用户名: 密码: 验证码:
柴油/甲醇二元燃料燃烧反应动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油/甲醇二元燃料燃烧是缓解能源与环境双重压力的一种经济、高效、清洁的发动机燃烧模式。由于对这种燃烧模式中涉及到较为复杂和重要的燃料间燃烧化学耦合作用研究的缺失致使进一步的燃烧分析遭遇障碍。本文采用数值模拟和实验的方法,对柴油/甲醇参比燃料低温氧化(自燃)和高温氧化(燃烧)两个方面分别进行了反应动力学层面的研究与探讨。在此基础上,建立并验证了可以用于柴油/甲醇二元燃料缸内燃烧数值模拟的自燃与燃烧骨架机理。
     在柴油/甲醇低温氧化的研究中选取正庚烷作为柴油的参比燃料,开展了甲醇/正庚烷的自燃特性的数值模拟分析。结果表明甲醇的加入对正庚烷的自燃有强烈的抑制作用。通过反应路径分析和贡献率分析发现,甲醇的加入改变了原正庚烷低温氧化自由基池中OH·和HO_2·自由基的生成与消耗。温度为1000K以下时,甲醇实际上将高活性的OH·转化为不活跃的H_2O_2从而抑制OH·的增殖。当温度高于1000K时H_2O_2分解的能量壁垒被打破,甲醇对OH·的抑制作用消失,对自燃的抑制作用也随即消失,从数值上解释了在发动机和定容装置中获得的柴油引燃甲醇自燃的观察结果。在此研究基础上,将研究对象从甲醇扩展到其他高辛烷值燃料,依照这些高辛烷值燃料对正庚烷自燃抑制作用原理的不同将它们归类,总结并提出了高辛烷值燃料与高十六烷值燃料低温氧化的一般原理。
     在柴油/甲醇高温氧化的研究中选取正庚烷作为理论当量比条件下柴油的参比燃料,选取正庚烷/甲苯作为富燃条件下柴油的参比燃料。采用实验和模拟的手段研究了低压层流预混火焰中甲醇的加入对柴油参比燃料燃烧的影响。结果表明甲醇的加入无论在理论当量比下还是在高当量比下对柴油参比燃料的降解都没有影响,但在富燃火焰中可观察到多环芳香烃(PAHs)受到明显的抑制。原因在于醇的加入一方面替代了一部分烃燃料,另外使参比燃料中的甲苯在中温区被提前消耗,二者结合造成进入高温PAHs生成区的甲苯及其消耗率降低。在火焰中聚合反应的放大效应下,醇的加入使得PAHs生成率的降幅更为明显。
     在以上燃料氧化机理分析的基础上,根据柴油/甲醇二元燃料缸内燃烧的特点,创建了适用于缸内燃烧的甲醇/正庚烷骨架机理。该机理包含41步反应,30种物质。采用详细机理计算结果和基础燃烧实验对该机理在自燃、HCCI发动机缸内燃烧、层流预混火焰、甲醇火焰传播速率方面进行了验证。最后采用柴油/甲醇二元燃料缸内燃烧实验结果对该机理进行了耦合CFD计算的验证,结果表明该机理获得计算结果与试验结果具有很好的一致性。
Diesel/methanol dual fuel combustion is an economical, efficient and cleancombustion method, and it is helpful to solve the energy and environment problems.However the development of duel fuel combustion is hindered by the lack of the studyon chemical kinetics due to its complexity in duel fuel combustion. Modeling andexperimental research were carried out in present kinetics work to study the lowtemperature oxidation (auto ignition) and high temperature oxidation (combustion) ofthe diesel surrogate fuel/methanol blends. Based on the kinetics analysis, a skeletalmechanism used in dual fuel in-cylinder auto ignition and combustion was built andverified.
     N-heptane was selected as the diesel surrogate fuel in diesel/methanol lowtemperature oxidation. The ignition properties of methanol/n-heptane dual fuel havebeen studied via kinetics simulation. The resu lts show that the ignition of n-heptane isobviously delayed by methanol addition. The production and consumption of OH· andHO_2· radical in the radical pool are changed which is observed in the reaction pathand rate contribution analysis. OH· with high activity is converted into H_2O_2with lowactivity by the help of methanol below1000K. When the temperature exceeds1000K, the energy barrier of H_2O_2decomposition is broken, and then the inhibition effectof methanol on OH· concentration and ignition disappears consequently. Thus theignition inhibition observed in the engine in-cylinder combustion and in the constantvessel can be explained. Further research is expended to other common used highoctane number fuels. These fuels are classified according to their differentmechanisms of ignition inhibition effect on n-heptane. A universal rule of thechemical mechanism between high octane number fuel and high cetane number fuel isfinally obtained.
     N-heptane and n-heptane/toluene blends were selected as the diesel surrogatefuel in diesel/methanol high temperature oxidation under stoichiometric ratio and fuelrich conditions respectively. Low pressure premixed laminar flame were used in theexperimental and simulation works to seek the effect of methanol addition on dieselsurrogate combustion. The results show that methanol has little effect on thedegradation of hydrocarbon fuel under both stoichiometric ratio and fuel richconditions. However, in the fuel rich flames, the concentrations of polycyclic aromatic hydrocarbons (PAHs) decrease significantly after alcohol addition. The reason is: first,a part of hydrocarbon fuels is replaced by alcohol; second, toluene as the parent fuelof PAHs is consumed in intermediated temperature zone in advance by the help ofalcohol oxidation, and then toluene, which flows into PAHs formation zone with hightemperature, decreases. In addition, the polymerization reactions have anamplification effect which leads to the more significant decrease in the productionrates of PAHs than the decrease in the consumption rates of toluene.
     A methanol/n-heptane skeletal mechanism which is used for in-cylindercombustion simulation was built based on the kinetics analysis above and theproperties of dual fuel in-cylinder combustion. The mechanism contains41reactionsand30kinds of species. It has been validated by comparing with the results ofdetailed mechanism simulation and fundamental experiments, including auto ignition,HCCI engine combustion, premixed flame and methanol flame speed. Finally thepressure and heat release rate of diesel/methanol duel fuel in-cylinder combustionwere adopted to validate the reliability of skeletal mechanism coupling with CFDsimulation. Excellent consistencies between the numerical results and theexperimental results were obtained.
引文
[1]吴春芳,谷颖,金云,等,2012年二季度中国成品油市场分析及三季度展望,国际石油经济,2012,6):73–77.
    [2]丁少恒,龚满英,近期中国消费柴汽比特点分析及未来趋势预测,国际石油经济,2009,4):48–51.
    [3]苏万华,赵华,王建昕,等,均质压燃低温燃烧发动机理论与技术,北京:科学出版社,2010,110–114.
    [4]2005.7-2011.10国内国际原油价格走势,[Online]. Available:http://auto.ifeng.com/news/special/youjia/index.shtml2012-09-27.
    [5] Reed T. B., Lerner R. M., Methanol: a versatile fuel for immediate use, Science,1973,182(4119):1299–1304.
    [6] Seko T., Kuroda E., Combustion improvement of a premixed chargecompression ignition methanol engine using flash boiling fuel injection, SAEPaper,2001,01–3611.
    [7] Bayraktar H., An experimental study on the performance parameters of anexperimental CI engine fueled with diesel--methanol--dodecanol blends, Fuel,2008,87(2):158–164.
    [8] Canakci M., Sayin C., Ozsezen A. N., et al., Effect of injection pressure on thecombustion, performance, and emission characteristics of a diesel engine fueledwith methanol-blended diesel fuel, Energy&Fuels,2009,23(6):2908–2920.
    [9] Canakci M., Sayin C., Gumus M., Exhaust emissions and combustioncharacteristics of a direct injection (DI) diesel engine fueled with methanol-diesel fuel blends at different injection timings, Energy&Fuels,2008,22(6):3709–3723.
    [10] Huang Z., Lu H., Jiang D., et al., Performance and emissions of a compressionignition engine fueled with diesel/oxygenate blends for various fuel deliveryadvance angles, Energy&fuels,2005,19(2):403–410.
    [11] Chao M. R., Lin T. C., Chao H. R., et al., Effects of methanol-containingadditive on emission characteristics from a heavy-duty diesel engine, Scienceof the total environment,2001,279(1):167–179.
    [12] Ribeiro N. M., Pinto A. C., Quintella C. M., et al., The role of additives fordiesel and diesel blended (ethanol or biodiesel) fuels: a review, Energy&fuels,2007,21(4):2433–2445.
    [13] Qi D. H., Chen H., Geng L. M., et al., Performance and combustioncharacteristics of biodiesel--diesel--methanol blend fuelled engine, AppliedEnergy,2010,87(5):1679–1686.
    [14] Reyes Y., Aranda D. A. G., Santander L. A. M., et al., Action principles ofcosolvent additives in ethanol-diesel blends: stability studies, Energy&Fuels,2009,23(5):2731–2735.
    [15] Cheng C. H., Cheung C. S., Chan T. L., et al., Experimental investigation onthe performance, gaseous and particulate emissions of a methanol fumigateddiesel engine., The Science of the total environment,2008,389(1):115.
    [16] Zhang Z. H., Cheung C. S., Chan T. L., et al., Experimental investigation onregulated and unregulated emissions of a diesel/methanol compoundcombustion engine with and without diesel oxidation catalyst, Science of theTotal Environment,2010,408(4):865.
    [17] Cheung C. S., Zhang Z. H., Chan T. L., et al., Investigation on the Effect ofPort-Injected Methanol on the Performance and Emissions of a Diesel Engineat Different Engine Speeds, Energy&Fuels,2009,23(11):5684–5694.
    [18] Yao C., Cheung C. S., Cheng C., et al., Effect of diesel/methanol compoundcombustion on diesel engine combustion and emissions, Energy Conversionand Management,2008,49(6):1696–1704.
    [19] Yao C., Cheung C. S., Cheng C., et al., Reduction of smoke and NO x fromdiesel engines using a diesel/methanol compound combustion system, Energy&fuels,2007,21(2):686–691.
    [20] Liu J., Li Y., Li G., et al., Effect of Pilot Diesel Quantity and Fuel DeliveryAdvance Angle on the Performance and Emission Characteristics of aMethanol-Fueled Diesel Engine, Energy&Fuels,2010,24(3):1611–1616.
    [21] Song R., Liu J., Wang L., et al., Performance and emissions of a diesel enginefuelled with methanol, Energy&Fuels,2008,22(6):3883–3888.
    [22] Yoshida K., Shoji H., Tanaka H., Engine Performance of Lean Methanol-AirMixture Ignited by Diesel Fuel Injection Applied with Internal EGR, SAEPaper,2000,01–2012.
    [23] Popa M. G., Negurescu N., Pana C., et al., Results obtained by methanolfuelling diesel engine, SAE paper,2001,01–3748.
    [24] Udayakumar R., Sundaram S., Sivakumar K., Engine performance and exhaustcharacteristics of dual fuel operation in DI diesel engine with methanol, SAEPaper,2004,01–0096.
    [25] Surawski N. C., Miljevic B., Roberts B. A., et al., Particle emissions, volatility,and toxicity from an ethanol fumigated compression ignition engine,Environmental science&technology,2009,44(1):229–235.
    [26] Cheng C. H., Cheung C. S., Chan T. L., et al.,Comparison of emissions of adirect injection diesel engine operating on biodiesel with emulsified andfumigated methanol, Fuel,2008,87(10):1870–1879.
    [27] Abu-Qudais M., Haddad O., Qudaisat M., The effect of alcohol fumigation ondiesel engine performance and emissions, Energy Conversion and Management,2000,41(4):389–399.
    [28] Lyon R. K., Cole J. A., Kramlich J. C., et al., The selective reduction of SO3toSO2and the oxidation of NO to NO2by methanol, Combustion and Flame,1990,81(1):30–39.
    [29] Diesel/CNG dual fuel injector,.[Online]. Available:http://www.westport.com/is/core-technologies/fuel-injectors/.
    [30] Ekholm K., Karlsson M., Tunest l P., Johansson R., Johansson B., Strandh P.,Ethanol-Diesel Fumigation in a Multi-Cylinder Engine, SAE InternationalJournal of Fuels and Lubricants,2009,1(1):26–36.
    [31] Curran S. J., Prikhodko V. L., Cho K., et al., In-cylinder fuel blending ofgasoline/diesel for improved efficiency and lowest possible emissions on amulti-cylinder light-duty diesel engine, SAE paper,2010,01–2206.
    [32] Splitter D., Hanson R., Kokjohn S., et al., Reactivity controlled compressionignition (RCCI) heavy-duty engine operation at mid-and high-loads withconventional and alternative fuels, SAE Paper,2011,01–0363.
    [33] Lü X., Han D., Huang Z., Fuel design and management for the control ofadvanced compression-ignition combustion modes, Progress in Energy andCombustion Science,2011,37(6):741–783.
    [34] Yao M., Zheng Z., Liu H., Progress and recent trends in homogeneous chargecompression ignition (HCCI) engines, Progress in Energy and CombustionScience,2009,35(5):398–437.
    [35] C H Bamford, Tipper C. F. H., Gas-phase combustion comprehensive chemicalkinetics vol.17. Oxford and New York:,Elsevier scientific publishingcompany Amsterdam,1977.
    [36] Hai Wang,2011年反应动力学暑期课堂PPT,上海交通大学内燃机研究所,2011.
    [37] n-Heptane, Detailed Mechanism, Version3.0,2011.[Online]. Available:https://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion-n_heptane_version_3.
    [38] Mechanisms n-Octane to n-Hexadecane,2012.[Online]. Available:https://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion-c8c16_n_alkanes.
    [39] Tree D. R., Svensson K. I., Soot processes in compression ignition engines,Progress in Energy and Combustion Science,2007,33(3):272–309.
    [40] Karatacs A. E., Gülder. L., Soot formation in high pressure laminar diffusionflames, Progress in Energy and Combustion Science,2012,38(6):818-845.
    [41] Wang H., Formation of nascent soot and other condensed-phase materials inflames, Proceedings of the Combustion Institute,2011,33(1):41–67.
    [42] Dooley S., Won S. H., Chaos M., et al., A jet fuel surrogate formulated by realfuel properties, Combustion and Flame,2010,157(12):2333–2339.
    [43] Mehl M., Pitz W. J., Westbrook C. K., et al., Kinetic modeling of gasolinesurrogate components and mixtures under engine conditions, Proceedings ofthe Combustion Institute,2011,33(1):193–200.
    [44] Ra Y., Reitz R. D., A combustion model for IC engine combustion simulationswith multi-component fuels, Combustion and flame,2011,158(1):69–90.
    [45] Li J., Zhao Z., Kazakov A., et al., A comprehensive kinetic mechanism for CO,CH2O, and CH3OH combustion, International Journal of Chemical Kinetics,2007,39(3):109–136.
    [46] Klippenstein S. J., Harding L. B., Davis M. J., et al., Uncertainty driventheoretical kinetic studies for CH3OH ignition: HO2+CH3OH and O2+CH3OH,Proceedings of the Combustion Institute,33(1):351-357.
    [47] Pitz W. J., Mueller C. J., Recent progress in the development of dieselsurrogate fuels, Progress in Energy and Combustion Science,2011,37(3):330–350.
    [48] Yilmaz N., Modeling of chemical processes in a diesel engine with alcoholfuels, Journal of Energy Resources Technology,2007,129(4):355-360.
    [49]李步照,李博,李俊,等,柴油/乙醇燃料发动机缸内燃烧过程的数值模拟,农机化研究,2010,32(9):223–226.
    [50]黎苏,郑清平,何金平,甲醇-柴油混合燃料发动机喷雾及燃烧过程的数值模拟,拖拉机与农用运输车,2010,37(4):49–51.
    [51] Kee R. J., Rupley F. M., Meeks E., et al., CHEMKIN-III: A FORTRANchemical kinetics package for the analysis of gas-phase chemical and plasmakinetics. Sandia National Laboratories Livermore, CA,1996.
    [52] Lutz A. E., Kee R. J., Miller J. A., SENKIN: A FORTRAN program forpredicting homogeneous gas phase chemical kinetics with sensitivity analysis,Sandia National Laboratories Report SAND87-8248,1988,.
    [53] Kee R. J., Grcar J. F., Smooke M. D., et al., PREMIX: A FORTRAN programfor modeling steady laminar one-dimensional premixed flames, Sandia reportSAND85-8240,1985,.
    [54] Nikolai Nikolaevich Semenov, Chemical kinetics and chain reactions. TheClarendon press,1935.
    [55] Hamosfakidis V., Reitz R. D., Optimization of a hydrocarbon fuel ignitionmodel for two single component surrogates of diesel fuel, Combustion andFlame,2003,132(3):433–450.
    [56] Halstead M. P., Kirsch L. J., Prothero A., et al., A mathematical model forhydrocarbon autoignition at high pressures, Proceedings of the Royal Societyof London. A. Mathematical and Physical Sciences,1975,346(1647):515–538.
    [57] Battin-Leclerc F., Detailed chemical kinetic models for the low-temperaturecombustion of hydrocarbons with application to gasoline and diesel fuelsurrogates, Progress in Energy and Combustion Science,2008,34(4):440–498.
    [58] Zádor J., Taatjes C. A., Fernandes R. X., Kinetics of elementary reactions inlow-temperature autoignition chemistry, Progress in Energy and CombustionScience,2011,37(4):371–421.
    [59] Dagaut P., Togbé C., Experimental and modeling study of the kinetics ofoxidation of ethanol-n-heptane mixtures in a jet-stirred reactor, Fuel,2010,89(2):280–286.
    [60] Mouna m-Rousselle C., Saisirirat P., Foucher F., et al., Auto-ignition andcombustion characteristics in HCCI and JSR using1-butanol/n-heptane andethanol/n-heptane blends, Proceedings of the Combustion Institute,2011,33(2):3007–3014.
    [61] Dagaut P., Togbé C., Experimental and modeling study of the kinetics ofoxidation of ethanol-gasoline surrogate mixtures (E85surrogate) in ajet-stirred reactor, Energy&Fuels,2008,22(5):3499–3505.
    [62] Dagaut P., Togbé C., Oxidation kinetics of butanol--gasoline surrogatemixtures in a jet-stirred reactor: experimental and modeling study, Fuel,2008,87(15):3313–3321.
    [63] Lü X., Hou Y., Zu L., et al., Experimental study on the auto-ignition andcombustion characteristics in the homogeneous charge compression ignition(HCCI) combustion operation with ethanol/n-heptane blend fuels by portinjection, Fuel,2006,85(17):2622–2631.
    [64] Lü X., Ji L., Zu L., et al., Experimental study and chemical analysis ofn-heptane homogeneous charge compression ignition combustion with portinjection of reaction inhibitors, Combustion and flame,2007,149(3):261–270.
    [65] Lü X., Hou Y., Zu L., et al., Inhibition of autoignition and combustion rate forn-heptane homogeneous charge compression ignition combustion by methanoladditive, Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2006,220(11):1629–1639.
    [66] Cancino L. R., Fikri M., Oliveira A. A. M., Schulz C., Ignition delay times ofethanol-containing multi-component gasoline surrogates: Shock-tubeexperiments and detailed modeling, Fuel,2011,90(3):1238–1244.
    [67] Fikri M., Herzler J., Starke R., et al., Autoignition of gasoline surrogatesmixtures at intermediate temperatures and high pressures, Combustion andflame,2008,152(1):276–281.
    [68] Haas F. M., Chaos M., Dryer F. L., Low and intermediate temperatureoxidation of ethanol and ethanol--PRF blends: An experimental and modelingstudy, Combustion and Flame,2009,156(12):2346–2350.
    [69]姚春德,魏立江,阳向兰,等,柴油引燃乙醇均质混合气的二元燃料燃烧特性,内燃机学报,2012,30(003):207–213.
    [70]许汉君,姚春德,杨广峰,等,柴油在乙醇高温热氛围中着火和燃烧的特性,内燃机学报,2010,3):207–213.
    [71] Sahoo B. B., Sahoo N., Saha U. K., Effect of engine parameters and type ofgaseous fuel on the performance of dual-fuel gas diesel engines-A criticalreview, Renewable and Sustainable Energy Reviews,2009,13(6):1151–1184.
    [72] Pitz W. J., Naik C. V, Mhaoldúin T. N., et al., Modeling and experimentalinvestigation of methylcyclohexane ignition in a rapid compression machine,Proceedings of the Combustion Institute,2007,31(1):267–275.
    [73] Kumar K., Sung C. J., Autoignition of methanol: Experiments andcomputations, International Journal of Chemical Kinetics,2011,43(4):175–184.
    [74] Fish A., The cool flames of hydrocarbons, Angewandte Chemie InternationalEdition in English,1968,7(1):45–60.
    [75] Estupi án E. G., Smith J. D., Tezaki A., et al., Measurements and Modeling ofDO2Formation in the Reactions of C2D5and C3D7Radicals with O2, TheJournal of Physical Chemistry A,2007,111(19):4015–4030.
    [76] Battin-Leclerc F., Herbinet O., Glaude P. A., et al., Experimental confirmationof the low-temperature oxidation scheme of alkanes, Angewandte Chemie,2010,122(18):3237–3240.
    [77] Curran H. J., Gaffuri P., Pitz W. J., et al., A comprehensive modeling study ofn-heptane oxidation, Combustion and flame,1998,114(1):–2):149–177.
    [78] Andrae J., Johansson D., Bj rnbom P., et al., Co-oxidation in the auto-ignitionof primary reference fuels and n-heptane/toluene blends, Combustion andflame,2005,140(4):267–286.
    [79] Glaude P. A., Conraud V., Fournet R., et al., Modeling the oxidation ofmixtures of primary reference automobile fuels, Energy&fuels,2002,16(5):1186–1195.
    [80] Dibble T. S., Mechanism and dynamics of the CH2OH+O2reaction, Chemicalphysics letters,2002,355(1):193–200.
    [81] Ciezki H. K., Adomeit G., Shock-tube investigation of self-ignition ofn-heptane-air mixtures under engine relevant conditions, Combustion andFlame,1993,93(4):421–433.
    [82] Shen H. P. S., Steinberg J., Vanderover J., et al., A shock tube study of theignition of n-heptane, n-decane, n-dodecane, and n-tetradecane at elevatedpressures, Energy&Fuels,2009,23(5):2482–2489.
    [83] Hong Z., Cook R. D., Davidson D. F., et al., A Shock Tube Study of OH+H2O2=H2O+HO2and H2O2+M=2OH+M using Laser Absorption of H2O andOH, The Journal of Physical Chemistry A,2010,114(18):5718–5727.
    [84] Kappel C., Luther K., Troe J., Shock wave study of the unimoleculardissociation of H2O2in its falloff range and of its secondary reactions, Phys.Chem. Chem. Phys.,2002,4(18):4392–4398.
    [85] Frenklach M., Reaction mechanism of soot formation in flames, PhysicalChemistry Chemical Physics,2002,4(11):2028–2037.
    [86] Hansen N., Cool T. A., Westmoreland P. R., et al., Recent contributions offlame-sampling molecular-beam mass spectrometry to a fundamentalunderstanding of combustion chemistry, Progress in Energy and CombustionScience,2009,35(2):168–191.
    [87] Lemaire R., Faccinetto A., Therssen E., et al., Experimental comparison of sootformation in turbulent flames of diesel and surrogate diesel fuels, Proceedingsof the Combustion Institute,2009,32(1):737–744.
    [88] Yao C., Yang X., Roy R. R., et al., The effects of MTBE/ethanol additives ontoxic species concentration in gasoline flame, Energy&Fuels,2009,23(7):3543–3548.
    [89] Yao C., Li J., Li Q., et al., Study on combustion of gasoline/MTBE in laminarflame with synchrotron radiation, Chemosphere,2007,67(10):2065–2071.
    [90] Song J., Yao C., Liu S., et al., Effects of ethanol addition on n-heptanedecomposition in premixed flames, Energy&Fuels,2008,22(6):3806–3809.
    [91] Zhang H. R., Eddings E. G., Sarofim A. F., et al., Fuel dependence of benzenepathways, Proceedings of the Combustion Institute,2009,32(1):377–385.
    [92] Hansen N., Kasper T., Yang B., et al., Fuel-structure dependence of benzeneformation processes in premixed flames fueled by C6H12isomers, Proceedingsof the Combustion Institute,2011,33(1):585–592.
    [93] Westbrook C. K., Pitz W. J., Curran H. J., Chemical kinetic modeling study ofthe effects of oxygenated hydrocarbons on soot emissions from diesel engines,The Journal of Physical Chemistry A,2006,110(21):6912–6922.
    [94] Yu W., Chen G., Huang Z., et al., Experimental and kinetic modeling study ofmethyl butanoate and methyl butanoate/methanol flames at differentequivalence ratios and C/O ratios, Combustion and Flame,2012,159(1):44–54.
    [95] Dias V., Vandooren J., Experimental and modeling studies of C2H4/O2/Ar,C2H4/methylal/O2/Ar and C2H4/ethylal/O2/Ar rich flames and the effect ofoxygenated additives, Combustion and Flame,2011,158(5):848–859.
    [96] Korobeinichev O. P., Yakimov S. A., Knyazkov D. A., et al., A study oflow-pressure premixed ethylene flame with and without ethanol usingphotoionization mass spectrometry and modeling, Proceedings of theCombustion Institute,2011,33(1):569–576.
    [97] Gerasimov I. E., Knyazkov D. A., Yakimov S. A., et al., Structure ofatmospheric-pressure fuel-rich premixed ethylene flame with and withoutethanol, Combustion and Flame,2012,159(5):1840–1850.
    [98] Inal F., Senkan S. M., Effects of oxygenate concentration on species molefractions in premixed n-heptane flames, Fuel,2005,84(5):495–503.
    [99] Therrien R. J., Ergut A., Levendis Y. A., et al., Investigation of criticalequivalence ratio and chemical speciation in flames of ethylbenzene--ethanolblends, Combustion and Flame,2010,157(2):296–312.
    [100] Wang J., Struckmeier U., Yang B., et al., Isomer-specific influences on thecomposition of reaction intermediates in dimethyl ether/propene andethanol/propene flame, The Journal of Physical Chemistry A,2008,112(39):9255–9265.
    [101] Kohse-H inghaus K., O wald P., Struckmeier U., et al., The influence ofethanol addition on premixed fuel-rich propene--oxygen--argon flames,Proceedings of the Combustion Institute,2007,31(1):1119–1127.
    [102] Frassoldati A., Faravelli T., Ranzi E., et al., Kinetic modeling study of ethanoland dimethyl ether addition to premixed low-pressure propene--oxygen--argonflames, Combustion and Flame,2011,158(7):1264–1276.
    [103] McEnally C. S., Pfefferle L. D., The effects of dimethyl ether and ethanol onbenzene and soot formation in ethylene nonpremixed flames, Proceedings ofthe Combustion Institute,2007,31(1):603–610.
    [104] Yoon S. S., Lee S. M., Chung S. H., Effect of mixing methane, ethane, propane,and propene on the synergistic effect of PAH and soot formation inethylene-base counterflow diffusion flames, Proceedings of the CombustionInstitute,2005,30(1):1417–1424.
    [105]袁涛,正庚烷,异辛烷热解和预混火焰的实验及动力学模型研究,博士学位论文,中国科学技术大学,2010.
    [106] McEnally C. S., Pfefferle L. D., Atakan B., et al., Studies of aromatichydrocarbon formation mechanisms in flames: Progress towards closing thefuel gap, Progress in Energy and Combustion Science,2006,32(3):247–294.
    [107] Glassman I., Soot formation in combustion processes, Symposium(International) on Combustion,1989,22(1):295–311.
    [108] Anderson H., McEnally C. S., Pfefferle L. D., Experimental study ofnaphthalene formation pathways in non-premixed methane flames doped withalkylbenzenes, Proceedings of the Combustion Institute,2000,28(2):2577–2583.
    [109]李玉阳,芳烃燃料低压预混火焰的实验和动力学模型研究,博士学位论文,中国科学技术大学,2010.
    [110] Xu H., Yao C., Yuan T., et al., Measurements and modeling study ofintermediates in ethanol and dimethy ether low-pressure premixed flames usingsynchrotron photoionization, Combustion and Flame,2011,158(9):1673–1681.
    [111]马礼敦,杨福家,同步辐射应用概论.上海:复旦大学出版社,2005.
    [112]潘洋,张泰昌,齐飞,同步辐射单光子电离技术在燃烧和其他研究中的应用,光子科技创新与产业化—长三角光子科技创新论坛暨2006年安徽博士科技论坛论文集.
    [113] Nist Webbook,2012.[Online]. Available: http://webbook.nist.gov/chemistry.
    [114] Cool T. A., McIlroy A., Qi F., et al., Photoionization mass spectrometer forstudies of flame chemistry with a synchrotron light source, Review of scientificinstruments,2005,76(9):94102.
    [115] Li Y., Qi F., Recent applications of synchrotron VUV photoionization massspectrometry: insight into combustion chemistry, Accounts of chemicalresearch,2009,43(1):68–78.
    [116] Qi F., Yang R., Yang B., et al., Isomeric identification of polycyclic aromatichydrocarbons formed in combustion with tunable vacuum ultravioletphotoionization, Review of scientific instruments,2006,77(8):84101.
    [117] Cool T. A., Nakajima K., Mostefaoui T. A., et al., Selective detection ofisomers with photoionization mass spectrometry for studies of hydrocarbonflame chemistry, The Journal of chemical physics,2003,119(16):8356-8366.
    [118] Cool T. A., Nakajima K., Taatjes C. A., et al., Studies of a fuel-rich propaneflame with photoionization mass spectrometry, Proceedings of the CombustionInstitute,2005,30(1):1681–1688.
    [119] Cool T. A., Wang J., Hansen N., et al., Photoionization mass spectrometry andmodeling studies of the chemistry of fuel-rich dimethyl ether flames,Proceedings of the Combustion Institute,2007,31(1):285–293.
    [120] Robinson J. C., Sveum N. E., Neumark D. M., Determination of absolutephotoionization cross sections for vinyl and propargyl radicals, The Journal ofchemical physics,2003,119(11):5311-5315.
    [121] Adam T., Zimmermann R., Determination of single photon ionization crosssections for quantitative analysis of complex organic mixtures, Analytical andbioanalytical chemistry,2007,389(6):1941–1951.
    [122] Wang J., Yang B., Cool T. A., et al., Near-threshold absolute photoionizationcross-sections of some reaction intermediates in combustion, InternationalJournal of Mass Spectrometry,2008,269(3):210–220.
    [123] Zhou Z., Zhang L., Xie M., et al., Determination of absolute photoionizationcross-sections of alkanes and cyclo-alkanes, Rapid Communications in MassSpectrometry,2010,24(9):1335–1342.
    [124] Cool T. A., Wang J., Nakajima K., et al., Photoionization cross sections forreaction intermediates in hydrocarbon combustion, International Journal ofMass Spectrometry,2005,247(1):18–27.
    [125] Kanno N., Tonokura K., Vacuum Ultraviolet Photoionization Mass Spectra andCrossSections for Volatile Organic Compounds at10.5eV, Appliedspectroscopy,2007,61(8):896–902.
    [126] Photonionization Cross Section Database (Version1.0), National SynchrotronRadiation Laboratory, Hefei, China,2011.[Online]. Available:http://flame.nsrl.ustc.edu.cn/en/database.htm.
    [127] Kint J. H., A noncatalytic coating for platinum-rhodium thermocouples,Combustion and Flame,1970,14(2):279–281.
    [128] Fristrom R. M., Fristrom R. M., Flame structure and processes. OxfordUniversity Press Oxford,1995.
    [129] Lamprecht A., Atakan B., Kohse-H inghaus K., Fuel-rich flame chemistry inlow-pressure cyclopentene flames, Proceedings of the Combustion Institute,2000,28(2):1817–1824.
    [130] Wang H., You X., Joshi A. V., et al., High-Temperature Combustion ReactionModel of H2/CO/C1-C4Compounds,,2007.[Online]. Available:http://ignis.usc.edu/USC_Mech_II.htm.
    [131] Li Y., Cai J., Zhang L., et al., Investigation on chemical structures of premixedtoluene flames at low pressure, Proceedings of the Combustion Institute,2011,33(1):593–600.
    [132] Tian Z., Pitz W. J., Fournet R., et al., A detailed kinetic modeling study oftoluene oxidation in a premixed laminar flame, Proceedings of the CombustionInstitute,2011,33(1):233–241.
    [133] Wang H., Dames E., Sirjean B., et al., A high-temperature chemical kineticmodel of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-,n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurFversion2.0,,2010.[Online]. Available:http://melchior.usc.edu/JetSurF/JetSurF2.0.
    [134] Li J., Experimental and numerical studies of ethanol chemical kinetic, PhDThesis, Princeton University,2004.
    [135] Li Y., Zhang L., Tian Z., et al., Experimental study of a fuel-rich premixedtoluene flame at low pressure, Energy&Fuels,2009,23(3):1473–1485.
    [136]徐广兰,姚春德,许汉君,等,甲醇,乙醇富燃层流预混火焰的模拟及试验研究,工程热物理学报,2012,33(3):513-516.
    [137] Machrafi H., Cavadias S., Gilbert P., An experimental and numerical analysisof the HCCI auto-ignition process of primary reference fuels, toluene referencefuels and diesel fuel in an engine, varying the engine parameters, Fuelprocessing technology,2008,89(11):1007–1016.
    [138] Gustavsson J., Golovitchev V. I., Spray combustion simulation based ondetailed chemistry approach for diesel fuel surrogate model, SAE paper,2003,01–1848.
    [139] Taatjes C. A., Hansen N., McIlroy A., et al., Enols are common intermediatesin hydrocarbon oxidation, Science,2005,308(5730):1887–1889.
    [140] Harper M. R., Van Geem K. M., Pyl S. P., et al.,Comprehensive reactionmechanism for n-butanol pyrolysis and combustion, Combustion and flame,2011,158(1):16–41.
    [141] Wang H., Frenklach M., A detailed kinetic modeling study of aromaticsformation in laminar premixed acetylene and ethylene flames, Combustion andflame,1997,110(1):173–221.
    [142] Battin-Leclerc F., Bounaceur F., C me G. M., et al., EXGAS-ALKANES: Asoftware for the automatic generation of mechanisms for the oxidation ofalkanes, CNRS,2004.
    [143] Lu T., Law C. K., Toward accommodating realistic fuel chemistry inlarge-scale computations, Progress in Energy and Combustion Science,2009,35(2):192–215.
    [144] Singer M. A., Pope S. B., Exploiting ISAT to solve the reaction--diffusionequation, Combustion theory and modelling,2004,8(2):361–383.
    [145] Gou X., Sun W., Chen Z., et al., A dynamic multi-timescale method forcombustion modeling with detailed and reduced chemical kinetic mechanisms,Combustion and Flame,2010,157(6):1111–1121.
    [146] Lu T., Law C. K., A directed relation graph method for mechanism reduction,Proceedings of the Combustion Institute,2005,30(1):1333–1341.
    [147] Lam S. H., Coussis D. A., Understanding complex chemical kinetics withcomputational singular perturbation, Symposium (International) onCombustion,1989,22(1):931–941.
    [148] Lu T., Ju Y., Law C. K., Complex CSP for chemistry reduction and analysis,Combustion and Flame,2001,126(1):1445–1455.
    [149] Chen W., Shuai S., Wang J., A soot formation embedded reduced reactionmechanism for diesel surrogate fuel, Fuel,2009,88(10):1927–1936.
    [150] n-Heptane, Reduced Mechanism,2003.[Online]. Available:https://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion-nc7h16_reduced_mechanism.
    [151] Prager J., Najm H. N., Valorani M., et al., Skeletal mechanism generation withCSP and validation for premixed n-heptane flames, Proceedings of theCombustion Institute,2009,32(1):509–517.
    [152] Smallbone A. J., Liu W., Law C. K., et al., Experimental and modeling study oflaminar flame speed and non-premixed counterflow ignition of n-heptane,Proceedings of the Combustion Institute,2009,32(1):1245–1252.
    [153] Li H., Miller D. L., Cernansky N. P., Development of a reduced chemicalkinetic model for prediction of preignition reactivity and autoignition ofprimary reference fuels, SAE paper,1996,960498.
    [154] Zheng J., Yang W., Miller D. L., et al., A skeletal chemical kinetic model forthe HCCI combustion process, SAE Transactions,2002,111(3):898–912.
    [155] Tsurushima T., A new skeletal PRF kinetic model for HCCI combustion,Proceedings of the Combustion Institute,2009,32(2):2835–2841.
    [156] Patel A., Kong S. C., Reitz R. D., Development and validation of a reducedreaction mechanism for HCCI engine simulations, SAE paper,2004,01–0558.
    [157] Maroteaux F., Noel L., Development of a reduced n-heptane oxidationmechanism for HCCI combustion modeling, Combustion and flame,2006,146(1):246–267.
    [158] Su W., Huang H., Development and calibration of a reduced chemical kineticmodel of n-heptane for HCCI engine combustion, Fuel,2005,84(9):1029–1040.
    [159] Tanaka S., Ayala F., Keck J. C., A reduced chemical kinetic model for HCCIcombustion of primary reference fuels in a rapid compression machine,Combustion and Flame,2003,133(4):467–481.
    [160] Zheng J., Miller D. L., Cernansky N. P., A global reaction model for the HCCIcombusion process, SAE Paper,2004,01–2950.
    [161]姚广涛,预混合压燃发动机混合气形成与燃烧过程研究,博士学位论文,天津大学,2005.
    [162]王静,火花放电对HCCI燃烧过程影响的研究,硕士学位论文,天津大学,2006.
    [163]许汉君,姚春德,徐广兰,正庚烷-甲醇二元燃料着火的23步反应模型,内燃机学报,2011,29(5):391–397.
    [164]夏琦,柴油/甲醇组合燃烧的道路试验及燃烧特性研究,博士学位论文,天津大学,2011.
    [165] Amsden A. A., KIVA-3V: A block-structured KIVA program for engines withvertical or canted valves,1997.
    [166] Han Z., Reitz R. D., Turbulence modeling of internal combustion engines usingRNG κ-\varepsilon models, Combustion Science and Technology,1995,106(4):–6):267–295.
    [167] Beale J. C., Reitz R. D., Modeling spray atomization with theKelvin-Helmholtz/Rayleigh-Taylor hybrid model, Atomization and sprays,1999,9(6):623–650.
    [168] Brown P. N., Byrne G. D., Hindmarsh A. C., VODE: a variable-coefficientODE solver, SIAM journal on scientific and statistical computing,1989,10(5):1038–1051.
    [169] Reynolds W. C., The element potential method for chemical equilibriumanalysis: Implementation in the interactive program STANJAN, Version3,Technical Rept.,1986.
    [170] Kong S. C., Marriott C. D., Reitz R. D., et al., Modeling and experiments ofHCCI engine combustion using detailed chemical kinetics withmultidimensional CFD, SAE paper,2001,01–1026.
    [171] Zhang Y., Rutland C. J., A mixing controlled direct chemistry (MCDC) modelfor diesel engine combustion modelling using large eddy simulation,Combustion Theory and Modelling,2012,16(3):571–588.
    [172]都志辉,李三立,陈渝,等,高性能计算之并行编程技术——MPI并行程序设计.北京:清华大学出版社,2001.
    [173] OpenMP official website,2012.[Online]. Available: http://www.openmp.org.
    [174] Chandra R., Menon R., Dagum L., et al., programming in OpenMP. MorganKaufmann,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700