用户名: 密码: 验证码:
三维非结构波流耦合数值模型建立及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波流相互作用对水动力、水环境有重要影响,许多学者对这一领域进行了研究。采用非结构网格可以很好拟合复杂的岸线边界及对重点研究区域进行局部加密。目前基于非结构网格的完全波流耦合模型研究较少。本文在前人的研究工作基础上,建立了非结构波流完全耦合数值模型,并对建立的模型进行了一系列验证及应用研究。
     建立了一个并行的非结构网格波浪数值模型,模型遵守波能守恒方程,考虑了浅水效应、折射、波能耗散等影响因素。对建立的波浪模型与非结构有限体积水流数值模型进行完全耦合,耦合过程包括三维辐射应力、斯托克斯漂流、波浪耗散对紊流方程的作用等。通过几个例子对建立的模型进行了验证,着重研究了“卡特里娜”飓风引起的风暴潮,模拟的波要素和水位与实测值吻合较好。通过几组试验研究了波浪效应对水位的影响,试验表明辐射应力、波浪导致的表层应力对水位影响较大,波浪导致的底层应力对水位影响较小,模型包含波浪的作用对预报风暴潮引起的水位变化至关重要。
     通过拉格朗日方法研究了渤海冬夏季环流及潮、风、海气热交换和入海径流对渤海环流的影响。研究表明:粒子输移存在明显的三维结构;三个湾内水体输送均较小、表底层相差不大;渤海夏季环流强度较冬季强;由风引起的拉格朗日水体输送对渤海环流影响较大;温盐环流对水体输送的影响主要在夏季,在冬季,影响可以忽略;河流只对河口附近环流结构有影响;夏季,与热盐、风相比潮流对拉格朗日水体输送贡献较小;只考虑单分潮的作用将不能反映渤海的实际环流情况。
     建立了三维溢油模拟系统用于预报海上溢油的轨迹和最终归宿。模型包括水流与输移-归宿两个模块。水流模块采用非结构有限体积、波流耦合数值模型。在输移-归宿模块中采用粒子追踪法模拟油膜的输运。油的迁移过程包括对流、扩展、紊动扩散、附着在岸边、沉降到海底等;转化过程包括挥发、溶解、乳化等。应用建立的溢油模拟系统对渤海海峡发生的突发性溢油事故进行了模拟。
     对大伙房水库的平均滞留时间、水龄及水质进行了数值模拟研究。研究表明:在高、平均、低流量情况下,从上游释放的示踪物质滞留时间分别为125d、236d和521d;水龄随着上游流量变化而变化;在垂向上表层水龄较底层大,越往下游表底层水龄相差越小;水库中由温度变化引起的密度流对水龄分布具有重要影响,是引起表底层水龄分布异同的主要原因;通过敏感度分析检验了参数对水质模型的影响,模型成功再现了水质变量在时间和空间上的分布。模型可为水库的工程设计及管理提供帮助。
Recognizing the important role of wave-current interaction played in hydrodynamic and water environment, scientists have become increasingly interested in establishing a regional predicting system that could couple three-dimensional ocean models with wave models. Using unstructured meshes provides an accurate fitting of the irregular coastal boundary, with refined grid resolution in regions of interest and not elsewhere. In this study, an unstructured three-dimensional fully coupled wave-current model is developed. Several applications are presented to evaluate the developed model.
     A parallel, unstructured grid, parametric wind-wave model is firstly developed with the intention of coupling to three-dimensional unstructured grid ocean circulation models. The model is derived from a conservation of energy flux formulations. In the model, the shoaling, refraction, and wave dissipation, as well as exchange of current and stokes drift momentum effects are considered. Then, the existing Finite-Volume Coastal Ocean Model is modified to couple with the wave module. The couple procedure includes depth dependent wave radiation stress terms, Stokes drift, vertical transfer of wave-generated pressure transfer to the mean momentum equation, wave dissipation as a source term in the turbulence kinetic energy equation, and mean current advection and refraction of wave energy. Several applications are presented to evaluate the developed model. In particular the wind and wave-induced storm surge generated by hurricane Katrina is investigated. The obtained results have been compared to the in situ measurements with respect to the wave heights and water level elevations revealing good accuracy of the model in reproduction of the investigated events. Several runs were carried out to analyze the effects of waves. The experiments show that among the processes that represent wave effects, radiation stress and wave-induced surface stress are more important than wave-induced bottom stress in affecting the water level. The hurricane Katrina simulations showed the importance of the inclusion of the wave effects for the hindcast of the water levels during the storm surge.
     Seasonal circulation of the Bohai Sea (BS) in 1992 was investigated using Lagrangian particle tracking method. The transport of particles has three-dimensional (3D) structure in the BS. Compared with central Bohai and Bohai Strait, the differences of particles'transportation between surface and bottom layer in three bays are small. The circulation in the summer is stronger than that in the winter, with the average residual velocity in the surface layer being about 3.7 cm/s during the summer while only 1.8 cm/s during the winter. Using the same model, several well-designed numerical experiments were performed to investigate the effect of oceanic tide, river discharge, wind stress and thermal stratification on the circulation. It is shown that winds play an important role in the circulation of the BS during both the winter and the summer. Density circulation is important during the summer; however, it is negligible during the winter. River runoff only affects the area around the river mouth. Compared with wind and thermohaline effect, the contribution of tides is small during the summer, and the circulation under only M2 tidal constituent could not reflect the actual circulation of the BS.
     A three-dimensional integrated model is developed for simulating transport and fate of oil spills in seas. The model contains two main modules, flow and transport-fate modules. The flow module uses an unstructured finite-volume wave-ocean coupling model. In the transport-fate module the oil dispersion is solved using a particle-tracking method. The model simulates the most significant processes that affect the motion of oil particles, such as advection, surface spreading, evaporation, dissolution, emulsification and turbulent diffusion as well as the interaction of the oil particles with the shoreline, sedimentation and the temporal variations of oil viscosity, density and surface tension. This model has been applied to simulate the oil-spill accident in the BS.
     A three-dimensional hydro-eutrophication model was implemented to compute average residence time, water age and water quality in the Dahuofang Reservoir, China. Residence time estimations yield a broad range of values depending on the position. The average residence time for a tracer placed at the head of the reservoir under high-, mean-, and low flow conditions was found to be about 125,236 and 521 days, respectively. The age simulation reveals that the age distribution is a function of the freshwater discharge. In the vertical, the age of the surface layers is larger than that of the bottom layers and age difference between the surface and bottom layers decreases further downstream. The density-induced circulation plays an important role in the circulation in the reservoir, and can generate vertical age distribution in the reservoir. Sensitive of the parameters has been analyzed to decide which process would affect the water quality in the simulation. Water quality verification suggested the model successfully computed the temporal cycles and spatial distributions of key water quality components. The model could be used as a tool to guide physico-biological engineering design or management strategies for Dahuofang Reservoir.
引文
[1]Oey L Y, Chen P. A nested-grid ocean model:With application to the simulation of meanders and eddies in the norwegian coastal current [J]. Journal of Geophysical Research.1992,97(C12): 20063-20086.
    [2]Sankaranarayanan S, Ward M C. Development and application of a three-dimensional orthogonal coordinate semi-implicit hydrodynamic model [J]. Continental Shelf Research.2006,26(14): 1571-1594.
    [3]Blumberg A F, Mellor G L. A description of a three-dimensional coastal ocean circulation model [M]//Heaps N S. Three-Dimensional Coastal Ocean Models, Coastal Estuarine Science. Washington, DC:AGU,1987:4,1-16.
    [4]Hamrick J M, Sciences V I OM. User's manual for the environmental fluid dynamics computer code [R]. Dept. of Physical Sciences, School of Marine Science, Virginia Institute of Marine Science, College of William and Mary,1996.
    [5]Shchepetkin A F, Mcwilliams J C. The regional oceanic modeling system (ROMS):a split-explicit, free-surface, topography-following-coordinate oceanic model [J]. Ocean Modelling.2005,9(4): 347-404.
    [6]Song Y, Haidvogel D. A semi-implicit ocean circulation model using a generalized topography-following coordinate system [J]. Journal of Computational Physics.1994,115(1): 228-244.
    [7]Blumberg A F, Herring H J. Circulation modelling using orthogonal curvilinear coordinates [J]. Elsevier Oceanography Series.1987,45:55-88.
    [8]Oey L Y, Mellor G L. Subtidal variability of estuarine outflow, plume, and coastal current-a model study [J].Journal of Physical Oceanography.1993,23(1):164-171.
    [9]Chan C T, Cheong H F, Jothi S N. A boundary-fitted grid model for tidal motions:Orthogonal coordinates generation in 2-D embodying Singapore coastal waters [J]. Computers & Fluids.1994, 23(7):881-893.
    [10]Muin M, Spaulding M. Three-dimensional boundary-fitted circulation model [J]. Journal of Hydraulic Engineering.1997,123(1):2-12.
    [11]Spaulding M L. A vertically averaged circulation model using boundary-fitted coordinates [J]. Journal of Physical Oceanography.1984,14(5):973-982.
    [12]Sankaranarayanan S, Spaulding M L. Dispersion and stability analyses of the linearized two-dimensional shallow water equations in boundary-fitted co-ordinates [J]. International Journal for Numerical Methods in Fluids.2003,42(7):741-763.
    [13]Lynch D R, Gray W G. Wave-equation model for finite-element tidal computations [J].Computers & Fluids.1979,7(3):207-228.
    [14]Hill D F, Ciavola S J, Etherington L, et al. Estimation of freshwater runoff into Glacier Bay, Alaska and incorporation into a tidal circulation model [J]. Estuarine, Coastal and Shelf Science.2009, 82(1):95-107.
    [15]Walters R A. Coastal ocean models:two useful finite element methods [J]. Continental Shelf Research.2005,25(7-8):775-793.
    [16]Baptista A M, Zhang Y L, Chawla A, et al. A cross-scale model for 3D baroclinic circulation in estuary-plume-shelf systems:Ⅱ.Application to the Columbia river [J]. Continental Shelf Research. 2005,25(7-8):935-972.
    [17]Zhang Y L, Baptista A M, Myers E P. A cross-scale model for 3D baroclinic circulation in estuary-plume-shelf systems:I. Formulation and skill assessment [J]. Continental Shelf Research. 2004,24(18):2187-2214.
    [18]Chen C S, Liu H D, Beardsley R C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model:application to coastal ocean and estuaries [J]. Journal of Atmospheric and Oceanic Technology.2003,20(1):159-186.
    [19]Oey L Y, Chen P. A model simulation of circulation in the northeast Atlantic shelves and seas [J]. Journal of Geophysical Research.1993,98(C3):4833-4833.
    [20]Ezer T, Mellor G L. Diagnostic and prognostic calculations of the North-Atlantic circulation and sea-level using a sigma-coordinate ocean model [J]. Journal of Geophysical Research.1994,99(C7): 14159-14171.
    [21]Bryan K. A numerical method for the study of the circulation of the world ocean [J]. Journal of Computational Physics.1997,135(2):154-169.
    [22]Haidvogel D B, Wilkin J L, Young R. A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates [J]. Journal of Computational Physics.1991,94(1):151-185.
    [23]Bleck R, Smith L T. A wind-driven isopycnic coordinate model of the north and equatorial Atlantic-Ocean I. Model development and supporting experiments [J]. Journal of Geophysical Research.1990,95(C3):3273-3285.
    [24]Spall M A, Robinson A R. Regional primitive equation studies of the gulf-stream meander and ring formation region [J]. Journal of Physical Oceanography.1990,20(7):985-1016.
    [25]Oey L Y, Mellor G L, Hires R I. A three-dimensional simulation of the Hudson-Raritan estuary. Part I:Description of the model and model simulations [J]. Journal of Physical Oceanography.1985, 15(12):1676-1692.
    [26]Mellor G L, Ezer T, Oey L Y. The pressure gradient conundrum of sigma coordinate ocean models [J]. Journal of Atmospheric and Oceanic Technology.1994,11(4):1126-1134.
    [27]Mellor G L, Oey L Y, Ezer T. Sigma coordinate pressure gradient errors and the seamount problem [J]. Journal of Atmospheric and Oceanic Technology.1998,15(5):1122-1131.
    [28]Haney R L. On the pressure gradient force over steep topography in sigma coordinate ocean models [J]. Journal of Physical Oceanography.1991,21(4):610-619.
    [29]Mesinger F. A blocking technique for representation of mountains in atmospheric models [J]. Rivista di Meteorologia Aeronautica.1984,44(1-4):195-202.
    [30]Huang W, Spaulding M. Modeling horizontal diffusion with sigma coordinate system [J]. Journal of Hydraulic Engineering-ASCE.1996,122(6):349-352.
    [31]Chu P C, Fan C. Sixth-order difference scheme for sigma coordinate ocean models [J]. Journal of Physical Oceanography.1997,27(9):2064-2071.
    [32]Huang W, Spaulding M. Reducing horizontal diffusion errors in σ-coordinate coastal ocean models with a second-order Lagrangian-interpolation finite-difference scheme [J]. Ocean Engineering.2002, 29(5):495-512.
    [33]Shchepetkin A F, Mcwilliams J C. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate [J]. Journal of Geophysical Research.2003, 108(C3):3090.
    [34]Luo Y, Guan C, Wu D. An Eta-coordinate version of the Princeton Ocean Model [J]. Journal of Oceanography.2002,58(4):589-597.
    [35]Aldridge J N, Davies A M. A high-resolution three-dimensional hydrodynamic tidal model of the Eastern Irish Sea [J]. Journal of Physical Oceanography.1993,23(2):207-224.
    [36]Pacanowski R C, Philander S G. Parameterization of vertical mixing in numerical models of tropical oceans [J]. Journal of Physical Oceanography.1981,11(11):1443-1451.
    [37]Blumberg A F, Galperin B, O C D. Modeling vertical structure of open-channel flows [J]. Journal of Hydraulic Engineering-ASCE.1992,118(8):1119-1134.
    [38]Galperin B, Kantha L H, Hassid S, et al. A Quasi-equilibrium Turbulent Energy Model for Geophysical Flows [J]. Journal of the Atmospheric Sciences.1988,45(1):55-62.
    [39]Umlauf L, Burchard H. A generic length-scale equation for geophysical turbulence models [J]. Journal of Marine Research.2003,61(2):235-265.
    [40]Xing J, Davies A M. Application of turbulence energy models to the computation of tidal currents and mixing intensities in shelf edge regions [J]. Journal of Physical Oceanography.1996,26(4): 417-447.
    [41]Durski S M, Glenn S M, Haidvogel D B. Vertical mixing schemes in the coastal ocean:comparison of the level 2.5 Mellor-Yamada scheme with an enhanced version of the K profile parameterization [J]. Journal of Geophysical Research.2004,109:C01015.
    [42]Ezer T, Mellor G L. Data assimilation experiments in the gulf stream region:how useful are satellite-derived surface data for nowcasting the subsurface fields? [J]. Journal of Atmospheric and Oceanic Technology.1997,14(6):1379-1391.
    [43]Wei J, Malanotte-Rizzoli P. Validation and application of an ensemble kalman filter in the selat pauh of Singapore [J]. Ocean Dynamics.2009,60(2):395-401.
    [44]Zang X, Malanotte-Rizzoli P. A comparison of assimilation results from the ensemble kalman filter and a reduced-rank extended kalman filter [J]. Nonlinear Processes in Geophysics.2003,10(6): 477-491.
    [45]Counillon F, Bertino L. High-resolution ensemble forecasting for the gulf of Mexico eddies and fronts [J]. Ocean Dynamics.2009,59(1):83-95.
    [46]Counillon F, Bertino L. Ensemble optimal interpolation:multivariate properties in the gulf of Mexico [J]. Tellus Series A.2009,61(2):296-308.
    [47]Mattern J P, Dowd M, Fennel K. Sequential data assimilation applied to a physical-biological model for the Bermuda Atlantic time series station [J]. Journal of Marine Systems.2010,79(1-2):144-156.
    [48]Oey L Y, Ezer T, Forristall G, et al. An exercise in forecasting loop current and eddy frontal positions in the gulf of Mexico [J]. Geophysical Research Letters.2005,32(12):L12611.
    [49]Counillon F, Sakov P, Bertino L. Application of a hybrid Enkf-Oi to ocean forecasting [J]. Ocean Science.2009,5(4):389-401.
    [50]Mitarai S, Siegel D A, Watson J R, et al. Quantifying connectivity in the coastal ocean with application to the southern California Bight [J]. Journal of Geophysical Research.2009,114: C10026.
    [51]Moon J H, Pang I C, Yang J Y, et al. Behavior of the giant jellyfish nemopilema nomurai in the East China Sea and East/Japan Sea during the summer of 2005:a numerical model approach using a particle-tracking experiment [J]. Journal of Marine Systems.2010,80(1-2):101-114.
    [52]Ivanov L M, Melnichenko O V, Collins C A, et al. Wind induced oscillator dynamics in the Black Sea revealed by Lagrangian drifters [J]. Geophysical Research Letters.2007,34(13):L13609.
    [53]Mccormick M J, Manley T O, Beletsky D, et al. Tracking the surface flow in Lake Champlain [J]. Journal of Great Lakes Research.2008,34(4):721-730.
    [54]Haza A C, Poje A C, Ozgokmen T M, et al. Relative dispersion from a high-resolution coastal model of the Adriatic Sea [J]. Ocean Modelling.2008,22(1-2):48-65.
    [55]Jakobsen P K, Ribergaard M H, Quadfasel D, et al. Near-surface circulation in the northern north Atlantic as inferred from Lagrangian drifters:variability from the mesoscale to interannual [J]. Journal of Geophysical Research.2003,108(C8):3251.
    [56]Ursella L, Poulain P M, Signell R P. Surface drifter derived circulation in the northern and Middle Adriatic Sea:response to wind regime and season [J]. Journal of Geophysical Research.2006,112: C03S04.
    [57]Poulain P M, Zambianchi E. Surface circulation in the central Mediterranean Sea as deduced from Lagrangian drifters in the 1990s [J]. Continental Shelf Research.2007,27(7):981-1001.
    [58]Domingues C M, Maltrud M E, Wijffels S E, et al. Simulated Lagrangian pathways between the Leeuwin current system and the upper-ocean circulation of the southeast Indian Ocean [J]. Deep-sea Research Part I-Oceanographic Research Papers.2007,54:797-817.
    [59]Edwards K P, Hare J A, Werner F E, et al. Lagrangian circulation on the southeast US continental shelf:implications for larval dispersal and retention [J]. Continental Shelf Research.2006,26(12-13): 1375-1394.
    [60]Prakash S, Atkinson J F, Green M L. A semi-Lagrangian study of circulation and transport in Lake Ontario [J]. Journal of Great Lakes Research.2007,33(4):774-790.
    [61]Rossby T, Prater M D, Soiland H. Pathways of inflow and dispersion of warm waters in the Nordic seas [J]. Journal of Geophysical Research.2009,114:C04011.
    [62]Gong D, Kohut J T, Glenn S M. Seasonal climatology of wind-driven circulation on the New Jersey Shelf [J]. Journal of Geophysical Research.2010,115:C04006.
    [63]匡国瑞,张琦,戴煜芝.渤海中部长期流的观测与余流分析[J].海洋湖沼通报.1991(02):1-11.
    [64]管秉贤.有关我国近海海流研究的若干问题[J].海洋与湖沼.1962,4(3):121-141.
    [65]Fang Y, Fang G H, Zhang Q H. Numerical simulation and dynamic study of the wintertime circulation of the Bohai Sea [J]. Chinese Journal of Oceanology and Limnology.2000,18(1):1-9.
    [66]Hainbucher D, Hao W, Pohlmann T, et al. Variability of the Bohai Sea circulation based on model calculations [J]. Journal of Marine Systems.2004,44(3):153-174.
    [67]Huang D J, Su J L, Backhaus J O. Modelling the seasonal thermal stratification and baroclinic circulation in the Bohai Sea [J]. Continental Shelf Research.1999,19(11):1485-1505.
    [68]Li G S, Dong C, Wang H L. Numerical simulation of transportation of SPM from the Yellow River to the Bohai Sea [J]. China Ocean Engineering.2006,20(1):133-146.
    [69]Wu D X, Wan X Q, Bao X W, et al. Comparison of summer thermohaline field and circulation structure of the Bohai Sea between 1958 and 2000 [J]. Chinese Science Bulletin.2004,49(4): 363-369.
    [70]Huang D J, Su J L, Zhang L R. Numerical study of the winter and summer circulation in the Bohai Sea[J]. Acta Aerodynamica Sinica.1998,16(01):115-121.
    [71]Malhadas M S, Neves R J, Leitao P C, et al. Influence of tide and waves on water renewal in Obidos lagoon, Portugal [J]. Ocean Dynamics.2010,60(1):41-55.
    [72]Nicolle A, Garreau P, Liorzou B. Modelling for anchovy recruitment studies in the gulf of Lions (Western Mediterranean Sea) [J]. Ocean Dynamics.2009,59(6):953-968.
    [73]Group W. The WAM model-a third generation ocean wave prediction model [J]. Journal of Physical Oceanography.1988,18(12):1775-1810.
    [74]Tolman H L. User manual and system documentation of WAVEWATCH-Ⅲ version 2.22 [R]. NOAA/NWS/NCEP/MMAB,2002.
    [75]Ris R C, Holthuijsen L H, Booij N. A spectral model for waves in the near shore zone [J]. Coastal Engineering.1995,1:68-78.
    [76]Phillips O M. The dynamics of the upper ocean [M]. New York:Cambridge University Press,1977.
    [77]Ris R C, Holthuijsen L H. Spectral modelling of current induced wave-blocking [J]. Coastal Engineering.1996,1:1247-1254.
    [78]Tolman H L. The influence of unsteady depths and currents of tides on wind-wave propagation in shelf seas [J]. Journal of Physical Oceanography.1990,20(8):1166-1174.
    [79]Masson D. A case study of wave-current interaction in a strong tidal current [J]. Journal of Physical Oceanography.1996,26(3):359-372.
    [80]Donelan M A, Dobson F W, Smith S D, et al. On the dependence of sea surface roughness on wave development [J]. Journal of Physical Oceanography.1993,23(9):2143-2149.
    [81]Christoffersen J B, Jonsson I G. Bed friction and dissipation in a combined current and wave motion [J]. Ocean Engineering.1985,12(5):387-423.
    [82]Grant W D, Madsen O S. Combined wave and current interaction with a rough bottom [J]. Journal of Geophysical Research.1979,84(C4):1797-1808.
    [83]Signell R P, Beardsley R C, Graber H C, et al. Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayments [J]. Journal of Geophysical Research.1990,95(C6): 9671-9678.
    [84]Longuet-Higgins M S, Stewart R W. Radiation stress and mass transport in gravity waves, with application to 'Surf beats'[J]. Journal of Fluid Mechanics.1962,13:481-504.
    [85]Huang N E. On surface drift currents in the ocean [J]. Journal of Fluid Mechanics.1979,91:191-208.
    [86]Jenkins A D. Wind and wave induced currents in a rotating sea with depth-varying eddy viscosity [J]. Journal of Physical Oceanography.1987,17(7):938-951.
    [87]Horsburgh K J, Wilson C. Tide-surge interaction and its role in the distribution of surge residuals in the North Sea [J]. Journal of Geophysical Research.2007,112:C08003.
    [88]Choi B H, Eum H M, Woo S B. A synchronously coupled tide-wave-surge model of the Yellow Sea [J]. Coastal Engineering.2003,47(4):381-398.
    [89]Mastenbroek C, Burgers G, Janssen P A. The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer [J]. Journal of Physical Oceanography.1993,23(8): 1856-1866.
    [90]Warner J C, Sherwood C R, Signell R P, et al. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model [J]. Computers & Geosciences.2008,34(10): 1284-1306.
    [91]Xie L, Liu H Q, Peng M C. The effect of wave-current interactions on the storm surge and inundation in Charleston harbor during hurricane Hugo 1989 [J]. Ocean Modelling.2008,20(3):252-269.
    [92]Zhang M Y, Li Y S. The dynamic coupling of a third-generation wave model and a 3d hydrodynamic model through boundary layers [J]. Continental Shelf Research.1997,17(10):1141-1170.
    [93]Davies A M, Lawrence J. Examining the influence of wind and wind wave turbulence on tidal currents, using a three-dimensional hydrodynamic model including wave-current interaction [J]. Journal of Physical Oceanography.1994,24(12):2441-2460.
    [94]Xie L, Pietrafesa L J, Wu K. A numerical study of wave-current interaction through surface and bottom stresses:coastal ocean response to hurricane Fran of 1996 [J]. Journal of Geophysical Research.2003,108(C2):3049-3066.
    [95]Xie L, Wu K J, Pietrafesa L, et al. A numerical study of wave-current interaction through surface and bottom stresses:wind-driven circulation in the South Atlantic Bight under uniform winds [J]. Journal of Geophysical Research.2001,106(C8):16841-16855.
    [96]Yin B S, Xu Z H, Huang Y, et al. Simulating a typhoon storm surge in the East Sea of China using a coupled model [J]. Progress in Natural Science.2009,19(1):65-71.
    [97]Davies A M, Lawrence J. Modeling the effect of wave-current interaction on the three-dimensional wind-driven circulation of the eastern Irish Sea [J]. Journal of Physical Oceanography.1995,25(1): 29-45.
    [98]Warner J C, Perlin N, Skyllingstad E D. Using the model coupling toolkit to couple earth system models [J]. Environmental Modelling & Software.2008,23(10):1240-1249.
    [99]Lowe R J, Falter J L, Monismith S G, et al. A numerical study of circulation in a coastal reef-lagoon system [J]. Journal of Geophysical Research.2009,114:C06022.
    [100]Wang D P, Oey L Y. Hindcast of waves and currents in hurricane Katrina [J]. Bulletin of the American Meteorological Society.2008,89(4):487-495.
    [101]Blaas M, Dong C M, Marchesiello P, et al. Sediment-transport modeling on southern Californian shelves:a ROMS case study [J]. Continental Shelf Research.2007,27(6):832-853.
    [102]Liang B C, Li H J, Lee D Y. Bottom shear stress under wave-current interaction [J]. Journal of Hydrodynamics.2008,20(1):88-95.
    [103]Liang B, Li H, Lee D. Numerical study of wave effects on surface wind stress and surface mixing length by three-dimensional circulation modeling [J]. Journal of Hydrodynamics.2006,18(4): 397-404.
    [104]Zhang H, Madsen O S, Sannasiraj S A, et al. Hydrodynamic model with wave-current interaction in coastal regions [J]. Estuarine, Coastal and Shelf Science.2004,61(2):317-324.
    [105]Xia H Y, Xia Z W, Zhu L S. Vertical variation in radiation stress and wave-induced current [J]. Coastal Engineering.2004,51(4):309-321.
    [106]Liu Y Z, Shi J Z, Perrie W. A theoretical formulation for modeling 3d wave and current interactions in estuaries [J]. Advances in Water Resources.2007,30(8):1737-1745.
    [107]Kim S Y, Yasuda T, Mase H. Numerical analysis of effects of tidal variations on storm surges and waves [J]. Applied Ocean Research.2008,30(4):311-322.
    [108]Mellor G L, Donelan M A, Oey L Y. A surface wave model for coupling with numerical ocean circulation models [J]. Journal of Atmospheric and Oceanic Technology.2008,25(10):1785-1807.
    [109]Brown J M, Wolf J. Coupled wave and surge modelling for the Eastern Irish Sea and implications for model wind-stress [J]. Continental Shelf Research.2009,29(10):1329-1342.
    [110]Tolman H L. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents [J]. Journal of Physical Oceanography.1991,21(6):782-797.
    [111]Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions-1. Model description and validation [J]. Journal of Geophysical Research.1999,104(C4):7649-7666.
    [112]Tolman H L. A mosaic approach to wind wave modeling [J]. Ocean Modelling.2008,25(1):35-47.
    [113]Hsu T W, Ou S H, Liau J M. Hindcasting nearshore wind waves using a FEM code for SWAN [J]. Coastal Engineering.2005,52(2):177-195.
    [114]Qi J, Chen C, Beardsley R C, et al. An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE):implementation, validations and applications [J]. Ocean Modelling.2009, 28(1-3):153-166.
    [115]Mellor G L. The depth-dependent current and wave interaction equations:a revision [J]. Journal of Physical Oceanography.2008,38(11):2587-2596.
    [116]Elliott A J. Shear diffusion and the spread of oil in the surface layers of the North Sea [J]. Ocean Dynamics.1986,39(3):113-137.
    [117]Nazir M, Khan F, Amyotte P, et al. Multimedia fate of oil spills in a marine environment-an integrated modelling approach [J]. Process Safety and Environmental Protection.2008,86(2): 141-148.
    [118]Chen H Z, Li D M, Li X. Mathematical modeling of oil spill on the sea and application of the modeling in Daya Bay [J]. Journal of Hydrodynamics.2007,19(3):282-291.
    [119]Xie H, Yapa P D, Nakata K. Modeling emulsification after an oil spill in the sea [J]. Journal of Marine Systems.2007,68(3-4):489-506.
    [120]Sebastiao P, Soares C G. Uncertainty in predictions of oil spill trajectories in a coastal zone [J]. Journal of Marine Systems.2006,63(3-4):257-269.
    [121]Sebastiao P, Guedes Soares C. Uncertainty in predictions of oil spill trajectories in open sea [J]. Ocean Engineering.2007,34(3-4):576-584.
    [122]Vethamony P, Sudheesh K, Babu M T, et al. Trajectory of an oil spill off Goa, Eastern Arabian Sea: field observations and simulations [J]. Environmental Pollution.2007,148(2):438-444.
    [123]Boufadel M C, Bechtel R D, Weaver J. The movement of oil under non-breaking waves [J]. Marine Pollution Bulletin.2006,52(9):1056-1065.
    [124]Perianez R. A particle-tracking model for simulating pollutant dispersion in the strait of Gibraltar [J]. Marine Pollution Bulletin.2004,49(7):613-623.
    [125]Tkalich P, Huda M K, Gin K. A multiphase oil spill model [J]. Journal of Hydraulic Research.2003, 41(2):115-125.
    [126]Chao X B, Shankar N J, Cheong H F. Two-and three-dimensional oil spill model for coastal waters [J]. Ocean Engineering.2001,28(12):1557-1573.
    [127]Chao X B, Shankar N J, Wang S. Development and application of oil spill model for Singapore coastal waters [J]. Journal of Hydraulic Engineering.2003,129(7):495-503.
    [128]Giarrusso C C, Pugliese Carratelli E, Spulsi G. On the effects of wave drift on the dispersion of floating pollutants [J]. Ocean Engineering.2001,28(10):1339-1348.
    [129]Varlamov S M, Yoon J, Hirose N, et al. Simulation of the oil spill processes in the sea of Japan with regional ocean circulation model [J]. Journal of Marine Science and Technology.1999,4(3):94-107.
    [130]Lonin S A. Lagrangian model for oil spill diffusion at sea [J]. Spill Science and Technology Bulletin. 1999,5(5):331-336.
    [131]Nakata K, Sugioka S, Hosaka T. Hindcast of a Japan Sea oil spill [J]. Spill Science and Technology Bulletin.1997,4(4):219-229.
    [132]Proctor R, Flather R A, Elliott A J. Modelling tides and surface drift in the Arabian Gulf-application to the gulf oil spill [J]. Continental Shelf Research.1994,14(5):531-545.
    [133]Spaulding M L, Jayko K B, Anderson E L. Hindcast of the Argo merchant spill using the URI oil spill fates model [J]. Ocean Engineering.1982,9(5):455-482.
    [134]Al-Rabeh A H, Cekirge H M, Gunay N. A stochastic simulation model of oil spill fate and transport [J]. Applied Mathematical Modelling.1989,13(6):322-329.
    [135]Hung T S, Yapa P D, Petroski M E. A simulation model for oil slick transport in lakes [J]. Water Resources Research.1987,23(10):1949-1957.
    [136]Perianez R. Chemical and oil spill rapid response modelling in the strait of Gibraltar-Alboran Sea [J]. Ecological Modelling.2007,207(2-4):210-222.
    [137]Ors H. A stochastic approach to the modeling of the oil pollution [J]. Energy Sources.2005,27(4): 387-392.
    [138]Ors H Y S. A stochastic approach to modeling of oil pollution [J]. Energy Sources.2004,26(9): 879-884.
    [139]Ors H. A stochastic approach to the modeling of the oil pollution:part Ⅲ [J]. Energy Sources.2005, 27(4):393-397.
    [140]Di Martino B, Peybernes M. Simulation of an oil slick movement using a shallow water model [J]. Mathematics and Computers in Simulation.2007,76(1-3):155-160.
    [141]Caballero A, Espino M, Sagarminaga Y, et al. Simulating the migration of drifters deployed in the bay of Biscay, during the Prestige crisis [J]. Marine Pollution Bulletin.2008,56(3):475-482.
    [142]Gonzalez M, Ferrer L, Uriarte A, et al. Operational oceanography system applied to the Prestige oil-spillage event [J]. Journal of Marine Systems.2008,72(1-4):178-188.
    [143]Li Y, Brimicombe A J, Ralphs M P. Spatial data quality and sensitivity analysis in GIS and environmental modelling:the case of coastal oil spills [J]. Computers, Environment and Urban Systems.2000,24(2):95-108.
    [144]Reed M, Johansen O, Brandvik P J, et al. Oil spill modeling towards the close of the 20th century: overview of the state of the art [J]. Spill Science & Technology Bulletin.1999,5(1):3-16.
    [145]Perianez R, Pascual-Granged A. Modelling surface radioactive, chemical and oil spills in the strait of Gibraltar [J]. Computers and Geosciences.2008,34(2):163-180.
    [146]Shen H T, Yapa P D, Petroski M E. Simulation of oil slick transport in great lakes connecting channels [R]. Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY,1986.
    [147]Wang S D, Shen Y M, Zheng Y H. Two-dimensional numerical simulation for transport and fate of oil spills in seas [J]. Ocean Engineering.2005,32(13):1556-1571.
    [148]Wang S D, Shen Y M, Guo Y K, et al. Three-dimensional numerical simulation for transport of oil spills in seas [J]. Ocean Engineering.2008,35(5-6):503-510.
    [149]Chen C S, Huang H S, Beardsley R C, et al. A finite volume numerical approach for coastal ocean circulation studies:Comparisons with finite difference models [J]. Journal of Geophysical Research. 2007,112:C03018.
    [150]Ikeda S, Adachi N. A dynamic water quality model of Lake Biwa-a simulation study of the Lake eutrophication [J]. Ecological Modelling.1978,4(2-3):151-172.
    [151]Gunduz O, Soyupak S, Yurteri C. Development of water quality management strategies for the proposed Isikli reservoir [J]. Water Science and Technology.1998,37(2):369-376.
    [152]Wang P F, Martin J, Morrison G. Water quality and eutrophication in Tampa Bay, Florida [J]. Estuarine, Coastal and Shelf Science.1999,49(1):1-20.
    [153]Straskraba M. Ecotechnological models for reservoir water quality management [J]. Ecological Modelling.1994,74(1-2):1-38.
    [154]Jayaweera M, Asaeda T. Impacts of environmental scenarios on chlorophyll-a in the management of shallow, eutrophic lakes following biomanipulation:an application of a numerical model [J]. Ecological Engineering.1995,5(4):445-468.
    [155]Drolc A, Koncan J Z. Water quality modelling of the river Sava, Slovenia [J]. Water Research.1996, 30(11):2587-2592.
    [156]Hamilton D P, Schladow S G. Prediction of water quality in lakes and reservoirs. Part Ⅰ-model description [J]. Ecological Modelling.1997,96(1-3):91-110.
    [157]Schladow S G, Hamilton D P. Prediction of water quality in lakes and reservoirs:part Ⅱ-model calibration, sensitivity analysis and application [J]. Ecological Modelling.1997,96(1-3):111-123.
    [158]Gal G, Imberger J, Zohary T, et al. Simulating the thermal dynamics of Lake Kinneret [J]. Ecological Modelling.2003,162(1-2):69-86.
    [159]Rajar R, Cetina M. Hydrodynamic and water quality modelling:an experience [J]. Ecological Modelling.1997,101(2-3):195-207.
    [160]Priyantha D G N, Asaeda T, Saitoh S, et al. Modelling effects of curtain method on algal blooming in reservoirs [J]. Ecological Modelling.1997,98(2-3):89-104.
    [161]Tufford D L, Mckellar H N. Spatial and temporal hydrodynamic and water quality modeling analysis of a large reservoir on the south Carolina (USA) coastal plain [J]. Ecological Modelling.1999, 114(2-3):137-173.
    [162]Kellershohn D A, Tsanis I K.3D eutrophication modeling of Hamilton harbour:analysis of remedial options [J]. Journal of Great Lakes Research.1999,25(1):3-25.
    [163]Hernandez P, Ambrose R B, Prats D, et al. Modeling eutrophication kinetics in reservoir microcosms [J]. Water Research.1997,31(10):2511-2519.
    [164]Wool T A, Davie S R. Rodriguez H N. Development of three-dimensional hydrodynamic and water quality models to support total maximum daily load decision process for the Neuse river estuary, North Carolina [J]. Journal of Water Resources Planning and Management-ASCE.2003,129(4): 295-306.
    [165]Jia H, Cheng S. Spatial and dynamic simulation for Miyun reservoir waters in Beijing [J]. Water Science and Technology.2002,46(11-12):473-479.
    [166]Hu W P, Salomonsen J, Xu F L, et al. A model for the effects of water hyacinths on water quality in an experiment of physico-biological engineering in Lake Taihu, China [J]. Ecological Modelling. 1998,107(2-3):171-188.
    [167]Omlin M, Reichert P, Forster R. Biogeochemical model of Lake Zurich:model equations and results [J]. Ecological Modelling.2001,141(1-3):77-103.
    [168]Karim M R, Sekine M, Ukita M. Simulation of eutrophication and associated occurrence of hypoxic and anoxic condition in a coastal bay in Japan [J]. Marine Pollution Bulletin.2002,45(1-12): 280-285.
    [169]Kuo J T, Liu W C, Lin R T, et al. Water quality modeling for the Feitsui reservoir in northern Taiwan [J]. Journal of the American Water Resources Association.2003,39(3):671-687.
    [170]Imteaz M A, Asaeda T, Lockington D A. Modelling the effects of inflow parameters on lake water quality [J]. Environmental Modeling and Assessment.2003,8(2):63-70.
    [171]Rauch W, Henze M, Koncsos L, et al. River water quality modelling:Ⅰ. State of the art [J]. Water Science and Technology.1998,38(11):237-244.
    [172]Shanahan P, Henze M, Koncsos L, et al. River water quality modelling:Ⅱ. Problems of the art [J]. Water Science and Technology.1998,38(11):245-252.
    [173]Somlyody L, Henze M, Koncsos L, et al. River water quality modelling:Ⅲ. Future of the art [J]. Water Science and Technology.1998,38(11):253-260.
    [174]Deleersnijder E, Delhez E. Timescale-and tracer-based methods for understanding the results of complex marine models [J]. Estuarine, Coastal and Shelf Science.2007,74(4):V-VII.
    [175]Delhez E J M, Campin J, Hirst A C, et al. Toward a general theory of the age in ocean modelling [J]. Ocean Modelling.1999,1(1):17-27.
    [176]Huang W R, Liu X H, Chen X J, et al. Estimating river flow effects on water ages by hydrodynamic modeling in Little Manatee River estuary, Florida, USA [J]. Environmental Fluid Mechanics.2010, 10(1-2):197-211.
    [177]Huang W R, Spaulding M. Modelling residence-time response to freshwater input in Apalachicola Bay, Florida, USA [J]. Hydrological Processes.2002,16(15):3051-3064.
    [178]Shen J, Haas L. Calculating age and residence time in the tidal York River using three-dimensional model experiments [J]. Estuarine, Coastal and Shelf Science.2004,61(3):449-461.
    [179]Shen J, Wang H V. Determining the age of water and long-term transport timescale of the Chesapeake Bay [J]. Estuarine, Coastal and Shelf Science.2007,74(4):585-598.
    [180]Ribbe J, Wolff J O, Staneva J, et al. Assessing water renewal time scales for marine environments from three-dimensional modelling:A case study for Hervey Bay, Australia [J]. Environmental Modelling & Software.2008,23(10-11):1217-1228.
    [181]Orfila A, Jordi A, Basterretxea G, et al. Residence time and posidonia oceanica in Cabrera Archipelago national park, Spain [J]. Continental Shelf Research.2005,25(11):1339-1352.
    [182]Rueda F, Moreno-Ostos E, Armengol J. The residence time of river water in reservoirs [J]. Ecological Modelling.2006,191(2):260-274.
    [183]Wang C F, Hsu M H, Kuo A Y. Residence time of the Danshuei river estuary, Taiwan [J]. Estuarine, Coastal and Shelf Science.2004,60(3):381-393.
    [184]Ulses C, Grenz C, Marsaleix P, et al. Circulation in a semi-enclosed bay under influence of strong freshwater input [J]. Journal of Marine Systems.2005,56(1-2):113-132.
    [185]Jouon A, Douillet P, Ouillon S, et al. Calculations of hydrodynamic time parameters in a semi-opened coastal zone using a 3D hydrodynamic model [J]. Continental Shelf Research.2006, 26(12-13):1395-1415.
    [186]Arega F, Armstrong S, Badr A W. Modeling of residence time in the east Scott Creek estuary, south Carolina, USA [J]. Journal of Hydro-Environment Research.2008,2(2):99-108.
    [187]Ribbe J, Wolff J O, Staneva J, et al. Assessing water renewal time scales for marine environments from three-dimensional modelling:a case study for Hervey Bay, Australia [J]. Environmental Modelling & Software.2008,23(10-11):1217-1228.
    [188]Meyers S D, Luther M E. A numerical simulation of residual circulation in Tampa Bay. Part Ⅱ: Lagrangian residence time [J]. Estuaries and Coasts.2008,31(5):815-827.
    [189]Cucco A, Umgiesser G, Ferrarin C, et al. Eulerian and Lagrangian transport time scales of a tidal active coastal basin [J]. Ecological Modelling.2009,220(7):913-922.
    [190]Arega F, Badr A W. Numerical age and residence-time mapping for a small tidal creek:case study [J]. Journal of Waterway Port Coastal and Ocean Engineering-ASCE.2010,136(4):226-237.
    [191]Huang W R, Liu X H, Chen X J, et al. Estimating river flow effects on water ages by hydrodynamic modeling in Little Manatee River estuary, Florida, USA [J]. Environmental Fluid Mechanics.2010, 10(1-2):197-211.
    [192]Shen J, Lin J. Modeling study of the influences of tide and stratification on age of water in the tidal James river [J]. Estuarine, Coastal and Shelf Science.2006,68(1-2):101-112.
    [193]Shen J, Wang H V. Determining the age of water and long-term transport timescale of the Chesapeake Bay [J]. Estuarine, Coastal and Shelf Science.2007,74(4):585-598.
    [194]Shen J, Haas L. Calculating age and residence time in the tidal York River using three-dimensional model experiments [J]. Estuarine, Coastal and Shelf Science.2004,61(3):449-461.
    [195]Gong W P, Shen J, Hong B. The influence of wind on the water age in the tidal Rappahannock river [J]. Marine Environmental Research.2009,68(4):203-216.
    [196]Wang Y, Shen J A, He Q. A numerical model study of the transport timescale and change of estuarine circulation due to waterway constructions in the Changjiang estuary, China [J]. Journal of Marine Systems.2010,82(3):154-170.
    [197]Doos K, Engqvist A. Assessment of water exchange between a discharge region and the open sea-a comparison of different methodological concepts [J]. Estuarine, Coastal and Shelf Science.2007, 74(4):709-721.
    [198]Warner J C, Geyer W R, Arango H G. Using a composite grid approach in a complex coastal domain to estimate estuarine residence time [J]. Computers & Geosciences.2010,36(7):921-935.
    [199]Gourgue O, Deleersnijder E, White L. Toward a generic method for studying water renewal, with application to the epilimnion of Lake Tanganyika [J]. Estuarine, Coastal and Shelf Science.2007, 74(4):628-640.
    [200]Liu W C, Chen W B, Kuo J T. Modeling residence time response to freshwater discharge in a mesotidal estuary, Taiwan [J]. Journal of Marine Systems.2008,74(1-2):295-314.
    [201]Bricelj V M, Lonsdale D J. Aureococcus anophagefferens:Causes and ecological consequences of brown tides in US mid-Atlantic coastal waters [J]. Limnology and Oceanography.1997,42(5): 1023-1038.
    [202]Chen C S, Qi J H, Li C Y, et al. Complexity of the flooding/drying process in an estuarine tidal-creek salt-marsh system:An application of FVCOM [J]. Journal of Geophysical Research.2008,113: C07052.
    [203]Guo Y K, Zhang J S, Zhang L X, et al. Computational investigation of typhoon-induced storm surge in Hangzhou Bay, China [J]. Estuarine, Coastal and Shelf Science.2009,85(4):530-536.
    [204]Shen Y M, Wang J H, Zheng B H, et al. Modeling study of residence time and water age in Dahuofang Reservoir in China [J]. Science in China Series G-Physics Mechanics & Astronomy. 2011,54(1):127-142.
    [205]Shore J A. Modelling the circulation and exchange of Kingston Basin and Lake Ontario with FVCOM [J]. Ocean Modelling.2009,30(2-3):106-114.
    [206]Wang J H, Shen Y M. Modeling oil spills transportation in seas based on unstructured grid, finite-volume, wave-ocean model [J]. Ocean Modelling.2010,35(4):332-344.
    [207]Wang J H, Shen Y M, Guo Y K. Seasonal circulation and influence factors of the Bohai Sea:a numerical study based on Lagrangian particle tracking method [J]. Ocean Dynamics.2010,60: 1581-1596.
    [208]Yang Z Q, Sobocinski K L, Heatwole D, et al. Hydrodynamic and ecological assessment of nearshore restoration:A modeling study [J]. Ecological Modelling.2010,221(7):1043-1053.
    [209]Wang J H, Shen Y M. Development of an integrated model system to simulate transport and fate of oil spills in seas [J]. Science in China Series E-Technological Sciences.2010,53(9):2423-2434.
    [210]Mellor G L. The three-dimensional current and surface wave equations [J]. Journal of Physical Oceanography.2003,33(9):1978-1989.
    [211]Mellor G L. Some consequences of the three-dimensional current and surface wave equations [J]. Journal of Physical Oceanography.2005,35(11):2291-2298.
    [212]Mei C C. The applied dynamics of ocean surface waves [M]. New York:Wiley,1983.
    [213]Donelan M A, Hamilton J, Hui W H. Directional spectra of wind-generated waves [J]. Philosophical Transactions of the Royal Society of London. Series A.1985,315(1534):509-562.
    [214]Hwang P A, Wang D W. Field measurements of duration-limited growth of wind-generated ocean surface waves at young stage of development [J]. Journal of Physical Oceanography.2004,34(10): 2316-2326.
    [215]Donelan M A, Skafel M, Graber H, et al. On the growth rate of wind-generated waves [J]. Atmosphere-Ocean.1992,30:457-478.
    [216]Donelan M A. Wind-Induced growth and attenuation of laboratory waves [M]//Sajjadi S G, Thomas N H, Hunt J C R. Wind-Over-Wave Couplings. Salford, UK:Oxford University Press,1999, 183-194.
    [217]Terray E A, Donelan M A, Agrawal Y C, et al. Estimates of kinetic energy dissipation under breaking waves [J]. Journal of Physical Oceanography.1996,26(5):792-807.
    [218]Craig P D, Banner M L. Modeling wave-enhanced turbulence in the ocean surface layer [J]. Journal of Physical Oceanography.1994,24(12):2546-2559.
    [219]Stacey M W. Simulation of the wind-forced near-surface circulation in Knight inlet:a parameterization of the roughness length [J]. Journal of Physical Oceanography.1999,29(6): 1363-1367.
    [220]Battjes J A, Janssen J. Energy loss and set-up due to breaking of random waves [C]. Proceedings of the 16th International Conference of Coastal, Hamburg, Germany:New York, NY:ASCE,1978, 569-587.
    [221]Szymkiewicz R. Oscillation-free solution of shallow water equations for nonstaggered grid [J]. Journal of Hydraulic Engineering-ASCE.1993,119(10):1118-1137.
    [222]Kobayashi M H, Pereira J M, Pereira J C. A conservative finite-volume second-order-accurate projection method on hybrid unstructured grids [J]. Journal of Computational Physics.1999,150(1): 40-75.
    [223]Wu L, Bogy D B. Use of an upwind finite volume method to solve the air bearing problem of hard disk drives [J]. Computational Mechanics.2000,26(6):592-600.
    [224]Smolarkiewicz P K. A fully multidimensional positive definite advection transport algorithm with small implicit diffusion [J]. Journal of Computational Physics.1984,54(2):325-362.
    [225]Karypis G, Kumar V. Metis-a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices-version 4.0 [R]. University of Minnesota,1998.
    [226]Kitaigorodskii S A. Applications of the theory of similarity to the analysis of wind-generated wave motion as a stochastic process [J]. Bull Acad Sci USSR Geophys Ser.1962,1:105-117.
    [227]Komen G J, Cavaleri L, Donelan M, et al. Dynamics and modelling of ocean waves [M]. New York: Cambridge University Press,1996.
    [228]Kahma K K, Calkoen C J. Reconciling discrepancies in the observed growth of wind-generated waves [J]. Journal of Physical Oceanography.1992,22(12):1389-1405.
    [229]Pierson W J, Moskowitz L. Proposed spectral form for fully developed wind seas based on similarity theory of S. A. Kitaigorodskii [J]. Journal of Geophysical Research.1964,69(24):5181-5190.
    [230]Young I R, Verhagen L A. The growth of fetch limited waves in water of finite depth.1. Total energy and peak frequency [J]. Coastal Engineering.1996,29(1-2):47-78.
    [231]Young I R, Verhagen L A. The growth of fetch limited waves in water of finite depth.2. Spectral evolution [J]. Coastal Engineering.1996,29(1-2):79-99.
    [232]Smith W, Sandwell D T. Global sea floor topography from satellite altimetry and ship depth soundings [J]. Science.1997,277(5334):1956-1962.
    [233]Powell M D, Houston S H, Amat L R, et al. The HRD real-time hurricane wind analysis system [J]. Journal of Wind Engineering and Industrial Aerodynamics.1998,77-78:53-64.
    [234]Chin T M, Milliff R F, Large W G. Basin-scale, high-wavenumber sea surface wind fields from a multiresolution analysis of scatterometer data [J]. Journal of Atmospheric and Oceanic Technology. 1998,15(3):741-763.
    [235]Mellor G L, Yamada T. Development of a turbulence closure model for geophysical fluid problems [J]. Reviews of Geophysics and Space Physics.1982,20(4):851-875.
    [236]Chen C S, Qi J H, Li C Y, et al. Complexity of the flooding/drying process in an estuarine tidal-Creek salt-marsh system:an application of FVCOM [J]. Journal of Geophysical Research.2008, 113:C07052.
    [237]Chen C S, Xue P F, Ding P X, et al. Physical mechanisms for the offshore detachment of the Changjiang diluted water in the East China Sea [J]. Journal of Geophysical Research.2008,113: C02002.
    [238]Chen C S, Gao G P, Qi J H, et al. A new high-resolution unstructured grid finite volume Arctic ocean model (AO-FVCOM):an application for tidal studies [J]. Journal of Geophysical Research.2009, 114:C08017.
    [239]Huang H, Chen C, Blanton J O, et al. A numerical study of tidal asymmetry in Okatee Creek, South Carolina [J]. Estuarine, Coastal and Shelf Science.2008,78(1):190-202.
    [240]Ji R, Chen C, Franks P J, et al. The impact of scotian shelf water "cross-over" on the plankton dynamics on Georges bank:a 3-D experiment for the 1999 spring bloom [J]. Deep-Sea Research Part Ⅱ.2006,53(23-24):2684-2707.
    [241]Ji R, Davis C, Chen C, et al. Influence of local and external processes on the annual nitrogen cycle and primary productivity on Georges bank:a 3-d biological-physical modeling study [J]. Journal of Marine Systems.2008,73(1-2):31-47.
    [242]Shore J A. Modelling the circulation and exchange of Kingston basin and Lake Ontario with FVCOM [J]. Ocean Modelling.2009,30(2-3):106-114.
    [243]Xue P, Chen C, Ding P, et al. Saltwater intrusion into the Changjiang river:a model-guided mechanism study [J]. Journal of Geophysical Research.2009,114:C02006.
    [244]Zhao L Z, Chen C S, Cowles G. Tidal flushing and eddy shedding in mount hope bay and narragansett Bay:an application of FVCOM [J]. Journal of Geophysical Research.2006,111: C10015.
    [245]Chen C S, Beardsley R C, Cowles G. An unstructured grid, finite-volume coastal ocean model: FVCOM user manual [R]. University of Massachusetts, School of marine Science and Technology, New Bedford,2006.
    [246]Oey L Y, Ezer T, Wang D P, et al. Loop current warming by hurricane Wilma [J]. Geophysical Research Letters.2006,33:L08613.
    [247]Feddersen F, Guza R T, Elgar S, et al. Alongshore momentum balances in the nearshore [J]. Journal of Geophysical Research.1998,103(C8):15667-15676.
    [248]Rosales P, Ocampo-Torres F J, Osuna P, et al. Wave-current interaction in coastal waters:effects on the bottom-shear stress [J]. Journal of Marine Systems.2008,71(1-2):131-148.
    [249]Ting F C K, Kirby J T. Observation of undertow and turbulence in a laboratory surf zone [J]. Coastal Engineering.1994,24(1-2):51-80.
    [250]Rakha K A. A quasi-3d phase-resolving hydrodynamic and sediment transport model [J]. Coastal Engineering.1998,34(3-4):277-311.
    [251]Wu X Z, Zhang Q H. A three-dimensional nearshore hydrodynamic model with depth-dependent radiation stresses [J]. China Ocean Engineering.2009,23(2):291-302.
    [252]Newberger P A, Allen J S. Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone:2. Application to DUCK94 [J]. Journal of Geophysical Research.2007, 112:C08019.
    [253]Levitus S, Boyer T P. World ocean atlas 1994, volume 4:Temperature [M]. Washington, DC:NOAA Atlas NESDIS 4, U.S. Department of Commerce,1994.
    [254]Levitus S, Burgett R, Boyer T P. World ocean atlas 1994, volume 3:Salinity [M]. Washington, DC: NOAA Atlas NESDIS 3, U.S. Department of Commerce,1994.
    [255]Onogi K, Tslttsui J, Koide H, et al. The JRA-25 reanalysis [J]. Journal of the Meteorological Society of Japan.2007,85(3):369-432.
    [256]Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides [J]. Journal of Atmospheric and Oceanic Technology.2002,19(2):183-204.
    [257]Oey L Y, Lee H C. Deep eddy energy and topographic rossby waves in the gulf of Mexico [J]. Journal of Physical Oceanography.2002,32(12):3499-3527.
    [258]Sheng Y P, Alymov V, Paramygin V A. Simulation of storm surge, wave, currents, and inundation in the outer banks and Chesapeake Bay during hurricane Isabel in 2003:the importance of waves [J]. Journal of Geophysical Research.2010,115:C04008.
    [259]Kim S Y, Yasuda T, Mase H. Wave set-up in the storm surge along open coasts during typhoon Anita [J]. Coastal Engineering.2010,57(7):631-642.
    [260]Galperin B, Kantha L H, Hassid S, et al. A quasi-equilibrium turbulent energy model for geophysical flows [J]. Journal of the Atmospheric Sciences.1988,45(1):55-62.
    [261]Smagorinsky J. General circulation experiments with the primitive equations. Ⅰ. The basic experiment [J]. Monthly Weather Review.1963,91(3):99-164.
    [262]戴仕宝,杨世伦,郜昂,等.近50年来中国主要河流入海泥沙变化[J].泥沙研究.2007(2):49-58.
    [263]Ahsan A K, Blumberg A F. Three-dimensional hydrothermal model of Onondaga Lake, New York [J]. Journal of Hydraulic Engineering-ASCE.1999,125(9):912-923.
    [264]Qiao L L, Bao X W, Wu D X. The observed currents in summer in the Bohai Sea [J]. Chinese Journal of Oceanology and Limnology.2008,26(2):130-136.
    [265]海洋图集编委会.渤海,黄海,东海海洋图集(水文)[M].北京:海洋出版社,1992.
    [266]Li G S, Wang H L, Li B L. A model study on seasonal spatial-temporal variability of the Lagrangian residual circulations in the Bohai Sea [J]. Journal of Geographical Sciences.2005,15(03):273-285.
    [267]Li G S, Wang H L, Dong C. Numerical simulations on transportation and deposition of spm introduced from the Yellow river to the Bohai Sea [J]. Acta Geographica Sinica.2005,60(5): 707-716.
    [268]Zhang B, Zhang C Z, Ozer J. Surf-a simulation model for the behavior of oil slicks at sea [C]. In Proceedings of the OPERA Workshop, Dalian, China:1991.
    [269]Fischer H B, List E J, Koh R, et al. Mixing in inland and coastal waters [M]. New York, NY: Academic Press,1979.
    [270]Tkalich P, Chan E S. Vertical mixing of oil droplets by breaking waves [J]. Marine Pollution Bulletin. 2002,44(11):1219-1229.
    [271]Delvigne G, Sweeney C E. Natural dispersion of oil [J]. Oil and Chemical Pollution.1988,4(4): 281-310.
    [272]Herzfeld M. The role of numerical implementation on open boundary behaviour in limited area ocean models [J]. Ocean Modelling.2009,27(1-2):18-32.
    [273]Lamb H. Hydrodynamics [M]. New York:Dover publications,1945.
    [274]Birchfield G E. Response of a circular model great lake to a suddenly imposed wind stress [J]. Journal of Geophysical Research.1969,74(23):5547-5554.
    [275]Csanady G T. Motions in a model great lake due to a suddenly imposed wind [J]. Journal of Geophysical Research.1968,73(20):6435-6447.
    [276]Thorpe S A. On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air-sea gas transfer [J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.1982,304(1483):155-210.
    [277]Romero J R, Antenucci J P, Imberger J. One-and three-dimensional biogeochemical simulations of two differing reservoirs [J]. Ecological Modelling.2004,174(1-2):143-160.
    [278]Ambrose Jr R B, Wool T A, Martin J L. The water quality analysis simulation program, WASP5. Part a:model documentation [R]. US Environmental Protection Agency, Office of Research and Development,1993.
    [279]Monod J. The growth of bacterial cultures [J]. Annual Review of Microbiology.1949,3(1):371-394.
    [280]Di Toro D M, O'Connor D J, Thomann R V. A dynamic model of the phytoplankton population in the Sacramento-San Joaquin Delta [J]. Advances in Chemistry Series.1971,106:131-180.
    [281]Kim T, Labiosa R G, Khangaonkar T, et al. Development and evaluation of a coupled hydrodynamic (FVCOM) and water quality model (CE-QUAL-ICM) [C]. In Estuarine and Coastal Modeling Conference, Seattle, Washington:ASCE,2009.
    [282]Castellano L, Ambrosetti W, Barbanti L, et al. The residence time of the water in Lago Maggiore (N. Italy):first results from an Eulerian-Lagrangian approach [J]. Journal of Limnology.2010,69(1): 15-28.
    [283]Bolin B, Rodhe H. A note on the concepts of age distribution and transit time in natural reservoirs [J]. Tellus.1973,25(1):58-62.
    [284]Monsen N E, Cloern J E, Lucas L V, et al. A comment on the use of flushing time, residence time, and age as transport time scales [J]. Limnology and Oceanography.2002,47(5):1545-1553.
    [285]Arega F, Armstrong S, Badr A W. Modeling of residence time in the East Scott Creek Estuary, South Carolina, USA [J]. Journal of Hydro-Environment Research.2008,2(2):99-108.
    [286]Delhez E J M, Campin J, Hirst A C, et al. Toward a general theory of the age in ocean modelling [J]. Ocean Modelling.1999,1(1):17-27.
    [287]Gong W P, Shen J, Hong B. The influence of wind on the water age in the tidal Rappahannock River [J]. Marine Environmental Research.2009,68(4):203-216.
    [288]Zhang W, Wilkin J L, Schofield O. Simulation of water age and residence time in New York Bight [J]. Journal of Physical Oceanography.2010,40(5):965-982.
    [289]Wang C F, Hsu M H, Kuo A Y. Residence time of the Danshuei River estuary, Taiwan [J]. Estuarine, Coastal and Shelf Science.2004,60(3):381-393.
    [290]Zimmerman J. Mixing and flushing of tidal embayments in western Dutch Wadden Sea, part Ⅱ. Analysis of mixing processes [J]. Netherlands Journal of Sea Research.1976,10(4):397-439.
    [291]Takeoka H. Fundamental-concepts of exchange and transport time scales in a coastal sea [J]. Continental Shelf Research.1984,3(3):311-326.
    [292]Yuan D, Lin B, Falconer R A. A modelling study of residence time in a macro-tidal estuary [J]. Estuarine, Coastal and Shelf Science.2007,71(3-4):401-411.
    [293]Deleersnijder E, Campin J M, Delhez E. The concept of age in marine modelling I. Theory and preliminary model results [J]. Journal of Marine Systems.2001,28(3-4):229-267.
    [294]Shen Y M, Zhen Y H, Wu X G. A three-dimensional numerical simulation of hydrodynamics and water quality in coastal areas [J]. Progress in Natural Science.2004,14(6):694-699.
    [295]Zheng L Y, Chen C S, Zhang F Y. Development of water quality model in the Satilla river estuary, Georgia [J]. Ecological Modelling.2004,178(3-4):457-482.
    [296]Yassuda E A, Davie S R, Mendelsohn D L, et al. Development of a waste load allocation model for the Charleston harbor estuary, phase Ⅱ:water quality [J]. Estuarine, Coastal and Shelf Science.2000, 50(1):99-107.
    [297]Delhez E J M, Heemink A W, Deleersnijder E. Residence time in a semi-enclosed domain from the solution of an adjoint problem [J]. Estuarine, Coastal and Shelf Science.2004,61(4):691-702.
    [298]Liu W, Chen W, Cheng R T, et al. Modeling the influence of river discharge on salt intrusion and residual circulation in Danshuei river estuary, Taiwan [J]. Continental Shelf Research.2007,27(7): 900-921.
    [299]Shen J, Lin J. Modeling study of the influences of tide and stratification on age of water in the tidal James River [J]. Estuarine, Coastal and Shelf Science.2006,68(1-2):101-112.
    [300]Gameiro C, Cartaxana P, Cabrita M T, et al. Variability in chlorophyll and phytoplankton composition in an estuarine system [J]. Hydrobiologia.2004,525(1-3):113-124.
    [301]Lopes J F, Silva C. Temporal and spatial distribution of dissolved oxygen in the Ria De Aveiro lagoon [J]. Ecological Modelling.2006,197(1-2):67-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700