用户名: 密码: 验证码:
青藏高原高寒草甸群落和土壤对高原鼠兔密度变化的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高原鼠兔作为高寒草甸生态系统的一个关键组分,其对高寒草甸利害作用的转变取决于种群致灾密度,在非致灾密度条件下对草甸生态系统的健康具有重要的作用。因此研究草地群落和土壤对高原鼠兔密度变化的影响有利于定量刻画鼠类致灾密度阈值。本研究通过调查青藏高原高寒草甸区不同高原鼠兔密度区的群落组分,盖度、高度、生物量和功能群,以及相应点的土壤水分、容重、粒径组成、pH值、有机质、N、P、K含量,揭示青藏高原高寒草甸群落和土壤对高原鼠兔密度变化的影响过程,为定量刻画高原鼠兔的致灾密度阈值提供一定的科学依据。主要结果如下:
     1随着高原鼠兔密度增加,草甸群落总体高度和盖度呈现先降低后升高的趋势,而群落总体生物量表现为持续下降,当鼠洞密度为14个/625m2时,草甸群落内杂草最少,禾草最多,莎草重要值最大。
     2随着高原鼠兔密度的增加,草甸群落丰富度指数表现为先减小后增加的变化趋势,均匀度指数表现为先增加后减小,而多样性指数表现为增加、降低、增加和降低的双峰值变化态势,在鼠洞密度为14个/625m2时,草甸群落的多样性指数最大,鼠洞密度为34个/625m2时,丰富度指数、均匀度指数和多样性指数均最小。
     3优良牧草功能群和毒杂草功能群的高度均随着高原鼠兔密度增加而下降,优良牧草功能群的盖度在鼠洞密度为34个/625m2时最低,毒杂草功能群盖度在鼠洞密度为14个/625m2时最低。优良牧草功能生物量在鼠洞密度3个/625m2和14个/625m2间差异不显著,但均显著大于34个/625m2和54个/625m2时的生物量(P<0.05)。
     4高原鼠兔密度增加,导致土壤裸斑0-10cm的含水量下降,而10-20cm的含水量先增加后降低,土壤粉粒比例先增加后降低,砂粒比例先降低后增加,pH值先增加后降低,说明适量鼠洞增加了土壤通透性,加速了土壤水分向深层渗透,并增加土壤粉粒比例。
     5土壤有机质、有机碳及全氮含量均随着高原鼠兔密度增加为先增加后降低,峰值出现在鼠洞密度14个/625m2,而对土壤钾和磷含量没有显著影响,这说明适量的高原鼠兔活动改善了土壤养分,但改善幅度与养分类型密切相关。
As one of the key components of alpine meadow ecosystem, Ochatona curzoniae plays an important role in the stability and health of alpine meadow when its population density is below the warning threshold value, however, this small mammal causes the great disaster to alpine meadow when its population density surpass the warning threshold value. Therefore, it is important to determine the response of alpine meadow community and soil characteristics to changes of population density in Ochatona curzoniae for quantifying the warning threshold value. A field survey was conducted to disclose the relationship between soil, plant communities and population density of Ochatona curzoniae by measuring the species composition of plant community, cover, height, biomass characteristics, functional group, soil moisture, bulk density, particle size composition, pH, organic matter, N, P, K content and organic matter, and Main conclusions were drawn as following,
     Firstly, General height and cover of alpine meadow community firstly decreased and then increased with the increase of population density in Ochatona curzoniae, however, the biomass gradually decreased. The types of noxious weeds was the lowest, and the types of grasses and the important value of sedges was biggest when the burrow density was 14 number/625m2.
     Secondly, the richness index of plant community firstly decreased and then increased with the increase of population density in Ochatona curzoniae and the evenness index of plant community firstly increased and then decreased with the increase of population density in Ochatona curzoniae. However, the diversity index of plant community showed a peak and small peak when burrow density was 14 and 54 number/625m2, respectively. This study indicated that diversity index of plant community was the biggest when burrow density was 14 number/625m2 and three indexes were the lowest when burrow density was 34 number/625m2.
     Thirdly, The height of forage functional groups and poisonous weeds functional groups were all declined with the increase of population density in Ochatona curzoniae, and the cover of forage functional groups was lowest when burrow density was 34 number/625m2, and the cover of poisonous forbs functional groups was lowest when burrow density was 14 number/625m2. The forage biomass was not different at burrow density with 3 number /625m2 to 14 number/625m2, but significantly higher than those at burrow density with 34 number/625m2 and 54 number/625 m2 (P<0.05)
     Fourthly, the increase of Ochatona curzoniae density led soil water content of bare patches of 0-10cm layer to reduction, while the soil water content of bare patches of 10-20cm layer firstly increased and then declined. Soil silt percentage firstly increased and then decreased and sand percentage firstly decreased and then increased with the increase of population density in Ochatona curzoniae, in turn, pH value increased at first then decreased, indicating that rational burrow increased soil permeability, accelerated soil moisture to penetrate deeply, and increased the proportion of soil silt.
     Fifthly, soil organic matter, organic carbon and nitrogen content firstly increased and then decreased with increase of the density of Ochatona curzoniae, and peaking at 14 number/625m2 burrow density, while potassium and phosphorus content in soil did not respond to change of population density in Ochatona curzoniae, indicating that an rational amount of the plateau pika activities improved the soil nutrient.
引文
[1]鲍士旦.土壤农化分析[M].北京:中国农业出版,2000.
    [2]程瑾瑞,张知彬.啮齿动物对种子的传播[J].生物学通报,2005,40(4):11-13.
    [3]慈海鑫,张中学,雷晓水.青藏高原特有害鼠黑唇鼠兔的危害及防治对策[J].中国媒介生物学及控制杂志,2007,18(2):167-169.
    [4]崔庆虎,蒋志刚,刘季科,等.青藏高原草地退化原因述评[J].草业科学,2007,24(5):20-26.
    [5]邓址.啮齿动物的生态与防治[M].北京:北京师范大学出版社,1989:284-334.
    [6]樊乃昌,景增春,张道川.高原鼠兔与达乌尔鼠兔食物资源维生态位的研究[J].兽类学报,1995,29(1):36-40.
    [7]冯祚建,郑昌琳.中国鼠兔属(Ochotona)的研究—分类与分布[J].兽类学报,1985,5(4):269-289.
    [8]韩天虎,张卫国,丁连生.高原鼢鼠栖息地的植被特征[J].草业学报,1999,8(2):43-49.
    [9]何俊龄,张金沙,杨莹博,等.高原鼢鼠土丘空间格局及主要特征研究[J].草业学报,2006,15(1):107-112.
    [10]何俊龄.土壤种子库与鼢鼠土丘植被恢复的关系[D].甘肃:兰州大学,2007.
    [11]何晓瑞.我国小竹鼠洞系结构和食性的研究[J].动物学杂志,1994,29(1):35-37.
    [12]贾树海,崔学明,李绍良,等.牧压梯度上土壤理化性质的变化[C]Ⅱ草原生态系统研究(第五卷).北京:科学出版社,1996:12-16.
    [13]江小雷.植被均匀度与高原鼠兔种群数量相关性研究[J].草业学报,1998,7(1):60-64.
    [14]江小雷,张卫国,杨振宇,等.不同演替阶段鼢鼠土丘群落植物多样性变化研究
    [J].应用生态学报,2004,15(5):814-818.
    [15]李宝海,杰布,李顺凯,等.藏北高原主要草地类型鼠害调查报告[J].西藏科技,2007,(3):29-30.
    [16]李传勋等.动物学杂志[M],1966.(2):5-9.
    [17]李文靖,张堰铭.高原鼠兔对高寒草甸土壤有机质及湿度的作用[J].兽类学报,2006,26(4):331-337.
    [18]李希来,张国胜.高寒草地放牧演替与害鼠密度关系的研究[J].草业科学,1996,(1):44-48.
    [19]刘发央,刘荣堂.高原鼠兔的研究现状及最新进展[J].甘肃科技,2002,18(3):30-31.
    [20]刘荣堂,黄淑娟,李海霞.改造鼠荒地,改善草原生态环境[J].草原与草坪,2000,4:15-19.
    [21]刘伟,王启基,王溪,等.高寒草甸“黑土型”退化草地的成因及生态过程[J].草 地学报,1999,7(4):300-307.
    [22]刘伟,周华坤,周立.不同程度退化草地生物量的分布模式[J].中国草地,2005,27(2):9-15.
    [23]刘伟,张毓,王溪,等.植物生长季节不同栖息地高原鼠兔的食物选择[J].兽类学报,2008,28(4):358-366.
    [24]刘伟,张毓,王溪,等.高原鼠兔刈割行为与栖息地植物群落的关系[J].兽类学报,2009,29(1):40-49.
    [25]刘伟,许庆民,王溪,等.高原鼠兔挖掘活动对土壤中氮素含量的影响[J].兽类学报,2010,30(1):35-44.
    [26]路纪琪,肖治术,程瑾瑞,等.啮齿动物的分散贮食行为[J].兽类学报,2004,24(3):267-272.
    [27]马玉寿,郎百宁,王启基.“黑土型”退化草地研究工作的回顾与展望[J].草业科学,1999,16(2):5.9.
    [28]彭美科.高寒农区高原鼢鼠的危害及防治[J].中国植保导刊,2007,27(2):30-31.
    [29]钱迎请,甄仁德主编.生物多样性进展[M].北京:中国科学技术出版社,1994.
    [30]沈世英,陈一耕.青海省果洛州大武地区高原鼠兔生态学初步研究[J]. 兽类学报,1984,4(2):107-115.
    [31]王栋主编.牧草学各论[M].南京:畜牧兽医出版社,1956.
    [32]王根绪,沈永平,钱鞠,等.高寒草地植被覆盖变化对土壤水分循环影响研究[J].冰川冻土,2003,25(6):653-659.
    [33]王俊伶.青海省互助县高原鼢鼠危害及防治[J].养殖与饲料,2009,(1):96-97.
    [34]王权业,樊乃昌.高原鼢鼠的挖掘活动及其种群数量统计方法的探讨[J].兽类学报,1987,7(4):283-290.
    [35]王权业,边疆晖.施银柱高原鼢鼠土丘对矮嵩草草甸植被演替及土壤营养元素的作用[J].兽类学报,1993,13(1):31-37.
    [36]王权业,周文扬,张堰铭,等.高原鼢鼠挖掘活动的观察[J].兽类学报,1994,14(3):203-208.
    [37]王权业,张堰铭,魏万红,等.高原鼢鼠食性的研究[J].兽类学报,2000,20(3):193-199.
    [38]王鑫,惠文,杨会平.陇东北部草地鼠害发生现状及综合治理对策[J].草业科学,2007,24(7):62-65.
    [39]王清,王小明,王正寰.高原鼠兔生境选择的初步研究[J].四川大学学报(自然科学版),2004,41(4):1041-1045.
    [40]魏兴琥,李森,杨萍,等.高原鼠兔洞口区侵蚀过程高山草甸土壤的变化[J].中国草地学报,2006,28(4):24-29.
    [41]许冬梅,刘彩凤,谢应忠,等.盐池县草地沙化演替过程中土壤理化特性的变化[J].水土保持研究.2009,16(4):85-88.
    [42]许鹏主编.新疆草地资源及其利用[M].新疆:科技卫生出版杜,1993.
    [43]杨宏亮.甘肃鼢鼠中华鼢鼠的食性与食量研究[J].陕西师范大学学报,1991,19(增刊):47-55.
    [44]杨盛强,黎怀鸿.高原鼢鼠的活动特点与草地退化的关系[J].四川草原,1990,(2):36-39.
    [45]张芳,王涛,薛娴,等.不同沙漠化程度高寒草甸的土壤理化性质特征[J].干旱区资源与环境.2009,23(8):155-159.
    [46]张森琦,王永贵,赵永真.黄河源区多年冻土退化及其环境反映[J].冰川冻土,2004,26(1):1-6.
    [47]张为政.松嫩平原羊草草地植被退化与土壤盐渍化的关系[J].植物生态学报,1994,18(1):50-55.
    [48]张卫国,江小蕾,王树茂,等.鼢鼠的造丘活动及不同休牧方式对草地植被生产力的影响[J].西北植物学报,2004,24(10):1882-1887.
    [49]张卫国,江小蕾.高原鼢鼠与高原鼠兔共栖关系的研究[J].草业学报,1998,7(2):43-47.
    [50]张堰铭.高原鼢鼠对高寒草甸群落特征及演替的影响[J].动物学研究,1999,20(6):435-440.
    [51]张堰铭,刘季科.地下鼠生物学特征及其在生态系统中的作用[J].兽类学报,2002a,22(5):144-154.
    [52]张堰铭,刘季科.高原鼢鼠挖掘对植物生物量的效应及其反应格局[J].兽类学报,2002b,22(4):292-298.
    [53]张知彬.澳大利亚在应用免疫不育技术防治有害脊椎动物研究上的最新进展[J].兽类学报,2000,22(2):130-134.
    [54]张知彬,王福生.鼠类对山杏(Prunus armeniaca)种子扩散及存活作用研究[J].生态学报,2001,21(5):839-845.
    [55]钟文勤,樊乃昌.我国草地鼠害的发生原因及其生态治理对策[J].生物学通报,2002,37(4):1-4.
    [56]周毛措.草原害鼠种群危害牧草的灰色预测[J].养殖与饲料,2008(6):98-100.
    [57]周俗,唐川江,李开章,等.草原害鼠资源综合开发利用与鼠害防治新途径初探[J].四川草原,2005,120(11):37-38.
    [58]周文扬,魏万红.艾虎种群动态及其影响因素的研究[J].高原生物学集刊,1994,(12):161-171.
    [59]宗文杰,江小雷,严林.高原鼢鼠的干扰对高寒草地植物群落物种多样性的影响[J].草业科学,2006,23(10):68-72.
    [60]Andersen DC, Macmabon JA. Plant suceession following the Mount st. Helens Volcanic eruption:facilitation by a burrowing rodent, Thomomys talpoides[J]. The American midland naturalist,1985, (114):62-69.
    [61]Andersen D C. Below-ground herbivory in natural communities:a review emphasizing fossorial animals [J]. Biological reviews,1987, (62):261-286.
    [62]Aresco M J, Guyer C. Burrow abandonment by gopher tortoises in slash pine plantations of the conecuh national forest [J]. Wildlife management,1999,63 (1):26-35.
    [63]Bashari H, Smith C, Bosch OJH. Developing decision support tools for rangeland management by combining state and transition models and Bayesian belief networks[J]. Agricultural systems,2009,99:23-34.
    [64]Batzli GO, Pitelka FA. Influence of meadow mouse populations on California grassland[J]. Ecology,1970,51:1027-1039.
    [65]Brown P R, Huth N I, Banks P B, Singleton G R. Relationship between abundance of rodents and damage to agricultural crops [J]. Agriculture, ecosystems and environment, 2007,120:405-415.
    [66]Contreras LC, Gutierrez JR. Effects of the subterranean herbivorous rodent Spalacopus cyanus on herbaceous vegetation in arid coastal Chile [J]. Oecologia,1991, (87):106-109.
    [67]Cox, Allen. Soil transloeation by poeket gophers in a Mima mound field [J]. Ecologia,1987,(72):207-210.
    [68]Desmet P G, Cowling R M. Patch creation by fossorial rodents:a key process in the revegetation of phototoxic arid soils [J]. Journal of arid environments,1999,43:35-45.
    [69]Ellsion L. The pocket gopher in relation to soil erosion on mountains rang [J]. Ecology,1946,27:101-114.
    [70]Faulkes CG, Bennett NC. Family value:group dynamics and social control of reproduction in African mole-rats [J]. Trends in ecology and evolution,2001, 16(4):184-190.
    [71]Fichter E G S, Sather J H. Some feeding patterns of coyotes in Nebraska [J]. Ecology monger,1955, (25):1-37.
    [72]Grinnell J. The burrowing rodents of California as agents in soil formation [J]. Journal mammal,1923, (4):137-149.
    [73]Guo Q. Effects of banner-tail kangaroo rat mounds on Small-scale plant community structure[J]. Oecologia,1996, (106):247-256.
    [74]Gutierrez JR, Meserve PL, Herrera SL, et al. Effects of small mammals and vertebrate predators on vegetation in the Chilean semiarid zone [J]. Oecologia,1997, (109): 398-406.
    [75]Horn H S, MacArthur R H, Competition among fugitive species in a harlequin environment [J]. Ecology,1972,53:749-752.
    [76]Howe H F, Smallwood J. Ecology of seed dispersal [J] Annual reviews ecology system,1982, (13):201-228.
    [77]Huntly N, Lnouye R S. Pocket gophers in ecosystems:patterns and mechanisms [J]. Bioscience,1988, (38):786-793.
    [78]Huston M. Biological diversity:the coexistence of species on changing landscapes [D]. Cambridge, U K:Cambridge university press,1994.
    [79]Ingram CM, Burda H, Honeycutt RL. Molecular phylogenetics and taxonomy of the African mole-rats, genus Cryptomys and the new genus Coetomys Gray,1864[J]. Molecular phylogenetics and evolution,2004,31(3):997-1014.
    [80]Inouye R S, Huntly N J, Tilman D. Response of Microtus pennsylvanicus to vegetation fertlized with various nutrients, with particular emphasis on sodium and nitrogen concentrations in plant tissues[J]. Holarct ecology,1987a, (10):110-113.
    [81]Inouye R S, Huntly N J, Tilman D, Tester J R, Stillwell M A, Zinnel K C. Old-field succession on a Minnesota sand plain[J]. Ecology,1987b, (68):12-26.
    [82]Karsten W, Karin N, Vroni R. Habitat engineering under dry conditions:The impact of pikas on vegetation and site conditions in southern Mongolian steppes [J]. Journal of vegetation science,2007, (18):665-674.
    [83]Kerley G I H, Withford W G. Effects of pocket gophers on desert soils and vegetation [J]. Journal of arid environment,2004,58:155-166.
    [84]Kessing F L. Ecological interaction between small mammals, large mammals and vegetation in a tropical savanna of central Kenya[D]. Berkeley:university of California, 1987:20-21.
    [85]Kinlaw A. A review of burrowing by semi-fossorial vertebrates in arid environments [J]. Journal of arid environments,1999,41:127-145.
    [86]Koide R T, Huenneke L F, Mooney H A. Gopher mound soil reduces growth and affects on uptake of two annual grassland species[J]. Oecologia,1987, (72):284-290.
    [87]Laundre J W. Effects of small mammal burrows on water infiltration in a cool desert environment [J]. Oecologia,1993, (94):43-48.
    [88]Martin G H G, Dickinson N M. Small mammal abundance in relation to microhabitat in dry Sub-humid grassland in Kenya [J]. African journal of ecology,1985, (23):223-234.
    [89]McDonough W T. Revegetation of gopher mounds on aspen range in Utah [J]. Great basin nat,1974, (34):267-274.
    [90]Mielke H W. Mound building by pocket gophers (oeomyidae):their impact on soil and vegetation in North America[J]. Journal biogeogr,1977, (4):171-180.
    [91]Miller G J, Johnson S A, Smith L L. Ecological engineers:southeastern pocket gophers are one of nature's architects [D]. Florida:university of Florida,2008:1-4.
    [92]Moorhead D L, Fisher F M, Whitford W G. Cover of spring annuals on nitrogen-rich kangaroo rat mound in Chihuahuan desert grassland [J]. The American midland naturalist. 1988,(120):443-447.
    [93]Moroka N, Beck R, Pieper RD. Impact of burrowing activity of the banner-tail kangaroo rat on southern New Mexico desert rangelands [J]. Journal of range management, 1982, (35):707-710.
    [94]Nadrowski K. Life history strategy and ecosystem impact of a small mammal herbivore in a mountain steppe [D]. German:Philipps-Universitat Marburg,2006.
    [95]Newey S, Dahl F, Willebrand T. Thirgood S. Unstable dynamics and population limitation in mountain hares. Biological reviews,2007,82:527-549.
    [96]Norris RW, Zhou KY, Zhou CQ, et al. The phylogenetic position of the zokors (Myospalacinae) and comments on the families of muroids (Rodentia) [J]. Molecular phylogenetics and evolution,2004, (31):972-978.
    [97](?)rskov ER. Experiences with livestock causing soil nutrient depletion, nutrient excess and nutrient balance [M]. Proceedings of the animal nutrient association of India, world conference,2009:11-20.
    [98]Reichman O J, Smith S C. Impact of pocket gopher burrows on overlying vegetation [J]. Journal mammal,1985, (66):720-725.
    [99]Reig OA, Massarini AI, Ortells MO, et al. New karyotypes and C-banding patterns of the subterranean rodents of the genus Ctenomys (Caviomorpha, Octodontidae) from Argentina [J]. Mammalia,1992,56(4):603-623.
    [100]Rogers W E, Hartnett D C, Elder B. Effects of plains pocket gopher (Geomys bursarius) disturbances on tallgrass-prairie plant community structure[J]. American midland naturalist,2001, (145):344-357.
    [101]Rymer T, Schradin C, Pollay N. Social transmission of information about novel food in two populations of the African striped mouse, Rhabdomys pumilio [J]. Animal behavior,2008,76:1297-1304.
    [102]Savic IR, Nevo E. The spalacidae:evolutionary history, speciation and population biology [J]. Progress in clinical and biological research,1990, (335):129-153.
    [103]Schaal B, Leverich W. Survivorship patterns in an annual plant community [J]. Oecologia,1982,54:149-151.
    [104]Sherman PW, Jarvis JUM, Braude SH. Naked mole-rats [J]. Scientific American, 1992,(267):72-78.
    [105]Sherrod S K, Seastedt T R. Effects of the northern pocket gopher (Thomomys talpoides) on alpine soil characteristics, Niwot Ridge, CO [J]. Biogeochemistry,2001, (55):195-218.
    [106]Smith A T, Foggin J M. The plateau pika (ochotona curzoniae) is a keystone species for biodiversity on the Tibetan plateau[J]. Animal conservation,1999, (2):235-240.
    [107]Su Y Z, Zhao H L, Zhang T H. Fractal features of soil particle size distribution and the implication for indicating desertification[J]. Geoderma,2004,122:43-49.
    [108]Tilman D. Plant succession and gopher disturbance along an experimental gradient [J]. Oecologia,1983, (60):285-292.
    [109]Tilman D. plant strategies and the strueture and dynamics of plant communities [D]. Princeton:prinecton university press,1988.
    [110]Valone TJ, Sauter P. Effects of long-term cattle exclosure on vegetation and rodents at a desertified arid grassland site [J]. Journal of arid environments,2005,61: 161-170.
    [111]Whitford W G. Ecology of desert systems [M]. London:academic press,2002.
    [112]Williams L R, Cameron G N. Effects of removal of pocket gophers on a Texas coastal prairie [J]. The American midland naturalist,1986, (115):216-223.
    [113]Yoshihara Y, Okuro T, Undarmaa J, Sasaki a T, Takeuchi K. Are small rodents key promoters of ecosystem restoration in harsh environments? A case study of abandoned croplands on Mongolian grasslands [J]. Journal of arid environments,2008, in press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700