用户名: 密码: 验证码:
多相复合材料等效物理性能预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多相复合材料等效性能的预测对优化复合材料设计和探索新型复合材料的研究工作都具有重要的指导意义。本文以多相复合材料等效物理性能预测数值方法的软件研究为主。在详细了解了基于显微结构图片几何特征和相界面信息以建立显微结构模型的多参数随机建模方法和求解控制方程的格子Boltzmann方法的基础上,编制软件计算颗粒增强型和纤维增强型多相复合材料的等效物理性能,并用该软件进一步讨论了各组分相性能比值、颗粒尺寸、各向异性程度、相界面结合程度等因素对颗粒增强型复合材料等效性能的影响和不同显微结构形态对等效性能的影响。
     本文共四章,各章节内容概括如下:
     第一章调研了国内外复合材料等效性能预测方法的发展历程和应用现状,分析各方法的优缺点。结合国内外的研究现状,阐明本课题的研究内容。
     第二章在介绍针对颗粒增强型复合材料和纤维增强型复合材料的多参数随机显微结构建模方法和格子Boltzmann方法的理论基础上,证明了用格子Boltzmann方法求解控制方法的合理性。并具体阐述软件开发的设计思路和程序流程。
     第三章应用所编制的软件预测了几种颗粒增强型复合材料和纤维增强型复合材料的等效热导率、电导率、介电常数和弹性模量,通过与文献中预测或实验结合的对比证明所编制软件的正确性。同时进一步讨论了各组分相性能比值、颗粒尺寸、颗粒各向异性程度、相界面结合程度和显微结构形态对多相复合材料等效性能的影响。
     第四章总结全文的研究工作。结合本文研究的未尽之路,为下一步的研究提出展望。
Theoretical prediction of effective properties for multiphase material systems is very important not only to analysis and optimization of material performance, but also to new material designs. In this paper, the main point is the software research on the prediction of the effective physical properties of multiphase materials. With deeply understanding of the theory of random generation-growth algorithm for reproducing multiphase microstructures based on the geometrical and morphological information obtained from measurements and experimental estimations and lattice Boltzmann method for the corresponding governing equations, software have been developed for our research. This set of numerical method has been demonstrated effectiveness and robustness not only with various applications by comparing the predictions with existing experimental data but also by accounting for the effects due to component properties, component size, material anisotropy, multiphase interactions and internal morphology.
     There are 4 chapters in this thesis; each chapter is summarized as follows:
     In the first chapter, the development and application of theoretical methods and numerical methods at home and abroad is investigated, the applications and limitations of various methods have been pointed out, combined with the domestic and abroad research status of the prediction method for the effective properties of multiphase materials, clarifying the meaning and the content of the research topic.
     In Chapter two, based on the introduction of the random generation-growth algorithm for granular-reinforced materials and fiber-reinforced materials and lattice Boltzmann solver, indicated a detailed explanation of the software for these numerical methods.
     In Chapter three, various applications are provided to validate the feasibility, effectiveness and robustness of this methodology by comparing the predictions with existing experimental data, accounting for the effects due to component properties, component size, material anisotropy, multiphase interactions and internal morphology.
     In Chapter four, the research of this thesis is summarized. Combining the research in this paper, the reference for further study is put forward.
引文
[1]王耀先.复合材料结构设计.北京:化工工业出版社,2001.2-7
    [2]杜善义.先进复合材料与航空航天.复合材料学报,2007,24(1),1-12
    [3]张耘.复合材料在大型民机的应用进展.http://www.istis.sh.cn/list/list.aspx?id=6401
    [4]马红霞,魏晓绛.C/C复合材料在火箭发动机上的应用.飞航导弹,2009(3),61-63
    [5]昝兰香.复合材料在导弹结构上的应用.战术导弹技术,1982(3),42-46
    [6]陈列民.新型复合材料卫星结构的设计和制造工艺.译自AIAA,79-124
    [7]蒋鼎丰.复合材料与汽车(一).制造技术与材料,2009,10,48-51
    [8]蒋鞠慧,陈敬菊.复合材料在轨道交通上的应用和发展.玻璃钢/复合材料,2009,6,81-85
    [9]周长东,黄承逵.FRP复合材料在国外土木工程中的应用.建筑技术,2002,33,848-849
    [10]姚树镇.对发展玻璃钢桥之浅见.桥梁建设,1990,(3):18-21
    [11]曾宪桃,车惠民.复合材料FRP在桥梁工程中的应用及其前景.桥梁建设,2000,(2):66-70
    [12]JK Mckenna, MA Erki. Strengthening of reinforced concrete flexural members using externally applied steel plates and fiber composite sheets-a survey. Canadian Journal of Civil Engineering,1994,21:16-24
    [13]张大厚,王继辉.复合材料在建筑领域的使用现状及发展方向.武汉理工大学学报,2009,31(4):63-66
    [14]菜斌.复合材料在船艇工业中的应用.功能高分子学报,2003,3(16):113-119
    [15]Moring SE. Composites for naval surface ships. Marine Technology Soc J,1998,32(2): 41-46
    [16]戴春晖,刘钧,曾竟成,边力平.复合材料风电叶片的发展现状及若干问题的对策.玻璃钢/复合材料,2008,(1):53-56
    [17]盖晓玲,田德等.风力发电叶片技术的发展概括与趋势.农村牧区机械化,2006,(4):53-56
    [18]邓敏强.碳纳米管复合材料的制备及其在生物传感中的应用.南昌大学硕士学位论文,2008
    [19]赵宏武.爆炸生产多层复合材料在五金行业上的应用.万方数据.
    [20]陈舜麟.计算材料科学.北京:化学工业出版社,2005.1-20
    [21]D.罗伯.计算材料学.北京:化学工业出版社,2002.1-12
    [22]温树林,马希骋,刘茜,许钫钫.材料科学与微观结构.北京:科学出版社,2007.3-26
    [23]张金升,张银燕,王美婷,许凤秀.陶瓷材料显微结构与性能.北京:化学工业出版社,2007.1-34
    [24]BM Zhang, SY Zhao, XD He. Experimental and theoretical studies on high-temperature thermal properties of fibrous insulation. Journal of Quantitative Spectroscopy & Radiative Transfer 109(2008) 1309-1324
    [25]SY Zhao, BM Zhang, XD He. Temperature and pressure dependent effective thermal conductivity of fibrous insulation. International Journal of Thermal Sciences 48 (2009) 440-448
    [26]JH She, Takahiro Inoue, M Suzuki, S Sodeoka, K Ueno. Mechanical properties and fracture behavior of fibrous Al2O3/SiC ceramics. Journal of the European Ceramic Society 20 (2000) 1877-1881
    [27]A.J. Sanchez-Herencia, R. Moreno, JR. Jurado. Electrical transport properties in zirconia/ alumina functionally graded materials. Journal of the European Ceramic Society 20 (2000) 1611-1620
    [28]Z Wang, CQ Hong, XH Zhang, X Sun, JC Han. Microstructure and thermal shock behavior of ZrB2-SiC-graphite composite. Materials Chemistry and Physics 113 (2009) 338-341
    [29]Mohamed Shehata Aly. Tensile properties of open-cell nickel foams. Materials and Design 31(2010)2237-2240
    [30]KP Dharmasena, HNG Wadley. Electrical conductivity of open-cell metal foams. J. Mater. Res., Vol.17,3 (2002) 625-631
    [31]F Frusteri, V Leonardi, G Maggio. Thermal conductivity measurement of a PCM based storage system containing carbon fibers. Applied Thermal Engineering,26 (2006) 1883-1892
    [32]S Uemura. The Activities of FGM on New Application, Materials Science Forum, Vol.423-425(2003), pp.1-10.
    [33]张联盟.材料科学基础.北京:高等教育出版社.
    [34]A Bhattacharya, VV Calmidi, RL Mahajan. Thermophysical properties of high porosity metal foams. International Journal of Heat and Mass Transfer 45(2002) 1017-1031
    [35]EN Schmierer, A Razani. Journal of Heat Transfer-Transactions of the Asme 121 (1999)
    [36]JC Maxwell. A Treatise on Electricity and Magnetism. Clarendon Press. Oxford,1873
    [37]Fukui Y, Takashima K and Ponton C B. Measurement of Young's modulus and internal friction of an in situ Al-A13Ni functionally gradient material. Journal of Material Science, 1994(29):2281-2288
    [38]Lee YD, Erdogan F. Residual/thermal stresses is FGM and laminated thermal barrier coatings. Int. J. Fract.,1994/1995(69):145-165
    [39]Finot M, Suresh S, Bull C and Sampath S. Curvature changes during thermal cycling of a compositionally graded Ni-A12O3 multi-layered material. Materials Science and Enginnering A,1996(205):59-71
    [40]Hashin Z and Shtrikman S. A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids,1963(11):127-140
    [41]Hashin Z and Shtrikman S. Journal of Applied Physics,1962(33) 3125
    [42]Miller DP and Lannutti JJ. Fabrication and properties of functionally graded NiAl/A12O3 composites. J.Mater. Res.,1993,8(8):2004-2013
    [43]Wakashima K, Tsukamoto, H. Micromechanical approach to the thermomechanics of ceramic-metal gradient materials. Proceedings of the First International Symposium on Functionally Gradient Materials. Functionally Gradient Materials Forum, Sendai, Japan,1990.19-26
    [44]Kerner EH. The elastic and thermo-elastic properties of composite media. Proc. Phys. Soc., B,1959(69):808-813
    [45]Tanigawa Y, Oka N, Akai T and Kawamura R. One-dimensional transient thermal stress problem for nonhomogeneous hollow circular cylinder and its optimization. Transactions of the Japan Society of Mechanical Engineers, Series A.,1996,62(599):1656-1664
    [46]Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 1973(21):571-574
    [47]Christensen RM and Lo KH. Solutions for effective shear properties in three Phase sphere and cylinder models. J. Mech. Phys. Solids,1979(27):315-330
    [48]Kingery WD, Bowen HH, Uhlmann DR. Introduction to ceramics. Wiley, New York,1976
    [49]Kondo R. Porous materials. Gihoudo, Tokyo, Japan,1986
    [50]郑泉水,杜丹旭.多相复合材料有效性质的相互作用直推法及其应用.材料的宏微观力学与强韧化设计,2003:115-137
    [51]方岱宁,周储伟.有限元计算细观力学对复合材料力学行为的数值分析.力学进展,1998,28(2):173-188
    [52]Leon L Mishnaevsky Jr, Siegfried Schmauder. Continuum mesomechanical finite elment modeling in materials development:A state-of-the-art review. Appl Mech Rev,2001,54(1): 49-68
    [53]M Dong, S Schmauder. FE modeling of continuous fiber and particle reinforced composites by self-consistent embedded cell models. Computational Methods in Micromechanic,1995, 62(212):81-86
    [54]JR Brochenborough, S Suresh, HA Wienecke. Deformation of metal-matrix composites with continuous fibers:geometrical effects of fiber distribution and shape. Acta Metal Mat,1991, 39(5):735-752
    [55]YL Shen, M Finot, A Needleman, S Suresh. Effective elastic response of two-phase composites. Acta Metal Mat,1994,42(1):77-79
    [56]XL Chen, YJ Liu. Multiple-cell modeling of fiber-reinforced composites with the presence of interphases using the boundary element method. Computational Materials Science 21(2001):86-94
    [57]MS Axelsen, R Pyrz. Microstructural influence on the fracture toughness in transversely loaded unidirectional composites. Proc 10th Conf Composite Materials,1995.471-478
    [58]MS Axelsen. Quantitative description of morphology and microdamages of composite materials, PhD Thesis, Aalborg University,1995
    [59]D Fang, H Qi, S Tu. Elastic and plastic properties of metal-matrix composites:geometrical effects of particles. Computational Materials Science,1996.6:303-309
    [60]SJ Hollister, N Kikuchi. Homogenization theory and digital imaging. A basis for studying the mechanics and design principles of bone tissue. Biotech Bioeng,1994,43:586-596
    [61]K Terada, N Kikuchi. Global-local constitutive modeling of composite materials by the homogenization method. Material Science Rev Int.1996a,2:73-80
    [62]WC Garter, SA Langer, Fuller Jr ER. The OOF Manual. http://www.ctcms.nist.gov/ oof/download/Manual/Manual.html,2000
    [63]孟庆元,杜善义.随机双向介质宏观弹性模量的边界元法预报.复合材料学报,1990,7(1)
    [64]王人杰.界面层对纤维增强复合材料横向弹性常数的影响.上海交通大学学报,1996,30(11):36-42
    [65]YJ Liu, N Xu, JF Luo. Modeling of interphases in fiber-reinforced composites under transverse loading using the boundary element method. Journal of Applied Mechanics,2000, (67):41-49
    [66]方岱宁,齐航.颗粒增强复合材料有效性能的三维数值分析.力学学报,1996,28(4):475-482
    [67]Biswajit Banerjee, DO Adams. On predicting the effective elastic properties of polymer bonded explosives using the recursive cell method. International Journal of Solids and Structures,2004, (41):481-509
    [68]M Grujicic, Y Zhang. Determination of effective elastic properties of functionally graded materials using voronoi cell finite element method. Materials Science and Engineering,1998, (A-251):64-76
    [69]F Cesari, FM Furgiuele, C Maletta. The determination of stress distribution and elastic properties for heterogeneous materials with hybrid finite element. International Journal of Mechanics and Materials in Design,2005,2:1-13
    [70]王兆清.多边形有限元研究进展.力学进展,2006,36(3):344-353
    [71]DS Liu, CY Chen, DY Chiou.3-D Modeling of a composite material reinforced with multiple thickly coated particles using the infinite element method. Computer Modeling in Engineering and Sciences,2005,9(2):179-191
    [72]MR Wang, N Pan. Predictions of effective physical properties of complex multiphase materials. Materials Science and Engineering R 63(2008) 1-30
    [73]J Schiotz, T'Wegge, et al. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Physical Review B,1999,60(17):11971-11983
    [74]JQ Broughton, CA Meli, P Vashishta, et al. Direct atomistic simulation of quartz crystal oscillators:Bulk Properites and nanoscale devices. Physical Review B,1997,56(2):611-618
    [75]TD Sewell, R Menikoff, D Bedrov, GS Smith. A molecular dynamics simulation study of elastic properties of HMX. Journal of Chemistry Physics,2003,119:7417-7426
    [76]梁海戈,王秀喜,吴恒安等.纳米铜单晶拉伸力学性能的分子动力学模拟.中国科学技术大学学报,2001,31(4):454-458
    [77]Rene de Borst. Challenges in computational materials science:Multiple scales, multi-physics and evolving discontinuities. Computational Materials Science 43 (2008) 1-15
    [78]V Belsky, MW Beall, J Fish, et al. Computer-aided Multiscale Modeling Tools for composite materials and structures. Computing Systems in Engineering,1995,6(3):213-223
    [79]Moran Wang, Ning Pan. Elastic property of multiphase composites with random microstructures. Journal of Computational Physics,2009
    [80]Moran Wang, Jihuan He, Jianyong Yu, et al. Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials. International Journal of Thermal Sciences 46 (2007)848-855
    [81]XH Zhang, L Xu, S Du, et al. Spark Plasma sintering and hot pressing of ZrB2-SiCw ultra-high temperature ceramics, Journal of Alloys and Compounds 466 (2008) 241-245
    [82]何雅玲,王勇,李庆.格子Boltzmann方法的理论及应用.北京:科学出版社,2008
    [83]郭照立,郑楚光.格子Boltzmann方法的原理及应用.北京:科学出版社,2008
    [84]SY Chen, GD Doolen. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998,30:329-364
    [85]YH Qian, D D'Humieres, P Lallemand. Lattice BGK Models for Navier-Stokes Equations. Europhys. Lett.,17(6), pp.479-484(1992)
    [86]PA Skordos. Initial and Boundary Conditions for the Lattice Boltzmann Method. Phys. Rev. E,48:4824-4842,1993
    [87]Zhaoli Guo, Baochang Shi, Chuguang Zheng. A coupled lattice BGK model for the Boussinesq equations. International Journal for Numerical Methods in Fluids,2002,39: 325-342
    [88]Zou QS, He XY. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids,1997,9(6):1591-1598
    [89]CP Wong, Raja S Bollampally. Thermal Conductivity, Elastic Modulus, and Coefficient of Thermal Expansion of Polymer Composites Filled with Ceramic Particles for Electronic Packaging. Journal Appl Polym Sci,1999,74:3396-3403
    [90]Shuqi Guo. Densification of ZrB2-based composites and their mechanical and physical properties:A review. Journal of the European Ceramic Society 29 (2009) 995-1011
    [91]Jyh Sheen, Zuowen Hong, Weihsing Liu, et al. Study of dielectric constants of binary composites at microwave frequency by mixture laws derived from three basic particle shapes. European Polymer Journal 45 (2009) 1316-1321
    [92]Chao-Hsun Chen, Yuh-Chung Wang. Effective thermal conductivity of misoriented short-fiber reinforced thermoplastics. Mechanics of Materials 23 (1996) 217-228
    [93]Yasser M Shabana, Naotake Noda. Numerical evaluation of the thermomechanical effective properties of a functionally graded material using the homogenization method. International Journal of Solids and Structures 45 (2008) 3494-3506
    [94]Jianlin Wang, Steven L Crouch, Sonia G Mogilevskaya. Numerical modeling of the elastic behavior of fiber-reinforced composites with inhomogeneous interphases. Composites Science and Technology 66 (2006) 1-18
    [95]Biswajit Banerjee, Daniel O Adams. On predicting the effective elastic properties of polymer bonded explosives using the recursive cell method. International Journal of Solids and Structures 41 (2004)481-509
    [96]Sreedhar Kari, Harald Berger, Reinaldo Rodriguez-Ramos, Ulrich Gabbert. Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles. Composite Structures 77 (2007) 223-231
    [97]https://www.nanohub.org/tools/oof2/
    [98]Sabrina Pricl, Marco Ferrone, Maurizio Fermeglia, Francesco Amato, et al. Multiscale modeling of protein transport in silicon membrane nanochannels. Part 1. Derivation of molecular parameters from computer simulations. Biomedical Microdevices 8 (2006): 1387-2176
    [99]Bassingthwaighte James B, Chizeck Howard Jay, Atlas Les E. Strategies and tactics in multiscale modeling of cell-to-organ systems. Proceedings of the IEEE 94(2006):819-831
    [100]艾树涛.非平衡态热力学概论.武汉:华中科技大学出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700