用户名: 密码: 验证码:
缺失突变型IκBα对白血病HL-60细胞凋亡和分化的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核因子κB(NF-κB)是细胞核内一种非常重要的转录因子,在许多肿瘤细胞中均存在其异常活化。活化后的NF-κB,不仅可以调节细胞生长和增殖相关基因的表达,更重要的是,它还可上调细胞凋亡抗性分子基因的表达,从而使肿瘤细胞逃避细胞凋亡,成为肿瘤细胞生存的关键因素之一。由于在包括各种类型的急性髓系白血病(AML)原代细胞,白血病干细胞(LSC)以及白血病细胞株如HL-60细胞等在内的多种类型的AML白血病细胞也存在持续活化的NF-κB。因此,NF-κB的异常活化被认为可能参与AML的发生与发展,这也意味着NF-κB很可能是靶向治疗AML的一个潜在性靶分子。
     NF-κB的活化受到多种因素的调控,其中,IκBα是NF-κB活化调控的一种主要抑制蛋白。通常情况下,IκBα与NF-κB结合而使后者以无活性的形式位于细胞浆中。当细胞受到刺激后,IκBα分子第32位和第36位的丝氨酸被其激酶IKK复合物磷酸化,磷酸化后的IκBα又快速发生泛蛋白化。随后,IκBα被蛋白酶体降解,而NF-κB则与IκBα解离并曝露出其细胞核定位信号,从而进入细胞核,成为活化的NF-κB。很显然,IκBα磷酸化和降解是NF-κB活化调节的关键步骤。因此,抑制IκBα的磷酸化和降解就有可能抑制NF-κB的活化,从而影响其生物学功能。例如,用各种突变型的IκBα(mIκBα)能够抑制多种实体瘤细胞和白血病细胞NF-κB的活化并可引起细胞凋亡;用蛋白酶体抑制剂如MG-132可抑制AML患者LSC内NF-κB的活化并引起细胞凋亡。然而,与其它蛋白酶体抑制剂一样,MG-132也并非为直接作用于NF-κB的特异性抑制物。而且,高浓度或较长时间(24小时以上)的使用MG-132对正常CD34~+细胞还具有毒性作用。显然,使用蛋白酶体抑制剂来抑制NF-κB的活化并非为最佳的方法。另外,尽管已有通过应用mIκBα来抑制白血病细胞内NF-κB活化的研究报道。但是,在那些为数不多的几个实验中,通常采用的都是以腺病毒(Ad)5为基础构建的Ad载体(AdVec)系统感染而转移第32位和第36位丝氨基酸被非磷酸化丙氨酸替代的mIκBα到靶细胞的方法。然而,有研究发现,除了第32位和第36位丝氨酸外,IκBα分子其它部位氨基酸的磷酸化如第42位酪氨酸磷酸化也与NF-κB的活化有关。更重要的是,通过Ad5为基础的AdVec系统感染转移基因到造血早期细胞如造血干/祖细胞和白血病原始细胞可能比较困难。例如,有研究显示,骨髓细胞以及一些恶性髓系细胞株对Ad5为基础的Ad感染无反应。因此,为克服这些不足之处,非常必要寻找其他的方法。
     鉴于目前的研究现状,本研究采用一种新型嵌合腺病毒载体系统即Ad5F35 AdVec系统感染的方法将缺失mIκ3αcDNA转移到HL-60细胞以探讨该mIκBα对HL-60细胞凋亡和分化的影响及其作用的可能机制。
     首先,通过逆转录-聚合酶链式反应(RT-PCR)技术,本研究从高表达IκBαmRNA的鼻咽癌细胞株CNE2细胞内扩增编码缺失了IκBα分子氨基端包括NF-κB活化所需要的磷酸化位点在内的第1~第70个氨基酸序列的mIκBαcDNA即IκBαDN cDNA。然后,经限制性核酸内切酶消化、电泳回收和体外连接并通过中间载体pCR-Script~(TM) SK(+)将IκBαDN cDNA分别克隆到真核生物表达载体pcDNA3.1(+)、逆转录病毒载体pCLXSN以及腺病毒穿梭载体pDC316内。结果显示,通过RT-PCR技术,从CNE2鼻咽癌细胞成功扩增到IκBαDN cDNA并将其分别重组到pcDNA3.1(+)、pCLXSN和pDC316载体,从而构建到重组pcDNA-IκBαDN、pCLX-IκBαDN和pDC-IκBαDN载体。DNA序列测定结果进一步证实,重组pcDNA-IκBαDN、pCLX-IκBαDN以及pDC-IκBαDN载体携带有未发生任何额外突变的IκBαDN cDNA并且其阅读框架正确。
     在构建好上述含有IκBαDN cDNA各种重组载体后,本实验进一步制备了携带有IκBαDN cDNA的重组Ad5F35 AdVec系统即Ad5F35-IκBαDN Ad。为有效转移IκBαDN cDNA进入HL-60细胞,首先探讨了重组Ad5F35 AdVec系统感染HL-60细胞的最佳条件。在此基础上,将重组Ad5F35-IκBαDN AdVec系统感染HL-60细胞并通过流式细胞术,NF-κB DNA结合活性实验、Western印迹和实时定量PCR技术分别分析其对HL-60细胞凋亡和分化的影响以及转染后HL-60细胞NF-κB活性,IκBα、细胞凋亡抑制蛋白-2(cIAP-2)和X连锁的凋亡抑制蛋白(x-IAP)mRNA的表达。结果显示,重组Ad5F35-IκBαDN AdVec系统感染HL-60细胞48小时后,Annexin V~+/PI~-以及Annexin V~+/PI~+细胞数为(22.53±2.999)%,而未转染的HL-60细胞其Annexin V~+/PI~-以及Annexin V~+/PI~+细胞数为(4.86±1.366)%,转染重组Ad5F35-EGFP AdVec的HL-60细胞其Annexin V~+/PI~-以及Annexin V~+/PI~+细胞数平均为(6.08±2.464)%。经统计学学分析,转染重组Ad5F35-IκBαDN AdVec的HL-60细胞与未转染的HL-60细胞以及与转染重组Ad5F35-EGFP AdVec的HL-60细胞其Annexin V~+/PI~-和Annexin V~+/PI~+细胞数具有显著差异,P值分别是P<0.001和0.001<P<0.002。但是,未转染的HL-60细胞与转染重组Ad5F35-EGFP AdVec的HL-60细胞其Annexin V~+/PI~-以及Annexin V~+/PI~+细胞数无统计学差异(0.2<P<0.5)。然而,Ad5F35-IκBαDN AdVec系统感染HL-60细胞48小时后,表达CD11b和CD14的阳性细胞数极低,与未转染和转染重组Ad5F35-EGFPAdVec的HL-60细胞几乎相同。同时,NF-κB DNA结合活性分析结果显示,感染重组Ad5F35-IκBαDN AdVec系统的HL-60细胞平均NF-κB DNA结合活性为0.14活性单位,而未转染或转染重组Ad5F35-EGFP AdVec的HL-60细胞平均NF-κB DNA结合活性单位分别为0.43和0.35。Western印迹和实时定量RT-PCR结果显示,感染了重组Ad5F35-IκBαDN AdVec系统的HL-60细胞IκBαDN的表达是增加的,其IκBαmRNA的表达水平分别是未转染和转染重组Ad5F35-EGFPAd HL-60细胞的2.51和3.16倍。与此相反,转染了重组Ad5F35-IκBαDN AdVec的HL-60细胞cIAP-2和xIAP mRNA的表达却是降低的,其表达水平分别是未转染和转染重组Ad5F35-EGFPAdVec HL-60细胞的0.49、0.48和0.42、0.45倍。这些结果表明,嵌合的Ad5F35 AdVec能够有效介导IκBαDN cDNA在HL-60细胞高表达,IκBαDN则可明显抑制HL-60细胞NF-κB DNA结合活性并有效诱导其凋亡,但对HL-60细胞向粒细胞和单核细胞方向分化几乎无影响,IκBαDN对HL-60细胞凋亡的诱导作用可能与其抑制cIAP-2和xIAP mRNA的表达有关。
Nuclear factor-κB (NF-κB) is a pivotal nuclear transcription factor,whose abnormal elevations of activity occur in many tumors. Onceactivation, NF-κB not only governs the expression of genes involved inthe cell growth and proliferation. More important, it also upregulatessome anti-apoptosis genes expression, leading to the tumor cells to escapefrom apoptosis. Therefore, NF-κB is thought as one of the key factors ofsurvival for tumor cells. Since a variety of human leukemic cellsincluding primary acute myeloid leukemia (AML) blast cells, leukemicstem cells (LSCs) and cell lines such as HL-60 cell show constitutiveactive NF-κB, NF-κB is suggested to take part in the leukemogenesis, andNF-κB modulation thus may be a plausible therapeutic target for AML.
     NF-κB activation is controlled by many factors, of which the IκBαisone of the main inhibitor of NF-κB activation. Generally, NF-κB issequestered in the cytoplasm in an inactive form through its associationwith IκBα. Upon cellular stimulation with diverse agents, IκBαis rapidlyphosphorylated by IκB kinase (IKK) complex, Phosphorylation of IκBαprotein is then followed by ubiquitination—the covalent attachment ofmultiple ubiquitin molecules, and subsequently IκBαis degraded byproteasome, allowing the release of NF-κB, thus the nuclear localizationsequence of NF-κB is unmasked. This process triggers translocation ofNF-κB from the cytoplasm to the nucleus where it stimulatestranscription of target genes withκB binding site. Obviously, thephosphorylation and degradation of IκBαare the two key stepsresponsible for the regulation of NF-κB activation, inhibition of IκBαphosphorylation and degradation might block the activation of NF-κB,and affect its biologic functions, which has been evidenced by a great ofstudies. For example, NF-κB activation in many solid tumor andleukemic cells was inhibited by a variety of mutant IκBα(mIκBα), and apoptosis was simultaneously induced. In addition, inhibitors ofproteasome such as MG-132, can inhibit the NF-κB activation in LSCssorted from the patients with AML and induce LSCs apoptosis. However,like other inhibitors of proteasome, MG-132 is also not a direct specificinhibitor against NF-κB activation. Furthermore, high concentration orlong incubation (>24 hours), normal CD34~+ cells are eventually impairedby treatment with MG-132. Thus, the using of proteasome inhibitors toinhibit NF-κB activation may be not the best strategy. Although, therewas reported that NF-κB activation was inhibited by mIκBα, and in oneor two of these studies, it was generally to use conventional Ad5-basedadenovirus (Ad)-mediated expression of a modified nondegraded form ofIκBαin which Ser32 and Ser36 are substituted with nonphosphorylatablealanine. However, some studies have demonstrated that amino acids atother sites of IκBαcan also be phosphorylated in addition to thephosphorylations at Ser32 and Ser36 of IκBα, one case showed thattyrosine 42 of IκBαcan be phosphorylated by nonreceptor tyrosinekinases. What is more important is that transferring of gene into earlyhematopoietic cells such as hematopoietic stem/progenitor cells andleukemia blast cells by Ad5-based Ad vectors (AdVec) infection has beengenerally problematic. Indeed, a number of investigators have noted thatbone marrow cells and some malignant myeloid cell lines were refratoryto Ad5-based AdVec infection. To overcome the disadvantages, lookingfor some alternative methods is required.
     In view of current works, in this study, the deleted mIκBαcDNAwas transferred into HL-60 cells by a novel chimeric Ad5F35 AdVecinfection to investigate the effects of the mIκBαon the apoptosis anddifferentiation of HL-60 cells and its possible mechanism.
     Firstly, the mIκBαcDNA, i.e., IκBαDN cDNA, in which the codingsequences of 1~70 NH2-terminal amino acids containing thephosphorylation sites essential for the activation of NF-κB were deleted, was amplified by reverse transcription-polymerase chain reaction(RT-PCR) from CNE2 cell line of nasopharyngeal carcinoma, whose theIκBαmRNA was abundant. Through digesting with restrictionendonuclease enzyme, recovering by electrophoresis, ligating in vitro andthe using of inter-vector of pCR-Script~(TM), the IκBαDN cDNA was thencloned into eukaryotic expression vector of pcDNA3.1(+), or retroviralvector of pCLXSN and pDC316 vector, a shuttle vector for Ad. Theresults indicated that the mutant IκBαcDNA was amplified by RT-PCRfrom CNE2 cells of nasopharyngeal carcinoma and successfully clonedinto the vectors of pcDNA3.1(+), pCLXSN and pDC316 respectively sothat the recombinant vectors of pcDNA-IκBαDN, pCLX-IκBαDN andpDC-IκBαDN were successfully constructed. DNA sequencing resultsfurther showed that the full-length mIκBαcDNA and its normalreading-frame were indeed included, and no any other mutation wasfound in all of the three recombinant vectors of pcDNA-IκBαDN,pCLX-IκBαDN and pDC-IκBαDN.
     After construction of above recombinant vectors carrying IκBαDNcDNA, the chimeric Ad5F35-IκBαDN AdVec was prepared. Toeffectively transfer IκBαDN cDNA into HL-60 cells, experimentalcondition of Ad5F35 AdVec transfection was firstly optimized. On thebasis of this, the Ad5F35-IκBαDN AdVec was then transduced intoHL-60 cells followed by measuring the Annexin V and CD11b and CD14expression as well as NF-κB-DNA binding activity by fluorescenceactivated cell sorting (FACS) or DNA binding experiment. To assess theAd5F35 AdVec-mediated expression of IκBα, Western blot and real-timeRT-PCR analysis was performed. Meanwhile, the expressions of cIAP-2and xIAP mRNA were also analyzed. The results showed that thepercentage of Annexin V~+/PI~- and Annexin V~+/PI~+ HL-60 cells wasrespectively (22.53±2.999)%, (4.86±1.366)% and (6.08±2.464)% inAd5F35-IκBαDN AdVec-infected or uninfected and Ad5F35-EGFP AdVec-infected HL-60 cells after 48 hours transduction, which had asignificant difference between Ad5F35-IκBαDN AdVec-infected anduninfected HL-60 cells (P<0.001) or between Ad5F35-IκBαDNAdVec-infected and Ad5F35-EGFP AdVec-infected HL-60 cellsuninfected (0.001<P<0.002). But, no significant difference in thepercentage of Annexin V~+/PI~- and Annexin V~+/PI~+ HL-60 cells wasexisted between uninfected and Ad5F35-EGFP AdVec-infected HL-60cells(0.2<P<0.5) However, the amount of CD11b- and CD14-expressedpositive cells was a little in Ad5F35-IκBαDN AdVec-infected HL-60cells in 48 hours after transduction, which was equal to that in uninfectedHL-60 cells. Furthermore, NF-κB-DNA binding activity result indicatedthat the average unit of NF-κB-DNA binding activity in Ad5F35-IκBαDN AdVec-infected HL-60 cells, uninfected and Ad5F35-EGFPAdVec-infected HL-60 cells was 0.14, 0.43 and 0.35, respectively.Western blot and real-time RT-PCR results further showed that theexpression of IκBαwas increased with the relative expression level ofIκBαmRNA was 2.51- and 3.16-fold higher then that in uninfected orAd5F35-EGFP AdVec-infected HL-60 cells. In contrast, the relativeabundance of cIAP-2 and xIAP mRNAs was respectively 0.49-, 0.48-,and 0.42-, 0.45-fold lower in HL-60 cells infected with Ad5F35-IκBαDNAdVec compared with that in HL-60 cells uninfected or infected withAd5F35-EGFP AdVec. Taken together these results, we conclude that thechimeric Ad5F35 AdVec can effectively mediate the overexpression oftruncated IκBαin HL-60 cells. Consequentially, NF-κB-DNA bindingactivity was strongly inhibited, and apoptosis was effectively induced.But, the IκBαDN seems not to affect the differentiation of HL-60 cellsinto granulocytes and monocytes, the decreased expression of cIAP-2 andxIAP mRNAs in response to IκBαDN may be involved in IκBαDN-mediated apoptosis.
引文
[1] Han SS, Kim K, Hahm ER, et al. L-ascorbic acid represses constitutive activation of NF-kappaB and COX-2 expression in human acute myeloid leukemia, HL-60. J Cell Biochem, 2004, 93(2): 257~70
    [2] Birkenkamp KU, Geugien M, Schepers H, et al. Constitutive NF-κB DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. Leukemia, 2004, 18(1): 103~112
    [3] Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-kappa B is constitutively activated in primitive human acute myelogenous leukemia cells. Blood, 2001, 98(8): 2301~2307
    [4] Zaninoni A, Imperiali FG, Pasquini C, et al. Cytokine modulation of nuclear factor-κB activity in B-chronic lymphocytic leukemia. Exp Hematol, 2003, 31 (3): 185~190
    [5] Kordes U, Krappmann D, Heissmeyer V, et al. Transcription factor NF-kappa B is constitutively activated in acute lymphoblastic leukemia cells. Leukemia, 2000, 14(3): 399~402
    [6] Kim SH, Oh SM, Kim TS. Induction of human leukemia HL-60 cell differentiation via a PKC/ERK pathway by helenalin, a pseudoguainolide sesquiterpene lactone. Eur J Pharmacol, 2005, 511(2-3): 89~97
    [7] Sokoloski JA, Narayanan R, Sartorelli AC. Enhancement by antisense oligonucleotides to NF-kappaB of the differentiation of HL-60 promyelocytic leukemia cells induced by vitamin D3. Cancer Lett, 1998, 125 (1-2): 157~164
    [8] Karin M, Cao Y, Greten FR, et al. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer, 2002, 2(4): 301~310
    [9] Frelin C, Imbert V, Griessinger E, et al. Targeting NF-kappa B activation via pharmacologic inhibition of IKK2-induced apoptosis of human acute myeloid leukemia cells. Blood, 2005, 105(2): 804~811
    [10] Beg A, Baltimore D. An essential role for NF-κB in preventing TNF-α induced cell death. Science, 1996, 274(5288): 782~784
    [11] Wang CY, Mayo MW, Korneluk RG, et al. NF-kappa B antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science, 1998,281(5383):1680~1683
    [12] Wang CY, Mayo MW, Baldwin AS. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science, 1996,274(5288):784~787
    [13] Van Antwerp DJ, Martin SJ, Kafri T, et al. Suppression of TNF-alpha -induced apoptosis by NF-kappaB. Science, 1996,274 (5288): 787—789
    [14] Sumitomo M, Tachibana M, Ozu C, et al. Induction of apoptosis of cytokin- inducing bladder cancer cells by adenovirus-mediated Ikappa B alpha overexpression. Hum Gene Ther, 1999,10(1):37~47
    [15] Chen S, Fribley A, Wang CY. Potentiation of tumor necrosis factor- mediated apoptosis of oral squamous cell carcinoma cells by adenovirus- mediated gene transfer of NF-kappaB inhibitor. J Dent Res, 2002, 81(2):98~102
    [16] Guzman ML, Swiderski CF, Howard DS, et al Preferential induction of apoptosis for primary human leukemic stem cells. Proc. Natl. Acad. Sci. USA, 2002, 99 (25): 16220-16225
    [17] Cao WJ, Zhang YZ, Zhang DH, et al. Inhibition of NF-kappaB by mutantIkappaBalpha enhances TNF-alpha-induced apoptosis in HL-60 cells by controlling bcl-xL expression. Chin Med J (Engl), 2004,117(7):972~977
    [18] Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, Lieber A. Efficient gene transfer into human CD34~+ cells by a retargeted adenovirus vector. J Virol, 2000, 74(6):2567~2583
    
    [19] Segerman A, Lindman K, Mei YF, Allard A, Wadell GAdenovirus types 11p and 35 attach to and infect primary lymphocytes and monocytes, but hexon expression in T-cells requires prior activation. Virology, 2006, 349(1):96~111
    
    [20] Reuther JY, Reuther GW, Cortez D, et al. A requirement for NF-kappaB activation in Bcr-Abl- mediated transformation. Genes Dev, 1998, 12(7):968~ 981
    [21] Kirchner D, Duyster J, Ottmann O, et al. Mechanisms of Bcr-Abl-mediated NF-κB /Rel activation. Exp Hematol, 2003,31(6):504~511
    [22] Bueso-Ramos CE, Rocha FC, Shishodia S, et al. Expression of constitutively active nuclear-kappa B RelA transcription factor in blasts of acute myeloid leukemia. Hum Pathol, 2004, 35(2):246~253
    [23] Mori N, Fujii M, Ikeda S, et al. Constitutive activation of NF-kappaB in primary adult T-cell leukemia cells. Blood. 1999, 93(7):2360~2368
    [24] Brown K, Gerstberger S, Carlson L, et al. Control of IκαB proteolysis by site-specific signal-induced phosphorylation. Science, 1995, 267(5203): 1485~1488
    [25] Scherer DC, Brockman JA, Chen ZJ, et al. Signal-induced degradation of IκBαrequires site-specific ubiquitination. Proc Natl Acad Sci USA, 1995, 92(24): 11259~11263
    [26] J.萨姆布鲁克,DW.拉塞尔.分子克隆实验指南(第三版)(黄培堂等译).北京东黄城根北街16号:科学出版社,2002.629~630
    [27] Tan C, Waldmann TA. Proteasome inhibitor PS-341, a potental therapeutic agent for dult-T cell leukemia. Cancer Res, 2002, 62(4): 1083~1086
    [28] Lundstrom K. Latest development in viral vectors for gene therapy. Trends Biotechnol, 2003, 21(3): 117~122
    [29] Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol, 1990, 10(8): 4239~4242
    [30] Laufs S, Nagy K Z, Giordano F A, et al. Insertion of retroviral vectors in NOD/SCID repopulating human peripheral blood progenitor cells occurs preferentially in the vicinity of transcription start regions and in introns. Mol Ther, 2004, 10(5): 874~881
    [31] Engelman A. The ups and downs of gene expression and retroviral DNA integration. Proc Natl Acad Sci USA, 2005, 102(5): 1275~1276
    [32] Baum C, Dullmann J, Li Z, et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood, 2003, 101 (6): 2099~2114
    [33] Sun L, Li J, Xiao X. Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med, 2000, 6(5): 599~602
    [34] Gardlik R, Palffy R, Hodosy J, et al. Vectors and delivery systems in gene therapy. Med Sci Monit, 2005, 11 (4): RA110~121
    [35] Bangari DS, Mittal SK. Current strategies and future directions for eluding adenoviral vector immunity. Curr Gene Ther, 2006, 6(2): 215~226
    [36] Vorburger SA, Hunt KK. Adenoviral gene therapy. Oncologist, 2002, 7(1): 46~59
    [37] Pandori M, Hobson D, Sano T. Adenovirus-microbead conjugates possess enhanced infectivity: a new strategy for localized gene delivery. Virology, 2002, 299(2): 204~212
    [38] Nasz I, Adam E. Recombinant adenovirus vectors for gene therapy and clinical trials. Acta Microbiol Immunol Hung. 2001, 48(3-4):323-348.
    [39] Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-Xl disease. Science, 2000, 288(5466):669~672
    [40] McCormack MP & Rabbitts TH. Activation of the T-Cell Oncogene LMO2 after Gene Therapy for X-Linked Severe Combined Immunodeficiency. N. Engl. J. Med, 2004, 350(9):913~922
    [41] Hacein-Bey-Abina S , Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science,2003, 302(5644):415~419
    [42] Ginsberg HS. The life and times of adenoviruses. Adv Virus Res, 1999, 54(1):1~13
    [43] Stevens JL, Cantin GT, Wang G, et al. Transcription control by El A and MAP kinase pathway via Sur2 mediator subunit. Science, 2002,296 (5568):755~758
    [44] Nada S, Trempe JP. Characterization of adeno-associated virus rep protein inhibition of adenovirus E2a gene expression. Virology, 2002,293(2):345~355
    [45] Jing XJ, Kalman-Maltese V, Cao X, et al. Inhibition of adenovirus cytotoxicity, replication, and E2a gene expression by adeno- -associated virus. Virology, 2001, 291(1):140~151
    [46] Stratford-Perricaudet LD, Levrero M, Chasse JF, et al. Evaluation of the transfer and expression in mice of an enzyme-encoding gene using a human adenovirus vector. Hum Gene Ther, 1990, 1(3):241—256
    [47] Danthinne X, Imperiale MJ. Production of first generation adenovirus vectors: a review. Gene Ther, 2000, 7(20): 1707—1714
    [48] Yang Y, Li Q, Ertl HC, et al. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol, 1995, 69(4):2004~2015
    [49] Yang Y, Nunes FA, Berencsi K, et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci U S A, 1994, 91(10):4407~4411
    [50] Karri T, Morgan D, krahl T, et al. Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy. Proc Natl Acad Sci U S A,1998, 95(19): 11377-11382
    [51] Toogood CI, Crompton J, Hay RT. Antipeptide antisera define neutralizing epitopes on the adenovirus hexon. J Gen Virol, 1992,73 (Pt 6):1429~1435
    [52] Moffatt S, Hays J, HogenEsch H, et al. Circumvention of vector-specific neutralizing antibody response by alternating use of human and non-human adenoviruses: implications in gene therapy. Virology, 2000, 272(1): 159—167
    [53] Sailaja G, HogenEsch H, North A, et al. Encapsulation of recombinant adenovirus into alginate microspheres circumvents vector-specific immune response. Gene Ther, 2002,9(24): 1722— 1729
    [54] Crystal RG.. Transfer of genes to humans: early lessons and obstacles to success. Science, 1995,270(5235):404~410
    [55] Yeh P, Dedieu JF, Orsini C, et al. Efficient dual trans- complementation of adenovirus E1 and E4 regions from a 293-derived cell line expressing a minimal E4 functional unit. J Virol, 1996, 70(1):559~565
    [56] Lochmuller H, Jani A, Huard J, et al. Emergence of early region 1-containing replication-competent adenovirus in stocks of replication-defective adenovirus recombinants (delta E1 + delta E3) during multiple passages in 293 cells. Hum Gene Ther, 1994, 5 12):1485-1491
    [57] Engelhardt JF, Ye X, Doranz B, et al. Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl Acad Sci U S A, 1994, 91(13):6196—6200
    [58] Morsy MA, Gu M, Motzel S, et al. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci USA,1998, 95 14):7866~7871
    [59] Kochanek S, Clemens PR, Mitani K, et al. A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc Natl Acad Sci U S A ,1996, 93(12):5731—5736
    
    [60] Roth MD, Cheng Q, Hatui A, et al. Helper-dependent adenoviral vectors efficiently express transgenes in human dendritic cells but still stimulate antiviral immune responses.J Immunol,2002,169(8):4651 —4656
    [61] Hackett NR, Kaminsky SM,Sondhi D, et al. Antivector and antitransgene host responses in gene therapy. Curr Opin Mol Ther,2000,2(4):376—382
    [62] Kass-Eisler A, Leinwand L, Gall J, et al. Circumventing the immune response to adenovirus-mediated gene therapy. Gene Ther, 1996, 3(2) 154—162
    [63] Ni S, Bernt K, Gaggar A, et al. Evaluation of biodistribution and safety of adenovirus vectors containing group B fibers after intravenous injection into baboons. Hum Gene Ther,2005,16(6):664~677
    [64] Bergelson JM, Cunningham JA, Drogutt G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science, 997, 275 (5304): 1320-1323
    [65] Tomko RP, Xu R, Philipson L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci U S A, 1997,94(7):3352~3356
    [66] Wickham TJ, Mathias P, Cheresh DA, et al. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell, 1993, 73(2):309~319
    [67] Wickham TJ, Roelvink PW, Brough DE, et al. Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types. Nat Biotechnol, 1996,14(11):1570~1573
    [68] Goldman M, Su Q, Wilson JM. Gradient of RGD-dependent entry of adenoviral vector in nasal and intrapulmonary epithelia: implications for gene therapy of cystic fibrosis. Gene Ther, 1996, 3(9):811—818
    [69] Wickham TJ, Segal DM, Roelvink PW, et al.Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies. J Virol, 1996, 70(10):6831-6838
    [70] Zabner J, Freimuth P, Puga A, et al. Lack of high affinity fiber receptor activity explains the resistance of ciliated airway epithelia to adenovirus infection. J Clin Invest, 1997,100(5): 1144-1149
    [71] Chillon M, Bosch A, Zabner J, et al. Group D adenoviruses infect primary central nervous system cells more efficiently than those from group C. J Virol, 1999, 73(3):2537~2540
    [72] Rebel VI, Hartnett S, Denham J, et al. Maturation and lineage- specific expression of the coxsackie and adenovirus receptor in hematopoietic cells. Stem Cells, 2000,18(3):176—182
    [73] Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, et al. Efficient gene transfer into human CD34~+ cells by a retargeted adenovirus vector. J Virol, 2000, 74(6):2567~2583
    [74] Nilsson M, Karlsson S, Fan X, Functionally distinct subpopulations of cord blood CD34+ cells are transduced by adenoviral vectors with serotype 5 or 35 tropism. Mol Ther, 2004, 9(3):377~388
    [75] Schroers R, Hildebrandt Y, Hasenkamp J, et al. Gene transfer into human T lymphocytes and natural killer cells by Ad5/F35 chimeric adenoviral vectors. Exp Hematol, 2004, 32(6):536~546
    [76] Segerman A, Lindman K, Mei YF, et al. Adenovirus types 11p and 35 attach to and infect primary lymphocytes and monocytes, but hexon expression in T-cells requires prior activation. Virology, 2006, 349(1):96~111
    [77] Segerman A, Mei YF, Wadell G. Adenovirus types 11p and 35p show high binding efficiencies for committed hematopoietic cell lines and are infective to these cell lines. J Virol, 2000, 74(3):1457-1467
    [78] Stecher H, Shayakhmetov DM, Stamatoy-Annopoulos G, et al. A capsid-modified adenovirus vector devoid of all viral genes: Assessment of transduction and toxicity in human hematopoietic cells. Mol Ther, 2001,4(1):36—44
    [79] Yotnda P, Onishi H, Heslop HE, et al. Efficient infection of primitive hematopoietic stem cells by modified adenovirus. Gene Ther, 2001, 8(12):930~ 937
    [80] Sakurai F, Mizuguchi H, Hayakawa T. Efficient gene transfer into human CD34~+ cells by an adenovirus type 35 vector. Gene Ther, 2003,10(12):1041~1048
    [81] Sova P, Ren XW, Ni S, Bernt KM, Mi J, Kiviat N, Lieber A. A tumor-targeted and conditionally replicating oncolytic adenovirus vector expressing TRAIL for treatment of liver metastases. Mol Ther, 2004, 9(4):496~509
    [82] Knaan-Shanzer S, Van Der Velde I, Havenga MJ, et al. Highly efficient targeted transduction of undifferentiated human hematopoietic cells by adenoviral vectors displaying fiber knobs of subgroup B. Hum Gene Ther, 2001, 12(16):1989— 2005
    [83] Havenga MJ, Lemckert AA, Ophorst OJ, et al. Exploiting the natural diversity in adenovirus tropism for therapy and prevention of disease. J Virol, 2002,76(9):4612~4620
    [84] Nilsson M, Ljungberg J, Richter J, et al. Development of an adenoviral vector system with adenovirus serotype 35 tropism; efficient transient gene transfer into primary malignant hematopoietic cells. J Gene Med, 2004, 6(6):631~641
    [85] Gaggar A, Shayakhmetov D, Lieber A. CD46 is a cellular receptor for group B adenoviruses. Nat Med, 2003, 9(11): 1408~1412
    [86] Segerman A, Atkinson JP, Marttila M, et al. Adenovirus type 11 uses CD46 as a cellular receptor. J Virol, 2003, 77(17): 9183~9191
    [87] Sirena D, Lilienfeld B, Eisenhut M, et al. The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3. J Virol, 2004, 78(9): 4454~4462
    [88] Murray KP, Mathure S, Kaul R, et al. Expression of complement regulatory proteins—cd35, cd46, cd55, and cd59—in benign and malignant endometrial tissue. Gynecol Oncol, 2000, 76(2): 176~182
    [89] Manchester M, Smith KA, Eto DS, et al. Targeting and hematopoietic suppression of human cd34~+ cells by measles virus. J virol, 2002, 76 (13): 6636~6642
    [90] 王凯,彭建强,袁振华,等.Ad5/F35腺病毒载体对不同来源造血系统恶性细胞转染效率的研究.中国实验血液学杂志,2006,14(3):525~528
    [91] Balamotis MA, Huang K, Mitani K. Efficient delivery and stable gene expression in a hematopoietic cell line using a chimeric serotype 35 fiber pseudotyped helper-dependent adenoviral vector. Virology, 2004, 324(1): 229~237
    [92] Collins SJ, Gallo RC, Gallagher RE. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature, 1977, 270(5635): 347~349
    [93] 何小庆,韩锐.HL-60细胞属于AML-M2型,NB4细胞为真正的AML-M3型.中华血液学杂志,1996,17(5):277~278
    [94] Dalton WT Jr, Ahearn MJ, McCredie KB, et al. HL-60 cell line was derived from a patient with FAB-M2 and not FAB-M3. Blood, 1988, 71(1): 242~247
    [95] Kim SH, Song JH, Choi BG, et al. Chemical modification of santonin into a diacetoxy acetal form confers the ability to induce differentiation of human promyelocytic leukemia cells via the downregulation of NF-kappa B DNA binding activity. J Biol Chem, 2006, 281(19): 13117~13125
    [96] Oh GS, Pae HO, Chung HT, et al. Dehydrocostus lactone enhances tumor necrosis factor-alpha-induced apoptosis of human leukemia HL-60 cells. Immunopharmacol Immunotoxicol, 2004, 26(2): 163~175
    [97] Pozarowski P, Halicka DH, Darzynkiewicz Z. Cell cycle effects and caspase-dependent and independent death of HL-60 and Jurkat cells treated with the inhibitor of NF-kappaB parthenolide. Cell Cycle, 2003, 2(4): 377~383
    [98] Han SS, Kim K, Hahm ER, et al. Arsenic trioxide represses constitutive activation of NF-kappaB and COX-2 expression in human acute myeloid leukemia, HL-60. J Cell Biochem, 2005, 94(4): 695~707
    [99] Bookout AL, Mangelsdorf DJ. Quantitative real-time PCR protocol for analysis of nuclear receptor fignaling pathways. Methods, 2003, 1 (1): 1~7
    [100] Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol, 2002, 2(10): 725~734
    [101] Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol, 1998, 16: 225~260
    [102] Isomura I, Morita A. Regulation of NF-kappaB signaling by decoy oligodeoxynucleotides. Microbiol Immunol, 2006, 50(8): 559~563
    [103] Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol, 2000, 18: 621~663
    [104] Ben-Neriah Y. Regulatory functions of ubiquitination in the immune system. Nat Immunol, 2002, 3(1): 20~26
    [105] Chen F, Castranova V, Shi X. New insights into the role of nuclear factor-κB in cell growth regulation. Am J Pathol, 2001, 159(2): 387~397
    [106] Gerondakis S, Grossmann M, Nakamura Y, et al. Genetic approaches in mice to understand Rel/NF-kappaB and IkappaB function: transgenics and knockouts. Oncogene, 1999, 18(49): 6888~6895
    [107] Zandi E, Rothwarf DM, Delhase M, et al. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell, 1997, 91(2): 243~252
    [108] Rothwarf DM, Zandi E, Natoli G, et al. IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature, 1998, 395(6699): 297~300
    [109] Yamamoto Y, Gaynor RB. IkappaB kinases: key regulators of the NF-kappaB pathway. Trends Biochem Sci, 2004, 29(2): 72~79.
    [110] Senftleben U, Cao Y, xiao G, et al. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science, 2001, 293 (5534): 1495~1499
    [111] Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol, 2004, 25(6): 280~288
    [112] Luo JL, Kamata H, Karin M. IKK/NF-kappaB signaling: balancing life and death-a new approach to cancer therapy. J Clin Invest, 2005, 115(10): 2625~ 2632
    [113] Schoonbroodt S, Piette J. Oxidative stress interference with the nuclear factorkappa B activation pathways. Biochem Pharmacol, 2000,60(8): 1075—1083
    [114] Chen LF, Fischle W, Verdin E, et al. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science, 2001,293 (5535):1653—1657
    [115] Perkins ND. Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene, 2006, 25 (51): 6717-6730
    [116] Dai Y, Rahmani M, Dent P, et al. Blockade of histone deacetylase inhibitor -induced RelA/p65 acetylation and NF-kappaB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation. Mol Cell Biol, 2005, 25(13):5429~5444
    [117] Baldwin AS Jr. Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest, 2001,107(1):3~6
    [118] Dokter WH, Tuyt L, Sierdsema SJ, et al. The spontaneous expression of interleukin-1 beta and interleukin-6 is associated with spontaneous expression of AP1 and NF-kappaB transcription factor in acute myeloblastic leukemia cells. Leukemia, 1995,9(3):425-432
    [119] Baumgartner B, Weber M, Quirling M, et al. Increased IkappaB kinase activity is associated with activated NF-kappaB in acute myeloid blasts. Leukemia, 2002,16(10):2062~2071
    [120] Wuchter C, Krappmann D, Cai Z, et al. In vitro susceptibility to TRAIL-induced apoptosis of acute leukemia cells in the context of TRAIL receptor gene expression and constitutive NF-kappa B activity. Leukemia, 2001, 15(6):921~928
    [121] Panwalkar A, Verstovesk S, Giles F. Nuclear factor-kappaB modulation as a therapeutic approach in hematologic malignancies. Cancer, 2004, 100(8): 1578—1589
    [122] Kuwayama Y, Suzuki T, Moriuchi S, et al. I kappa B-mediated apoptotic gene therapy against acute myelogenous leukemia using replication-defective HSV-1 vector expressing TK and mutant I kappa B alpha. Cell Mol Biol, 2005, 51(1):77~86
    [123] Lin R, Beauparlant P, Makris C, et al. Phosphorylation of IkappaBalpha in the C-terminal PEST domain by casein kinase II affects intrinsic protein stability. Mol Cell Biol, 1996,16(4): 1401-1409
    [124] McElhinny JA, Trushin SA, Bren GD, et al. Casein kinase II phosphorylates I kappa B alpha at S-283, S-289, S-293, and T-291 and is required for its degradation. Mol Cell Biol, 1996,16(3): 899-906
    [125] Schwarz EM, Van Antwerp D, Verma IM. Constitutive phosphorylation of IkappaBalpha by casein kinase II occurs preferentially at serine 293: requirement for degradation of free IkappaBalpha. Mol Cell Biol, 1996, 16(7):3554~3559
    [126] Kawai H, Nie L, Yuan ZM. Inactivation of NF-kappaB-dependent cell survival, a novel mechanism for the proapoptotic function of c-Abl. Mol Cell Biol, 2002, 22(17):6079~6088
    [127] Gloire G, Dejardin E, Piette J. Extending the nuclear roles of IkappaB kinase subunits. Biochem Pharmacol, 2006, 72(9): 1081 ~ 1089
    [128] Guzman ML, Rossi RM, Karnischky L, et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood, 2005, 105(11):4163~4169
    
    [129] Deveraux QL, Reed JC. LAP family proteins—suppressors of apoptosis. Genes Dev, 1999,13(3):239~252
    [130] Roy N, Deveraux QL, Takahashi R, et al. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J, 1997,16(23):6914~6925
    [1] Reuther JY, Reuther GW, Cortez D, et al. A requirement for NF-κB activation in Bcr-Abl-mediated transformation. Genes Dev, 1998, 12(7): 968~981
    [2] Hamdane M, David-Cordonnier MH, D'Halluin JC. Activation of p65 NF-κB protein by p210BCR-ABL in a myeloid cell line (p210BCR-ABL activates p65 NF-κB). Oncogene, 1997, 15(19): 2267~2275
    [3] Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-kappa B is constitutively activated in primitive human acute myelogenous leukemia cells. Blood, 2001, 98(8): 2301~2307
    [4] Kordes U, Krappmann D, Heissmeyer V, et al. Transcription factor NF-kappa B is constitutively activated in acute lymphoblastic leukemia cells. Leukemia, 2000, 14(3): 399~402
    [5] Thomas RK, Re D, Wolf J, et al. Part Ⅰ: Hodgkin's lymphoma-molecular biology of Hodgkin and Reed-Steinberg cella. Lancet Oncol, 2004, 5(1): 11~18
    [6] Birkenkamp KU, Geugien M, Schepers H, et al. Constitutive NF-κB DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. Leukemia, 2004, 18(1): 103~112
    [7] Kirchner D, Duyster J, Ottmann O, et al. Mechanisms of Bcr-Abl-mediated NF-κB/Rel activation. Exp Hematol, 2003, 31(6): 504~511
    [8] Dokter WH, Tuyt L, Sierdsema SJ, et al. The spontaneous expression of interleukin-1 beta and interleukin-6 is associated with spontaneous expression of AP1 and NF-kappaB transcription factor in acute myeloblastic leukemia cells. Leukemia, 1995, 9(3): 425~432
    [9] Wuchter C, Krappmann D, Cai Z, et al. In vitro susceptibility to TRAIL-induced apoptosis of acute leukemia cells in the context of TRAIL receptor gene expression and constitutive NF-kappa B activity. Leukemia, 2001, 15(6): 921~928
    [10] Baumgartner B, Weber M, Quirling M, et al. Increased IkappaB kinase activity is associated with activated NF-kappaB in acute myeloid blasts. Leukemia, 2002, 16(10): 2062~2071
    [11] Bueso-Ramos CE, Rocha FC, Shishodia S, et al. Expression of constitutively active nuclear-kappa B RelA transcription factor in blasts of acute myeloid leukemia. Hum Pathol, 2004, 35(2): 246~253
    [12] Hatta Y, Arima N, Machino T, et al. Mutation analysis of IkappaBalpha in hematologic malignancies. Int J Mol Med, 2003, 11(2): 239~242
    [13] Nawata R, Yujiri T, Nakamura Y, et al. MEK kinase 1 mediates the antiapoptotic effect of the Bcr-Abl oncogene through NF-kappa B activation. Oncogene, 2003, 22(49): 7774~7780
    [14] Sun SC, Elwood J, Beraud C, et al. Human T-cell leukemia virus type 1 Tax activation of NF-κB/Rel involves phosphorylation and degradation of IκBα and RelA(p60)-mediated induction of the c-rel gene. Mol Cell Biol, 1994, 14(11): 7377~7384
    [15] Good L, Sun SC. Persistent activation of NF-κB/Rel by human T-cell leukemia virus type 1 Tax involves degradation of IκBβ. J Virol, 1996, 70(5): 2730~2735
    [16] Mckinsey TA, Brockman JA, Scherer DC, et al. Inactivation of of IκBβ by Tax protein of human T-cell leukemia virus type 1: a potential mechanism for constitutive induction of NF-κB. Mol Cell Biol, 1996, 16(5): 2083~2090
    [17] Geleziunas R, Ferrell S, Lin X, et al. Human T-cell leukemia virus type 1 Tax induction of NF-κB involves activation of the IκB kinase α (IKKα) and IKKβ cellular kinase. Mol Cell Biol, 1998, 18 (9): 5157~5165
    [18] Sun SC, Ballard DW. Persistent activation of NF-kappa B by the Tax transforming protein of HTLV-1: hijacking cellular IkappaB kinases. Oncogene, 1999,18(49):6948~6958
    [19] Carter RS, Geyer BC, Xie M et al. Persistent activation of NF-kappa B by the tax transforming protein involves chronic phosphorylation of IkappaB kinase IKK beta and IKK gamma. J Biol Chem, 2001,276(27):24445~24448
    [20] Mori N, Fujii M, Ikeda S, et al. Constitutive activation of NF-kappaB in primary adult T-cell leukemia cells. Blood, 1999,93(7):2360~2368
    [21] Arima N, Matsushita K, Obata H, et al. NF-kappa B involvement in the activation of primary adult T-cell leukemia cells and its clinical implications. Exp Hematol, 1999,27(7):1168—1175
    [22] Romano MF, Lamberti A, Tassone P, et al. Triggering CD40 antigen inhibits fludarabine-induced apoptosis in B chronic lymphocytic leukemia cells. Blood, 1998,92(3):990~995
    [23] Furman RR, Asgary Z, Mascarenhas JO, et al. Modulation of NF-κB activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol, 2000, 164(4):2200~2206
    [24] Zaninoni A, Imperiali FG, Pasquini C, et al. Cytokine modulation of nuclear factor-KB activity in B-chronic lymphocytic leukemia. Exp Hematol, 2003, 31(3):185~190
    [25] Migliazza A, Lombardi L, Rocchi M, et al. Heterogeneous chromosomal aberrations generate 3 ' truncations of the NF-κB2/lyl-10 gene in lymphoid malignancies. Blood,1994, 84(11):3850~3860
    [26] Bargou RC, Leng C, Krappmann D, et al. High-level nuclear NF-κB and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood, 1996,87(10):4340~4347
    [27] Bargou RC, Emmerich F, Krappmann D, et al. Constitutive NF-κB-RelA activation is required for proliferation and syrvival of Hodgkin' s disease tumour cells. J Clin Invest, 1997,100(12):2961~2969
    [28] Krappmann D, Emmerich F, Kordes U, et al. Molecular mechanism of constitutive NF-κB/Rel activation in Hodgkins/Reed-Sternberg cells. Oncogene, 1999,18(4):943~953.
    [29] Staudt LM. The molecular and cellular origin of Hodgkin ' s disease. J Exp Med, 2000,191(2):207~212
    
    [30] Wood KM, Roff M, Hay RT. Defective IkBα in Hodgkin cell lines with constitutively active NF-κB. Oncogene, 1998,16(16):2132—2139
    [31] Emmerich F, Meiser M, Hummel M, et al. Overexpression of Ikappa B alpha without inhibition of NF-kappaB activity and mutations in the I kappa B alpha gene in Reed-Stemberg cells. Blood, 1999, 94 (9):3129~3134
    [32] Cabannes E, Khan G, Aillet F, et al. Mutations in the Ikα gene in Hodgkin ' s disease suggest a tumor suppresser role for Iκα. Oncogene, 1999,18(20):3063~ 3070
    [33] Jungnickel B, Staratscheck-Jox A, Brauninger A, et al. Clonal deleterious mutations in the IκBα gene in the malignant cells in Hodgkin ' s lymphoma. J Exp Med, 2000,191(2):395~402
    [34] Jarrett RF, Lake A, Andrew L, et al. Somatic Iκα mutations are a frequent occurrence in Hodgkin ' s lymphoma. Blood, 2002,100(): 4333(abstr)
    [35] Emmerich F, Theurich S, Hummel M, et al. Inactivating I kappa B epsilon mutations in Hodgkin/Reed-Sternberg cells. J Pathol, 2003,201(3):415~420
    [36] Martin-Subero JI, Gesk S, Harder L et al. Recurrent involvement of the REL and BCC11A loci in classical Hodgkin lymphoma. Blood, 2002, 99(4): 1474~ 1477
    [37] Joos S, Kupper M, Ohl S, et al. Genomic inbalances including amplfication of the tyrosine kinase gene JAK2 in Cd30+ Hodgkin cells. Cancer Res, 2000, 60(3):549~552
    [38] Joos S, Menz CK, Wrobel G, et al. Classical Hodgkin lymphoma is characterized by recurrent copy number gains of the short arm of chromosome 2. Blood, 2002, 99(4):1381~1387
    [39] Pham LV, Tamayo AT, Yoshimura LC, et al. Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. J Immunol, 2003,171(1):88~95
    [40] Kalaitzidis D, Davis RE, Rosenwald A, et al. The human B-cell lymphoma cell line RC-K8 has multiple genetic alterations that dysregulate the Rel/NF-kappaB signal transduction pathway. Oncogene, 2002,21 (57):8759~868
    [41] Fracchiolla NS, Lombardi L, Salina M, et al. Structural alternations of the NF-kappa B transcription factor lyt-10 lymphoid malignancies. Oncogene, 1993, 8(10):2839~2845
    [42] Mitsiades N, Mitsiades CS, Poulaki V, et al. Biologic sequelae of nuclear factor-KB blockade in multiple myeloma: therapeutic applications. Blood, 2002, 99(11):4079~4086
    [43] Hideshima T, Chauhan D, Richardson P, et al. NF-κB as a therapeutic target in multiple myeloma. J Biol Chem, 2002,277(19): 16639-16647
    [44] Tai YT, Podar K, Mitsiades N, et al. CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3-kinase/AKTVNF-κB signaling. Blood, 2003,101(7):2762~2769
    [45] Bharti AC, Shishodia S, Reuben JM, et al. Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells deriver from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood, 2004, 103(8):3175~3184
    [46] Berenson JR, Ma HM, Vescio R. The role of nuclear factor-kappa B in the biology and treatment of multiple myeloma. Semin Oncol, 2001, 28(6):626~ 633
    [47] Ni H, Ergin M, Huang Q, et al. Analysis of expression of nuclear factor kappaB (NF-kappaB) in multiple myeloma: downregulation of NF-kappaB induces apoptosis. Br J Haematol, 2001,115(2):279~286
    [48] Feinman R, Koury J, Thames M, et al. Role of NF-kappaB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptos by bcl-2. Blood, 1999, 93(9):3044~3052
    [49] Parker KM, Ma MH, Manyak S, et al. Identification of polymorphisms of the IkappaBalpha gene associated with an increase risk of multiple myeloma. Cancer Genet Cytogenet, 2002,137(1):43~48
    [50] Guzman ML, Swiderski CF, Howard DS, et al Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci U S A, 2002, 99(25): 16220-16225
    [51] Tan C, Waldmann TA. Proteasome inhibitor PS-341, a potental therapeutic agent for dult-T cell leukemia. Cancer Res, 2002,62 (4):1083~1086
    [52] Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed refrcactory myeloma. N Engl J Med, 2003, 348 (26):2609~2617
    [53] Dai Y, Pei XY, Rahmani M, et al. Interruption of the NF-kappaB pathway by Bayl1-7082 promotes UCN-01-mediated mitochondrial dysfunction and apoptosis in human multiple myeloma cells. Blood, 2004,103 (7):2761—2770
    [1] Warner JK, Wang JC, Hope KJ, et al. Concepts of human leukemic development. Oncogene, 2004, 23(43):7164~7177
    [2] Jordan CT, Guzman ML. Mechanisms controlling pathogenesis and survival ofleukemic stem cells. Oncogene, 2004, 23(43):7178~7187
    [3] Passegue E, Jamieson CH, Ailles LE et al. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci U S A, 2003, 100 (Suppll):11842~11849
    [4] Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994, 367(6464):645~648
    [5] Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997, 3(7):730~737
    [6] Brendel C, Neubauer A. Characteristics and analysis of normal and leukemic stemcells: current concepts and future directions. Leukemia, 2000,14(10):1711 —1717
    
    [7] Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature, 2001,414(6859):105-111
    
    [8] Blair A, Hogge DE, Sutherland HJ. Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(-)/HLA-DR-. Blood, 1998,92 (11):4325-4335
    [9] Blair A, Hogge DE, Ailles LE, et al. Lack of expression of Thy-1(CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood, 1997, 89(9):3104-3112
    
    [10] Blair A, Sutherland HJ. Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit(CD117). Exp Hematol, 2000,28(6):660—671
    
    [11] Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myeloid leukemia stem cells. Leukemia, 2000,14(10):1777—1784
    
    [12] Sutherland H, Blair A, Vercauteren S, et al. Detection and clinical significance of human acute myeloid leukaemia progenitors capable of long-term proliferation in vitro. Br J Haematol, 2001,114(2):296~306
    
    [13] Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood, 2001,98(8):2301~2307
    
    [14] Guan Y, Gerhard B, Hogge DE. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood, 2003,101(8):3142—3149
    
    [15] Guzman ML, Upchurch D, Grimes B, et al. Expression of tumor-suppressor genes interferon regulatory factor 1 and death-associated protein kinase in primitive acute myelogenous leukemia cells. Blood, 2001,97(7):2177—2179
    [16] Konopleva M, Zhao S, Hu W, et al. The anti-apoptotic genes Bcl-X(1) and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34+ cells. Br J Haematol, 2002, 118 (2):521 —34
    [17] Levis M, Murphy KM, Pham R, et al. Internal tandem duplications of the FLT3 gene are present in leukemia stem cells. Blood, 2005,106 (2):673—680
    [18] Raaijmakers MH, de Grouw EP, Heuver LH, et al. Breast cancer resistance protein in drug resistance of primitive CD34+38- cells in acute myeloid leukemia. Clin Cancer Res, 2005,11(6):2436~2444
    
    [19] Wierenga PK, Setroikromo R, Kamps G, et al. Differences in heat sensitivity between normal and acute myeloid leukemic stem cells: feasibility of hyperthermic purging of leukemic cells from autologous stem cell grafts. Exp Hematol, 2003,31(5):421 -427
    
    [20] Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol, 2004, 5(7):738~743
    [21] Guzman ML, Jordan CT. Considerations for targeting malignant stem cells in leukemia. Cancer Control, 2004,11 (2):97~ 104
    [22] Cox CV, Evely RS, Oakhill A, et al. Characterization of acute lymphoblastic leukemia progenitor cells. Blood, 2004,104 (9):2919~2925
    [23] Miyamoto T, Nagafuji K, Akashi K, et al. Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia. Blood, 1996, 87 (11):4789~4796
    [24] Miyamoto T, Weissman IL, Akashi K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci U S A. 2000,97(13):7521~7526
    
    [25] Dick JE. Complexity of the human acute myeloid leukemia stem cell compartment: implications for therapy. Biol Blood Marrow Transplant, 2005, 11(2Suppl2):9~11
    
    [26] Brown D, Kogan S, Lagasse E, et al. A PML-RARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci U S A, 1997, 94(6):2551-2556
    
    [27] Turhan AG, Lemoine FM, Debert C, et al. Highly purified primitive hematopoietic stem cells are PML-RARA negative and generate nonclonal progenitors in acute promyelocytic leukemia. Blood, 1995, 85 (8):2154~2161
    [28] Edwards RH, Wasik MA, Finan J, et al. Evidence for early hematopoietic progenitor cell involvement in acute promyelocytic leukemia. Am J Clin Pathol, 1999,112(6):819~827
    
    [29] Ailles LE, Gerhard B, Kawagoe H, Hogge DE. Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood, 1999, 94(5):1761~1772
    [30] Hotfilder M, Rottgers S, Rosemann A, et al. Leukemic stem cells in childhood high-risk ALL/t(9;22) and t(4;11) are present in primitive lymphoid-restricted CD34+CD19- cells. Cancer Res, 2005, 65 (4): 1442-1449
    [31] Cozzio A, Passegue E, Ayton PM, et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev, 2003,17(24):3029~3035
    [32] Hotfilder M, Rottgers S, Rosemann A, et al. Leukemic stem cells in childhood high-risk ALL/t(9;22) and t(4;11) are present in primitive lymphoid-restricted CD34+CD19- cells. Cancer Res, 2005,65(4): 1442-1449
    [33] Mayo MW, Baldwin AS. The transcription factor NF-kappaB: control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta , 2000,1470(2):M55—62
    [34] Garg A, Aggarwal BB. Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia, 2002,16(6): 1053—1068
    [35] Guzman ML, Swiderski CF, Howard DS, et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci U S A, 2002,99(25): 16220-16225
    [36] Xu Q, Simpson SE, Scialla TJ, et al. Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood, 2003,102 (3):972—980
    
    [37] Zhao S, Konopleva M, Cabreira-Hansen M, et al. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia, 2004,18(2):267—275
    [38] Birkenkamp KU, Geugien M, Schepers H, et al. Constitutive NF-kappaB DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/ PKB-dependent pathway. Leukemia, 2004,18(1):103—112
    [39] Testa U, Riccioni R, Diverio D, et al. Interleukin-3 receptor in acute leukemia. Leukemia, 2004,18(2):219—226
    [40] Testa U, Riccioni R, Militi S, et al. Elevated expression of IL-3R alpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood, 2002,100(8):2980—2988
    [41] Wang JM, Lai MZ, Yang-Yen HF. Interleukin-3 stimulation of mcl-1 gene transcription involves activation of the PU.1 transcription factor through a p38 itogen-activated protein kinase-dependent pathway. Mol Cell Biol, 2003, 23(6):1896~1909
    [42] Guthridge MA, Barry EF, Felquer FA, et al. The phosphoserine-585-dependent pathway of the GM-CSF/IL-3/IL-5 receptors mediates hematopoietic cell survival through activation of NF-kappaB and induction of bcl-2. Blood, 2004,103(3):820~827
    [43] Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood, 2002,100(5):1532~1542
    [44] Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer, 2003,3(9):650~665
     [45] Passioura T, Dolnikov A, Shen S, Symonds G. N-ras-induced growth suppression of myeloid cells is mediated by IRF-1. Cancer Res, 2005,65(3):797~804
    [46] Park IK, He Y, Lin F, et al. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood, 2002,99(2):488~498
    [47] Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 2003,423(6937): 255~260

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700