the northeastern United States. JAppl.Meteor, 2000, 39, 367-383.
    42 Mitchell HL, Houtekamer PL, Pellerin G, An adaptive Ensemble Kalman Filter. Mon Wea Rev. 2000, 128:416-433.
    43 Miller L J, Strauch R G. A Dual-Doppler radar method for the determination of wind velocities within precipitation weather systems. Remote Sense Environ,1974,3(4):219-235.
    44 Montmerle,T.,A.Caya and LZawadzki, Simulation of a Midlatitude Convective Storm Initialized with Bistatic Doppler Radar Data. Mon.Wea.Rev.2001.129(8). 1949-1967
    45 Persson G and T.Anderson. Automatic wind field interpretation of Doppler radar radial wind components. In: Pennsyluania Uni., USA Smhi Promis Reports. 1987.
    46 Petersen D P. On the concepts and implementation of sequential analysis for linear random fields. Tellus, 1968,20(4):673-686.
    
    47 Protat A and I Zawadzki, A Variational Method for Real-Time Retrieval of Three-Dimensional Wind Field from Multiple-Doppler Bistatic Radar Network Data. J. Atmos. Ocea. Tech. 1999, 16(4), 432-449
    48 Qiu C.J.and Xu Q. A simple adjoint method of wind analysis for single-Doppler radar data. J Atmos Ocean Tech. 1992,9,588-598
    49 Ray P S, Ziegler C L, Bumgarner W, et al. Single and multiple Doppler radar observations of tornadic storms. Mon.Wea.Rev.,1980,108(10):1607-1625.
    50 Robert F RJ.MFritsch and W.C.Lambert. A Simple Technique for Using Radar Data in the Dynamic Initialization of a Mesoscale Model. Mon.Wea.Rev. 2000.128(7),2560-2574.
    51 Roux,F. Retrieval of thermodynamic fields from mutiple-Doppler radar data using the equations of motion and the thermodynamic equation.Mon.Wea.Rev., 1985, 113,2142-2157.
    52 Rutledge,S.A.,and P.V.Hobbs, The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclone. VIII:A model for the "seeder-feeder' process in warm-frontal rainbands J.Atmos.Sci., 1983, 40,1185-1206.
    53 Rutledge,S.A.,and P.V.Hobbs, The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclone.XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands.J.Atmos.Sci. 1984, 41,2949-2972.
    54 Sasaki Y. An objective analysis based on the variational method. J Meteor Soc Japan, 1958, 36(1): 77-88.
    55 Sasaki Y. Some basic formalism in numerical variational. Mon Wea Rev, 1970, 36(1): 77-88.
    56 Shapiro A. Ellis S. Shaw J. Single-Doppler velocity retrievals with Phoenix data: Clear air and microburst wind retrievals in the planetary boundary layer. J Atmos Sci. 1995,52, 1265-1287.
    57 Snyder C and F Zhang. Assimilation of simulated Doppler radar observations with an ensemble Kalman filter Mon Wea Rev. 2003, 131:1663-1677
    58 Srivastava R C, Matejka T J, Lorello T J. Doppler radar study of the trailing anvil region associated with a squall line. J.Atmos.Sci, 1986,43:356-377.
    59 Stauffer D R, N L Seaman. Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data . Mon Wea Rev, 1990,118: 1250-1277.
    60 Steven C. A. The LAPS wind analysis, Weather and Forecasting. 1995,10(2),342-352.
    61 Sun J.Flicher D. Lilly D. Recovery of three-dimensional wind and temperature fields from single-Doppler radar data. J Atmos Sci, 1991,48,876-890.
    
    62 Sun J. and A. Crook Wind and Thermodynamic Retrieval from Single-Doppler Measurements of A Gust Front Observed during Phoenix II, Mon. Wea. Rev. 1994,122:1075-1091
    63 Sun J. and A. Crook, Dynamical and microphysical retrieval from Doppler radar observations using a cloud and its adjoint.PartI: Model development and simulated data experiments. J.Atmos.Sci. 1997,54:1642-1661,
    64 Sun J. and A. Crook, Dynamical and microphysical retrieval from Doppler radar observations using a cloud and its adjoint.PartII: Retrieval experiments of an observed Florida convective storm . J.Atmos.Sci. 1998 ,55:835-852
    65 Sun J. and A. Crook, Real-time low-level wind and temperature analysis using single WSR-88D Data. Weather and Forecasting, 2001a, 16,117-132
    66 Sun J. and N A Crook. Assimilation and forecasting experiments on supercell storms. Part I: experiments with simulated data. 2001b
    67 Sun J. and J. Miller. Initiation and forecasting of thunderstorms: a case study using steps data. Preprints,31~th Conf.on Radar Meteorology.,2003
    68 Talagrand,O., and P. Coutier. Variational assimilation of meteorological observations with the adjoint vorticity equation Part I. Theory Quart.J.Roy.Meteor.Soc, 1987 ,113,1311-1328
    69 Thepaut J N, Courtier P. Four dimensional variational assimilation using the adjoint of a multilevel equation model. Quart J Roy MeteoSoc, 1991, 119 (5) : 1225-1254.
    70 Tuttle,J.D., and GB.Foote, Determination of the boundary layer airflow from a single Doppler radar. J.Atmos.Oceanic.Technol., 1990,7,218-232.
    71 Verlinde.J., and W.R.Cotton, A critical look at kinematic microphysical retrieval algorithms. Preprints, Conf.on Cloud Physics, San Francisco. CA. AMS., 1990,453-457.
    72 Verlinde,J., and W.R.Cotton, Fitting microphysical observations of nonsteady convective clouds to a numerical model: An application of the adjoint technique of data assimilation to a kinematic model Mon.Wea.Rev., 1993, 121,2776-2793.
    73 Waldteufel P and Corbin H, On the analysis of single-Doppler radar data. J.App.Meteor., 1979, 18:532-542.
    74 Wang W, Warner T T. Use of four-dimensional data assimilation by Newtonian relaxation and latent-heat forcing to improve a mesoscale model precipitation forecast: A case study. Mon. Wea.Rev., 1988,116:2593-2613.
    75 Warner,T et al. Prediction of a flash flood in complex terrain,Part I: A comparison of rainfall estimates from radar, and very short range rainfall simulations from a dynamic model and an automated algorithmic system, J.Appl. Meteor. 2000,39,797-814.
    
    76 Wu,B., J.Verlinde and J.Sun, Dynamical and microphysical retrieval from Doppler radar observations of a deep convective cloud. J.Atmos.Sci., 2000, 57,262-283.
    77 Wu Shaorong, Xu Baoxiang, Zhou Xiuji. Assimilation of method of Retrieving Horizontal Wind Field from Single-Doppler Data. ACTA Meteorologica SINICA. 1997,11(4):469-477.
    78 Wurman J et al. A bistatic multiple-Doppier radar network. J Appl. Met. 1993,32(12): 1802 -1814.
    79 Wurman J. Vector winds from a single transmitter bistatic dual-Doppler radar network. Bull Amer Meteor Soc. 1994,75:983-994.
    80 Xu M..N.A. Crook,J.Sun, and R.Rasmussen, Assimilation of radar data for 1-4 hour snowband forecasting using a mesoscale model. Preprints, 14th Conf.on Numerical Weather Prediction,Fort Lunderdale,Florida,AMS., 2001, P4.10. 283-286
    81 Xue,M.K.,and Coauthors, The Advanced Regional Prediction System (ARPS) -Amultiscale nonhydrostatic atmospheric simulation and prediction model. Part II: Model physics and applications Meteor.Atmos.Phys., 2002, 76,143-165.
    82 Xu Q. and C.J.Qiu, Adjoint Method Retrieval of low-altitude wind fields from single-Doppler reflectivity measured during Phoenix II., J.Atmos.and Ocea.Tech. 1994,11:275-288
    83 Xu Q and CJ.Qiu, Ajoint-Method Retrievals of Low-Altitude Wind Fields from Single-Doppler Reflectivity and Radial-Wind Data, J.Atmos.and Ocea.Tech.1995,12: 1111 -1119
    84 Zhang F, C Snyder and J Sun, Impacts of initial estimate and observation availability on convective-scale data assimilation with an Ensemble Kalman filter. Mon Wea Rev. 2004, 132:1238-1253.
    85 Zhao kun, Liu guoqing,Ge wenzhong. Retrieval of single-Doppler radar wind field by nonlinear approximation.Adv.Atmos.Sci.,2003,20(2): 195-204.
    86 Ziegler,C.L., Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J.Atmos.Sci., 1985, 42,1487-1509.
    87 Ziegler,C.L., Retrieval of thermal and microphysical variables in observed convective storms. Part II: Sensitivity of cloud processes to variation fo the microphysical parameterization. J. Atmos. Sci. 1988,45,1072-1090.
    88 Zou X, Navon I M, Sela J G. Control of gravitational oscillations in variational data assimilation [J]. Mon Wea Rev. 1993, 121(l):272-289.
    89 Zupanski D. The effect of discontinuities in the Betts-Miller cumulus convection scheme on four dimensional data assimilation. Tellus, 1993,45A: 511-524.
    
    90 丑纪范.天气数值预报中使用过去资料的问题.中国科学,1974,6:635-644
    91 冯伍虎,邱崇践.变分四维同化方法若干问题的数值试验.高原气象,1999,18(2) :138-146.
    92 顾建峰.薛纪善.颜宏.多普勒雷达四维变分分析系统概述.热带气象学报,2004,20(1) :1-13
    93 顾震潮.作为初值问题的天气形势预报与由地面天气历史演变做预报的等值性.气象学 报,1958,29(2) :93-98
    94 顾震潮.天气数值预报中过去资料的使用问题.气象学报,1958,29(3) :176-184
    95 郭霞,党人庆,葛文忠.雷达资料在江淮流域暴雨数值模拟中的应用.热带气象学报.1999, 15(4) :356-362
    96 洪延超,黄美元,吴玉霞等.梅雨锋云系中尺度系统的回波结构及其与暴雨的关系,气象 学报,1987,45(1) ,56-64.
    97 黄美元,洪延超.梅雨锋云系中层状云结构和降水的不均匀性,气象学报,1984,42(1) : 23-30.
    98 姜海燕,葛润生.一种新的单部多谱勒雷达的反演技术应用气象学报,1997,8(2) :219-223
    99 江晓燕.梅雨锋暴雨中尺度对流系统的结构和发展机理的数值模拟.南京大学硕士研究 生论文,2004
    100 郎需兴,魏鸣,葛文忠等.一种新的单多谱勒雷达风场反演方法.气象科学,2001,21(4) : 417-424.
    101 刘黎平.用双多普勒雷达反演降水系统三维风场试验研究.应用气象学报,2003,14(4) : 502-504
    102 刘黎平等.一次混合云暴雨过程风场中尺度结构的双多普勒雷达观测研究.大气科学, 2004,28(2) :278-284.
    103 刘黎平等.长江流域梅雨锋暴雨过程的中尺度结构个例分析.中国科学D辑,2004, 34(12) :1193-1201.
    104 马清云,李泽椿等.单多普勒天气雷达风场反演及其在数值预报中的应用试验.应用气 象学报,2001,12(4) :488-493
    105 蒲朝霞,丑纪范.对中尺度遥感资料进行四维同化的共轭方法及其数值研究.高原气象, 1994,13(4) :419-429.
    106 邱崇践,郜吉东.模式误差对变分同化过程影响的数值研究.高原气象,1994,13(4) :449-456.
    107 邱崇践,余金香,Qinxu.多普勒雷达资料对中尺度系统短期预报的改进.气象学报,2000, 58(2) :244-249
    108 孙建华,赵思雄.华南“94. 6”特大暴雨的中尺度对流系统及其环境场的研究.Ⅰ.引发暴雨 的β中尺度对流系统的数值模拟研究.大气科学.2002,26(4) :541-557
    
    109 陶祖钰.从单Doppler雷达速度场反演矢量场的VAP方法,气象学报,1992,50(1) :81-90.
    110 王东峰.单多谱勒天气雷达三维风场反演技术研究.1999,中国气象科学院硕士论文
    111 王建捷,李泽椿.1998年一次梅雨锋暴雨中尺度对流系统的模拟与诊断分析.气象学报, 2002,60(2) :146-155.
    112 徐慧,程兴无,葛文忠等.雷达和卫星资料在淮河流域暴雨实时数值预报试验中的应用. 气象科学,2000,20(4) :433-439
    113 徐枝芳,徐玉貌,葛文忠.雷达和卫星资料在中尺度模式中的初步应用.气象科学,2002, 22(2) :167-173
    114 杨艳蓉,李柏.张沛源.多普勒雷达资料四维变分同化.应用气象学报,2004,15(1) :95-110
    115 闫敬华.薛纪善.“5. 24"华南中尺度暴雨系统结构的数值模拟分析.热带气象学报,2002, 18(4) :302-308。
    116 张庆红等.华南梅雨锋上中尺度对流系统的数值模拟.科学通报,2000,45(18) :1988-1992.
    117 张培昌等.雷达气象学.北京:气象出版社2001,461pp.
    118 周海光,张沛源.笛卡儿坐标系的双多普勒天气雷达三维风场反演技术.气象学 报,2002. 60(5) :585-593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700