用户名: 密码: 验证码:
无机纳米晶体与天然纤维素物质复合材料的制备及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术尤其是纳米技术的飞速发展,人们越来越多地发现即使组成完全相同的物质,当其处于不同的尺度时,将会具有截然不同的独特性质。例如,半导体纳米晶体具有大块半导体材料所不具有的优异光学性能,金属纳米颗粒与大块金属相比也在诸如催化等众多领域显示出了巨大的应用潜力。正是如此,如何更好更高效地利用这些处于微观纳米尺度的无机晶体成为了近些年来新型材料领域的研究重点。天然纤维素物质作为一种廉价易得并且具有良好生物相容性的材料在制备新型复合材料领域显示出了其特有的优势。
     本文利用不同的组装或生长技术,在天然纤维素物质上固定上多种无机纳米晶体,包括量子点,金属纳米颗粒,碳酸钙晶体,从而使这些无机纳米晶体从难以直接利用且不稳定的分散液状态转变成为多维乃至宏观大块的新型复合材料,扩展了这些具有优异性能的无机纳米晶体的实际应用价值。主要内容如下:
     (1)纤维素/CdSe量子点复合发光材料:首先利用钛酸四丁酯在纤维素基底上沉积二氧化钛凝胶薄膜,再将硬脂酸利用羧基与钛的配位作用沉积在其表面,最后通过合成得到的三辛基氧化膦与十六烷基胺包裹的CdSe量子点表面烷基与硬脂酸烷基链之间的疏水作用,制备得到纤维素/CdSe量子点复合发光材料。扫描电子显微镜的结果表明纤维素原有的三维复杂层次性结构没有任何破坏。透射电子显微镜中能够看到在纤维素的纳米纤维上均匀地分布有CdSe量子点颗粒。紫外-可见和荧光光谱表征表明了此复合材料很好地继承了CdSe量子点的优异光学性能,并且在荧光显微镜下能够用肉眼观察到明显的绿色荧光。不仅如此,通过把原本不稳定的分散液状态的CdSe量子点组装到纤维素表面,不仅得到了宏观大块的发光复合材料,并且此材料的优异发光性质能够维持长达数月之久。
     (2)一步水热法制备纤维素/ZnS:Mn量子点复合发光材料:在水热反应釜中加入纤维素,ZnS:Mn量子点的前体物质和聚乙烯亚胺,在180℃下反应8h,利用一步水热法成功地制备了纤维素/ZnS:Mn量子点复合材料。透射电子显微镜的表征有力地证明了对不含有纤维素基底的ZnS:Mn量子点来说,聚乙烯亚胺的加入能够很好地改善其分散性。同时,由于聚乙烯亚胺与纤维素材料之间的氢键相互作用作用,ZnS:Mn量子点能够更加均匀的组装在纤维素的纤维之上,而不需要其他额外的修饰。X射线光电子能谱也进一步地佐证了ZnS:Mn量子点在纤维素表面的组装。同样的,此纤维素/ZnS:Mn量子点复合材料在荧光显微镜下能够观察到稳定且明显的荧光现象。
     (3)纤维素/双金属纳米颗粒复合催化材料:利用表面溶胶-凝胶法在纤维素表面沉积上二氧化钛凝胶薄膜,再利用层层自组装的方法,将带有不同电性的聚电解质和预先合成的五种不同组成的双金属纳米颗粒通过静电作用组装到纤维素表面,制备得到了纤维素/双金属纳米颗粒复合材料。扫描电子显微镜的表明了利用此方法得到的五种不同组成的复合材料保留了原始纤维素的三维复杂层次性结构。透射电子显微镜中能够明显地看到Cu-Ag, Cu-Au, Fe-Ag, Fe-Au以及Au-Ag双金属纳米颗粒均匀地分布在纤维素的纤维之上。紫外-可见光谱上能够观察到金属纳米颗粒对应的特征表面等离子体共振吸收峰。此五种纤维素/双金属纳米颗粒复合材料都对硼氢化钠还原对硝基苯分表现出了很高的催化活性,反应原料液三次过滤经过此复合材料后,转化率均能够高达95%以上,并且由于纤维素基底的优势,产物的分离和催化剂的循环再利用都明显简单快捷的多。
     (4)纤维素/文石型碳酸钙晶体复合超疏水材料:利用表面溶胶-凝胶法在纤维素表面沉积上二氧化钛凝胶薄膜,将其放在氯化钙溶液中吸附钙离子,再放在碳酸钠溶液中使其表面沉积上碳酸钙的小晶核,最后放进50℃的含有多种离子的地热水中进行碳酸钙晶体的生长。经过48h后,在修饰有二氧化钛凝胶薄膜的纤维素表面生长上了高相纯度的针状文石型碳酸钙晶体。通过对不同晶体生长时间的样品的表征发现,高相纯度的文石晶体的形成经历了方解石型晶体的溶解和再结晶过程。当在地热水中生长时间超过24h后,最稳定的方解石晶体逐渐溶解,并且由于二氧化钛凝胶膜与地热水中镁离子等的作用,再结晶形成了针状的文石晶体。此纤维素/文石型碳酸钙晶体复合材料再经过低表面能的硬脂酸钠修饰过后,对水的接触角能够达到153°,是一种具有很好生物相容性的超疏水材料。
With the rapid development of modern technology, lots of researchers found that the mirco-and nano-scaled materials have unique properties compared with bulk materials even with the same composition. For example, semiconductor nanocrystals have very different optoelectronic properties such as size-tuned fluorescence which benefits from the rather small size in the nanoscale. Noble metallic nanoparticles show great potentials in catalysts. However, bulk noble metals are known to be extremely inert. As a result, making better use of these inorganic nanocrystals has become a focus in the field of fabricating new functional composite materials.
     Herein, several kinds of inorganic nanocrystals like quantum dots, bimetallic nanoparticles and calcium carbonate were assembled or directly grown on natural cellulose substrates. After the appropriate treatments, the original unstable inorganic nanocrystals had been immobilized on the polymer substrates to generate multi-dimensional functional composite materials. The extraordinary properties of the inorganic nanocrystals were reserved. And because of the existence of the polymer substrates the practical applications of the composite materials have also been extended. The details are described as follows.
     (1) Bulk luminescent cellulose/CdSe QDs composite material:Each cellulose nanofiber of the filter paper was firstly coated with nanometrethick titania film by means of the surface sol-gel process, followed by alternative deposition of self-assembled layers of stearic acid (SA) and TOPO/HDA capped CdSe nanoparticles, giving a filter paper/titania/SA/(CdSe/SA) composite luminescent sheet possessing stable and well-defined green fluorescence. SEM and TEM observations showed that the resulting luminescent sheet retained the hierarchical structures and morphologies of the initial cellulose substance; meanwhile, the CdSe nanoparticles were anchored on the nanofiber surfaces within SA thin layers through the hydrophobic interaction between the alkyl chains of the surface ligands of CdSe nanoparticles and SA molecules. UV-vis and photoluminescence spectra indicated that the resulting luminescent sheet showed similar characteristic absorption and emission properties as those of the original CdSe nanoparticles. The luminescent property of this composite material can be kept for over months.
     (2) One-step fabrication of cellulose/ZnS:Mn QDs composite material:A bulk piece of cellulose/ZnS:Mn QDs composite material has been generated through a facile one-step hydrothermal method. TEM results show that the employment of PEI improves the dispersibility of the virginal ZnS:Mn QDs. With the help of hydrogen interaction between PEI and cellulose substances, there was no need of extra modification of the filter paper. XPS results further comfirm the success of immobilization of the ZnS:Mn QDs onto cellulose substrate. The ZnS:Mn QDs were found to be uniformly immobilized on the fibers of the filter paper, which gives the obtained bulk composite material stable and well-defined luminescent property.
     (3) Catalytic cellulose/bimetallic nanoparticels composite materials:Employing titanium (IV) n-butoxide as precursor, ultrathin titania gel films were deposited on cellulose nanofiber in bulk filter paper by the surface sol-gel process. Five kinds of bimetallic nanoparticles (BNPs) were synthesized by the reduction of NaBH4and sodium citrate. These BNPs were immobilized onto the fibers of the titania-modified filter paper through the electrostatic interaction between the positively charged poly(diallyldimethylammonium chloride)(PDDA) and negatively charged BNPs. The electron microscopes results revealed that the fabricated bulk composite materials inherited the original three-dimensional morphology of the initial filter paper. Moreover, these five kinds of composite materials showed good efficient catalytic activities on the reduction of4-nitrophenol by NaBH4by means of simply filtration three times of the feed solution through the BNPs-related composite materials. The catalytic activities maintained even after ten cycles of the three-time filtration, which indicated the stability and reusability of the BNPs-related composite materials.
     (4) Cellulose/aragonite crystals composite material:Employing titanium (IV) n-butoxide as precursor, ultrathin titania gel films were deposited on cellulose nanofiber in bulk filter paper by the surface sol-gel process. After prenucleation with calcium carbonate nanoparticles, the titania-modified filter paper was put into classic geothermal water for the growth of needle-like aragonite calcium carbonate crystals, and the needle-like calcium carbonate crystals were guaranteed to be pure aragonite. The mechanism of the formation of the pure aragonite crystals is that the calcium carbonate crystals may undergo a dissolution and recrystallization process. After the surface modification with a monolayer of sodium stearate, this composite material was endowed with a superhydrophobic property showing a water contact angle of153°.
引文
[1]Y. Yin, A. P. Alivisatos, Colloidal nanocrystal synthesis and the organic-inorganic interface, Nature,2005,437,664-670.
    [2]C. B. Murray, D. J. Norris, M. G Bawendi, Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc.,1993,115,8706-8715.
    [3]A. Badia, S. Singh, L. Demers, L. Cuccia, G R. Brown, R. B. Lennox, Self-Assembled Monolayers on Gold Nanoparticles, Chem. Eur. J.,1996,2, 359-363.
    [4]M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, C. Kiely, Synthesis and reactions of functionalised gold nanoparticles, J. Chem. Soc. Chem. Commun.,1995, 1655-1656.
    [5]H. Yao, O. Momozawa, T. Hamatani, K. Kimura, Stepwise Size-Selective Extraction of Carboxylate-Modified Gold Nanoparticles from an Aqueous Suspension into Toluene with Tetraoctylammonium Cations, Chem. Mater., 2001,13,4692-4697.
    [6]N. Hussain, B. Singh, T. Sakthivel, A. T. Florence, Formulation and stability of surface-tethered DNA-gold-dendron nanoparticles, Int. J. Pharm.,2003,254, 27-31.
    [7]A. C. Templeton, S. Chen, S. M. Gross, R. W. Murray, Water-Soluble, Isolable Gold Clusters Protected by Tiopronin and Coenzyme A Monolayers, Langmuir, 1999,15,66-76.
    [8]A. Miyazaki, Y. Nakano, Morphology of Platinum Nanoparticles Protected by Poly(N-isopropylacrylamide), Langmuir,2000,16,7109-7111.
    [9]W. P. Wuelfing, S. M. Gross, D. T. Miles, R. W. Murray, Nanometer Gold Clusters Protected by Surface-Bound Monolayers of Thiolated Poly(ethylene glycol) Polymer Electrolyte, J. Am. Chem. Soc.,1998,120,12696-12697.
    [10]T. Teranishi, I. Kiyokawa, M. Miyake, Synthesis of Monodisperse Gold Nanoparticles Using Linear Polymers as Protective Agents, Adv. Mater.,1998, 10,596-599.
    [11]A. N. Shipway, E. Katz, I. Willner, Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications, ChemPhysChem,2000,1,18-52.
    [12]M.-C. Daniel, D. Astruc, Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chem. Rev.,2004,104,293-346.
    [13]L. E. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites-the size dependence of the lowest excited electronic state, J. Chem. Phys.,1984,80,4403-4409.
    [14]M. G Bawendi, M. L. Steigerwald, L. E. Brus, The quantum mechanics of larger semiconductor clusters ("quantum dots"), Annu. Rev. Phys. Chem.,1990, 41,477-496.
    [15]A. P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals,J.Phys. Chem.,1996,100,13226-13239.
    [16]M. Nirmal, L. Brus, Luminescence photophysics in semiconductor nanocrystals, Acc. Chem. Res.,1999,32,407-414.
    [17]J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, S. J. Rosenthal, Structural basis for near unity quantum yield core/shell nanostructures, Nano Lett.,2006,6,1496-1501.
    [18]W. E. Buhro, V. L. Colvin, Semiconductor nanocrystals-Shape matters, Nat. Mater.,2003,2,138-139.
    [19]S. Pokrant, K. B. Whaley, Tight-binding studies of surface effects on electronic structure of CdSe nanocrystals:the role of organic ligands, surface reconstruction, and inorganic capping shells, Eur. Phys. J. D,1999,6,255-267.
    [20]D. F. Underwood, T. Kippeny, S. J. Rosenthal, Ultrafast carrier dynamics in CdSe nanocrystals determined by femtosecond fluorescence upconversion spectroscopy, J. Phys. Chem. B,2001,105,436-443.
    [21]M. C. Mancini, B. A. Kairdolf, A. M. Smith, S. M. Nie, Oxidative quenching and degradation of polymer-encapsulated quantum dots:new insights into the long-term fate and toxicity of nanocrystals in vivo, J. Am. Chem. Soc.,2008, 130,10836-10837.
    [22]B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys. Chem. B,1997,101,9463-9475.
    [23]M. A. Hines, P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals, J. Phys. Chem.,1996,100, 468-471.
    [24]X. Wang, G. Li, H. Zhu, J. C. Yu, X. Xiao, Q. Li, Vertically aligned CdTe nanotube arrays on indium tin oxide for visible-light-driven photoelectrocatalysis,Appl. Catal. B-Environ.,2014,147,17-21.
    [25]L. Wang, H. Wei, Y. Fan, X. Liu, J. Zhan, Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites, Nanoscale Res. Lett.,2009,4,558-564.
    [26]P. Praus, L. Svoboda, J. Tokarsky, A. Hospodkova, V. Klemm, Core/shell CdS/ZnS nanoparticles:Molecular modelling and characterization by photocatalytic decomposition of Methylene Blue, Appl. Surf. Sci.,2014,292, 813-822.
    [27]O. Kozak, P. Praus, K. Koci, M. Klementova, Preparation and characterization of ZnS nanoparticles deposited on montmorillonite, J. Colloid Interface Sci.,2010,352,244-251.
    [28]P. Praus, O. Kozak, K. Koci, A. Panacek, R. Dvorsky, CdS nanoparticles deposited on montmorillonite:preparation, characterization and application for photoreduction of carbon dioxide, J. Colloid Interface Sci.,2011, 360,574-579.
    [29]K. S. Leschkies, A. G. Jacobs, D. J. Norris, E. S. Aydil, Nanowire-quantum-dot solar cells and the influence of nanowire length on the charge collection efficiency, Appl. Phys. Lett.,2009,95,193103.
    [30]K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, E. S. Aydil, Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices, Nano Lett.,2007, 7,1793-1798.
    [31]K. P. Acharya, E. Khon, T. O'Connor, I. Nemitz, A. Klinkova, R. S. Khnayzer, P. Anzenbacher, M. Zamkov, Correction to Heteroepitaxial Growth of Colloidal Nanocrystals onto Substrate Films via Hot-Injection Routes, ACS Nano,2011,5, 4953-4964.
    [32]P. K. Santra, P. V. Kamat, Mn-Doped Quantum Dot Sensitized Solar Cells:A Strategy to Boost Efficiency over 5%, J. Am. Chem:Soc.,2012,134, 2508-2511.
    [33]R. Narayanan, M. A. El-Sayed, Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution, Nano Lett.,2004,4,1343-1348.
    [34]R. Narayanan, M. A. El-Sayed, Effect of colloidal nanocatalysis on the metallic nanoparticle shape:The Suzuki reaction, Langmuir,2005,21,2027-2033.
    [35]C. Chen, C. Nan, D. Wang, Q. Su, H. Duan, X. Liu, L. Zhang, D. Chu, W. Song, Q. Peng, Y. Li, Mesoporous Multicomponent Nanocomposite Colloidal Spheres: Ideal High-Temperature Stable Model Catalysts, Angew. Chem. Int. Ed.,2011, 50,3725-3729.
    [36]S. Goto, Y. Amano, M. Akiyama, C. Bottcher, T. Komatsu, Gold Nanoparticle Inclusion into Protein Nanotube as a Layered Wall Component, Langmuir,2013, 29,14293-14300.
    [37]X. Huang, S. Neretina, M. A. El-Sayed, Gold Nanorods:From Synthesis and Properties to Biological and Biomedical Applications, Adv. Mater.,2009,21, 4880-4910.
    [38]C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, T. Li, Anisotropic Metal Nanoparticles:Synthesis, Assembly, and Optical Applications, J. Phys. Chem. B,2005,109,13857-13870.
    [39]P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, Noble Metals on the Nanoscale:Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine, Acc. Chem. Res.,2008,41, 1578-1586.
    [40]K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum, Real-Time Vital Optical Imaging of Precancer Using Anti-Epidermal Growth Factor Receptor Antibodies Conjugated to Gold Nanoparticles, Cancer Res.,2003,63,1999-2004.
    [41]J. S. Aaron, J.. Oh, T. A. Larson, S. Kumar, T. E. Milner, K. V. Sokolov, Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles, Opt. Express,2006, 14,12930-12943.
    [42]V. A. Khanadeev, B. N. Khlebtsov, S. A. Staroverov, I. V. Vidyasheva, A. A. Skaptsov, E. S. Ileneva, V. A. Bogatyrev, L. A. Dykman, N. G Khlebtsov, Quantitative cell bioimaging using gold-nanoshell conjugates and phage antibodies, J. Biophotonics,2011,4,74-83.
    [43]X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy, Nanomedicine,2007,2,681-693.
    [44]P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B,2006,110,7238-7248.
    [45]H.-C. Huang, Y. Yang, A. Nanda, P. Koria, K. Rege, Synergistic administration of photothermal therapy and chemotherapy to cancer cells using polypeptide-based degradable plasmonic matrices, Nanomedicine,2011,6, 459-473.
    [46]J. L. Slavin, P. M. Brauer, J. A. Marlett, Neutral detergent fiber, hemicellulose and cellulose digestibility in human subjects, J. Nutr.,1981,111,287-297.
    [47]L. Yang, Newly progress on bacterial cellulose, Microbiology,2003,30,95-98.
    [48]L. Peng, Y. Kawagoe, P. Hogan, D. Delmer, Sitosterol-β-glucoside as primer for cellulose synthesis in plants, Science,2002,295,147-150.
    [49]F. Kong, Y. Ni, Determination of Cr(VI) concentration in diluted samples based on the paper test strip method, Water Sci. Technol.,2009,60,3083-3089.
    [50]F. Kong, Y. Ni, Development of cellulosic paper-based test strips for Cr(VI) determination, BioResources,2009,4,1088-1097.
    [51]Y.-W. Shen, P.-H. Hsu, B. Unnikrishnan, Y.-J. Li, C.-C. Huang, Membrane-Based Assay for Iodide Ions Based on Anti-Leaching of Gold Nanoparticles,ACS Appl. Mater. Interfaces,2014,6,2576-2582.
    [52]X. Zhang, J. Huang, Functional surface modification of natural cellulose substances for colorimetric detection and adsorption of Hg2+ in aqueous media, Chem. Commun.,2010,46,6042-6044.
    [53]W. Xiao, H. Hu, J. Huang, Colorimetric detection of cysteine by surface functionalization of natural cellulose substance, Sens. Actuators B,2012, 171-172,878-885.
    [54]M. Ornatska, E. Sharpe, D. Andreescu, S. Andreescu, Paper bioassay based on ceria nanoparticles as colorimetric probes, Anal. Chem.,2011,83,4273-4280.
    [55]S. Li, Y. Wei, J. Huang, Facile fabrication of superhydrophobic cellulose materials by a nanocoating approach, Chem. Lett.,2010,39,20-21.
    [56]C. Jin, R. Yan, J. Huang, Cellulose substance with reversible photo-responsive wettability by surface modification, J. Mater. Chem.,2011,21,17519-17525.
    [57]C. Jin, Y. Jiang, T. Niu, J. Huang, Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification, J. Mater. Chem.,2012,22, 12562-12567.
    [58]S.-H. Hwang, C. N. Moorefield, P. Wang, K.-U. Jeong, S. Z. D. Cheng, K. K. Kotta, G. R. Newkome, Construction of CdS quantum dots via a regioselective dendritic functionalized cellulose template, Chem. Commun.,2006,3495-3497.
    [59]A. C. Small, J. H. Johnston, Novel hybrid materials of cellulose fibres and doped ZnS nanocrystals, Curr. Appl. Phys.,2008,8,512-515.
    [60]S. E.-S. Saeed, M. M. El-Molla, M. L. Hassan, E. Bakir, M. M.S. Abdel-Mottaleb, M. S.A. Abdel-Mottaleb, Novel chitosan-ZnO based nanocomposites as luminescent tags for cellulosic materials, Carbohydr. Polym., 2014,99,817-824.
    [61]T. Abitbol, D. Gray, CdSe/ZnS QDs embedded in cellulose triacetate films with hydrophilic surfaces, Chem. Mater.,2007,19,4270-4276.
    [62]H. Wang, Z. Shao, M. Bacher, F. Liebner, T. Rosenau, Fluorescent cellulose aerogels containing covalently immobilized (ZnS)x(CuInS2)1-x/ZnS (core/shell) quantum dots, Cellulose,2013,20,3007-3024.
    [63]C. Chang, J. Peng, L. Zhang, D.-W. Pang, Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices, J. Mater. Chem.,2009,19, 7771-7776.
    [64]L. Ding, C. Fan, Y. Zhong, T. Li, J. Huang, A sensitive optic fiber sensor based on CdSe QDs fluorophore for nitric oxide detection, Sens. Actuators B,2013, 185,70-76.
    [65]B. Tang, J. Kaur, L. Sun, X. Wang, Multifunctionalization of cotton through in situ green synthesis of silver nanoparticles, Cellulose,2013,20,3053-3065.
    [66]J. Wang, W. Liu, H. Li, H. Wang, Z. Wang, W. Zhou, H. Liu, Preparation of cellulose fiber-TiO2 nanobelt-silver nanoparticle hierarchically structured hybrid paper and its photocatalytic and antibacterial properties, Chem. Eng. J., 2013,228,272-280.
    [67]S. Azizi, M. B. Ahmad, M. Z. Hussein, N. A. Ibrahim, Synthesis, Antibacterial and Thermal Studies of Cellulose Nanocrystal Stabilized ZnO-Ag Heterostructure Nanoparticles, Molecules,2013,18,6269-6280.
    [68]E. Fortunati, F. Luzi, D. Puglia, A. Terenzi, M. Vercellino, L. Visai, C. Santulli, L. Torre, J.M. Kenny, Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles:Part II, Carbohydr. Polym.,2013,97,837-848.
    [69]X. Xu, Y.-Q. Yang, Y.-Y. Xing, J.-F. Yang, S.-F. Wang, Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes, Carbohydr. Polym.,2013,98,1573-1577.
    [70]E. Fortunati, S. Rinaldi, M. Peltzer, N. Bloise, L. Visai, I. Armentano, A. Jimenez, L. Latterini, J.M. Kenny, Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles, Carbohydr. Polym., 2014,101,1122-1133.
    [71]E. Fortunati, I. Armentano, Q. Zhou, A. Iannoni, E. Saino, L. Visai, L.A. Berglund, J.M. Kenny, Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles, Carbohydr. Polym.,2012, 87,1596-1605.
    [72]E. Guibal, S. Cambe, S. Bayle, J.-M. Taulemesse, T. Vincent, Silver/chitosan/cellulose fibers foam composites:From synthesis to antibacterial properties,J.Colloid Interface Sci.,2013,393,411-420.
    [73]M. S. Khalil-Abada, M. E. Yazdanshenas, Superhydrophobic antibacterial cotton textiles, J. Colloid Interface Sci.,2010,351,293-298.
    [74]A. Llorens, E. Lloret, P. Picouet, A. Fernandez, Study of the antifungal potential of novel cellulose/copper composites as absorbent materials for fruit juices, Int. J. Food Microbiol.,2012,158,113-119.
    [75]C.W. Scheeren, V. Hermes, O. Bianchi, P.F. Hertz, S.L. Dias, J. Dupont, Antimicrobial membrane cellulose acetate containing ionic liquid and metal nanoparticles,J.Nanosci. Nanotechnol.,2011,11,5114-5122.
    [76]N. C. Cady, J. L. Behnke, A. D. Strickland, Copper-Based Nanostructured Coatings on Natural Cellulose:Nanocomposites Exhibiting Rapid and Efficient Inhibition of a Multi-Drug Resistant Wound Pathogen, A. baumannii, and Mammalian Cell Biocompatibility In Vitro, Adv. Funct. Mater.,2011,21, 2506-2514.
    [77]M.D. Teli, J. Sheikh, Bamboo rayon-copper nanoparticle composites as durable antibacterial textile materials, Compos. Interfaces,2014,21,161-171.
    [78]M. R. de Mouraa, L. H.C. Mattoso, V. Zucolotto, Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging, J. Food Eng.,2012,109,520-524.
    [79]W. Xiao, J. Xu, X. Liu, Q. Hu, J. Huang, Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films, J. Mater. Chem. B,2013,1, 3477-3485.
    [80]J. Wang, L. Yang, B. Liu, H. Jiang, R. Liu, J. Yang, G Han, Q. Mei, Z. Zhang, Inkjet-Printed Silver Nanoparticle Paper Detects Airborne Species from Crystalline Explosives and Their Ultratrace Residues in Open Environment, Anal. Chem.,2014,86,3338-3345.
    [81]H. Liu, D. Wang, Z. Song, S. Shang, Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization, Cellulose,2011,18,67-74.
    [82]H. Liua, D. Wang, S. Shang, Z. Song, Synthesis and characterization of Ag-Pd alloy nanoparticles/carboxylated cellulose nanocrystals nanocomposites, Carbohydr. Polym.,2011,83,38-43.
    [83]G C. Bond, P. A. Sermon, G. Webb, D. A. Buchanan, P. B. Wells, Hydrogenation over supported gold catalysts, Chem. Commun.1973,444-445.
    [84]M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0℃, Chem. Lett.1987, 405-408.
    [85]A. Stephen, K. Hashmi, G J. Hutchings, Gold catalysis, Angew. Chem., Int. Ed. 2006,45,7896-7936.
    [86]Z. Ma, S. Dai, Development of novel supported gold catalysts:A materials perspective, Nano Res.2011,4,3-32.
    [87]M. Stratakis, H. Garcia, Catalysis by supported gold nanoparticles:Beyond aerobic oxidative processes, Chem. Rev.2012,112,4469-4506.
    [88]Y. Zhang, X. Cui, F. Shi, Y. Deng, Nano-gold catalysis in fine chemical synthesis, Chem. Rev.2012,112,2467-2505.
    [89]M. Zhao, L. Sun, R. M. Crooks, Preparation of Cu nanoclusters within dendrimer templates, J. Am. Chem. Soc.1998,120,4877-4878.
    [90]T. Niu, J. Xu, W. Xiao, J. Huang, Cellulose-based catalytic membranes fabricated by deposition of gold nanoparticles on natural cellulose nanofibres, RSC Adv.2014,4,4901-4904.
    [91]J. T. Nurmi, P. G Tratnyek, V. Sarathy, D. R. Baer, J. E. Amonette, K. Pecher, C. Wang, J. C. Linehan, D. W. Matson, R. L, Penn, M. D. Driessen, Characterization and properties of metallic iron nanoparticles:spectroscopy, electrochemistry, and kinetics, Environ. Sci. Technol.,2005,39,1221-1230.
    [92]L. Zhou, T. L. Thanh, J. Gong, J.-H. Kim, E.-J. Kim, Y.-S. Chang, Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron, Chemosphere,2014,104,155-161.
    [93]X. Chen, X. Yao, C. Yu, X. Su, C. Shen, C. Chen, R. Huang, X. Xu, Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles, Environ. Sci. Pollut. Res.,2014,21,5201-5210.
    [94]S. Laumann, V. Micic, T. Hofmann, Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes, Water Res.,2014,50,70-79.
    [95]M. T. Sikder, Y. Mihara, M. S.Islam, T. Saito, S. Tanaka, M. Kurasaki, Preparation and characterization of chitosan-caboxymethyl-β-cyclodextrin entrapped nanozero-valent iron composite for Cu (II) and Cr (IV) removal from wastewater, Chem. Eng. J.,2014,236,378-387.
    [96]W. Liang, C. Dai, X. Zhou, Y. Zhang, Application of Zero-Valent Iron Nanoparticles for the Removal of Aqueous Zinc Ions under Various Experimental Conditions, Fresenius Environ. Bull.,2014,23,355-362.
    [97]Q. Ding, T. Qian, F. Yang, H. Liu, L. Wang, D. Zhao, M. Zhang, Kinetics of Reductive Immobilization of Rhenium in Soil and Groundwater Using Zero Valent Iron Nanoparticles, Environ. Eng. Sci.,2013,30,713-718.
    [98]T. Liu, X. Yang, Z.-L. Wang, X. Yan, Enhanced chitosan beads-supported Fe0-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers, Water Res.,2013,47,6691-6700.
    [99]I. S. Roman, M.L. Alonso, L. Bartolome, A. Galdames, E. Goiti, M. Ocejo, M. Moragues, R.M. Alonso, J.L. Vilas, Relevance study of bare and coated zero valent iron nanoparticles for lindane degradation from its by-product monitorization, Chemosphere,2013,93,1324-1332.
    100] L. Su, X. Shi, G. Guo, A. Zhao, Y. Zhao, Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI):abatement of odor and improvement of biogas production, J. Mater. Cycles Waste Manag.,2013,15, 461-468.
    101] S. Machado, W. Stawinski, P. Slonina, A.R. Pinto, J.P. Grosso, H.P.A. Nouwas, J.T. Albergaria, C. Delerue-Matos, Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen, Sci. Total Environ.,2013,461-462,323-329.
    102] M. Zhou, Y. Gu, J. Huang, Hierarchical nanotubular clay materials derived from natural cellulose substance, Mater. Res. Bull.,2013,48,3223-3231.
    103] R. A. Ahmed, A. M. Fekry, R. A. Farghali, A study of calcium carbonate/multiwalled-carbon nanotubes/chitosan composite coatings on Ti-6A1-4V alloy for orthopedic implants, Appl. Surf. Sci.,2013,285,309-316.
    104] H.-D. Yu, Z.-Y Zhang, K. Y. Win, J. Chan, S. H. Teoh, M.-Y. Han, Bioinspired fabrication of 3D hierarchical porous nanomicrostructures of calcium carbonate for bone regeneration, Chem. Commun.,2010,46,6578-6580.
    105] S. Chen, D. Zhao, F. Li, R.-X. Zhuo, S.-X. Cheng, Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy, RSC Adv.,2012, 2,1820-1826.
    106] Y. Svenskaya, B. Parakhonskiy, A. Haase, V. Atkin, E. Lukyanets, D. Gorin, R. Antolini, Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer, Biophys. Chem.,2013,182,11-15.
    [107]R. K. Pai, M. Cotlet, Highly Stable, Water-Soluble, Intrinsic Fluorescent Hybrid Scaffolds for Imaging and Biosensing, J. Phys. Chem. C,2011,115,1674-1681.
    [108]G Li, Z. Li, H. Ma, Synthesis of aragonite by carbonization from dolomite without any additives, Int. J. Miner. Process.,2013,123,25-31.
    [109]Z. Hu, M. Shao, Q. Cai, S. Ding, C. Zhong, X. Wei, Y. Deng, Synthesis of needle-like aragonite from limestone in the presence of magnesium chloride, J. Mater. Process. Technol,2009,209,1607-1611.
    [110]Z. Hu, Y. Deng, Synthesis of needle-like aragonite from calcium chloride and sparingly soluble magnesium carbonate, Powder Technol,2004,140,10-16.
    [111]C. Vilela, C. S.R. Freire, P. A.A.P. Marques, T. Trindade, C. P. Neto, P. Fardim, Synthesis and characterization of new CaCO3/cellulose nanocomposites prepared by controlled hydrolysis of dimethylcarbonate, Carbohydr. Polym., 2010,79,1150-1156.
    [112]L. Liu, D. He, G-S. Wang, S.-H. Yu, Bioinspired Crystallization of CaCO3 Coatings on Electrospun Cellulose Acetate Fiber Scaffolds and Corresponding CaCO3 Microtube Networks, Langmuir,2011,27,7199-7206.
    [113]A. John, Y. Chen, J. Kim, Synthesis and characterization of cellulose acetate-calcium carbonate hybrid nanocomposite, Compos. Pt. B-Eng.,2012, 43,522-525.
    [114]Z. Hu, X. Zen, J. Gong, Y. Deng, Water resistance improvement of paper by superhydrophobic modification with microsized CaCO3 and fatty acid coating, Colloid Surf. A-Physicochem. Eng. Asp.,2009,351,65-70.
    [1]B. Farrow, P. V. Kamat, CdSe Quantum Dot Sensitized Solar Cells. Shuttling Electrons Through Stacked Carbon Nanocups, J. Am. Chem. Soc.,2009,131, 11124-11131.
    [2]M. Seol, H. Kim, Y. Tak, K. Yong, Novel nanowire array based highly efficient quantum dot sensitized solar cell, Chem. Commun.,2010,46,5521-5523.
    [3]I. Robel, V. Subramanian, M. Kuno, P. V. Kamat, Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films, J. Am. Chem. Soc.,2006,128,2385-2393.
    [4]M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Semiconductor Nanocrystals as Fluorescent Biological Labels, Science,1998,281,2013-2016.
    [5]Q. Wang, Y. Xu, X. Zhao, Y. Chang, Y. Liu, L. Jiang, J. Sharma, D.-K. Seo, H. Yan, A Facile One-Step in situ Functionalization of Quantum Dots with Preserved Photoluminescence for Bioconjugation, J. Am. Chem. Soc.,2007,129, 6380-6381.
    [6]N. Pradhan, D. M. Battaglia, Y. Liu, X. Peng, Efficient, Stable, Small, and Water-Soluble Doped ZnSe Nanocrystal Emitters as Non-Cadmium Biomedical Labels, Nano Lett.,2007,7,312-317.
    [7]H. Li, W. Y. Shih, W.-H. Shih, Synthesis and Characterization of Aqueous Carboxyl-Capped CdS Quantum Dots for Bioapplications, Ind. Eng. Chem. Res., 2007,46,2013-2019.
    [8]Q. Sun, G Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, Y. Wang, Highly Efficient Quantum-Dot Light-Emitting Diodes with DNA-CTMA as a Combined Hole-Transporting and Electron-Blocking Layer, ACS Nano, 2009,3,737-743.
    [9]P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, V. Bulovic, Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum, Nano Lett.,2009,9,2532-2536.
    [10]I. U. Arachchige, S. L. Brock, Highly Luminescent Quantum-Dot Monoliths, J. Am. Chem. Soc.,2007,129,1840-1841.
    [11]O. V. Vassiltsova, S. K. Panda, Z. Zhao, M. A. Carpenter, M. A. Petrukhina, Ordered fabrication of luminescent multilayered thin films of CdSe quantum dots, Dalton Trans.,2009,9426-9432.
    [12]H. Li, C. Han, L. Zhang, Synthesis of cadmium selenide quantum dots modified with thiourea type ligands as fluorescent probes for iodide ions, J. Mater. Chem., 2008,18,4543-4548.
    [13]Y. Xia, C. Zhu, Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(II), Analyst,2008,133, 928-932.
    [14]C. B. Murray, D. J. Norris, M. G Bawendi, Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc.,1993,115,8706-8715.
    [15]X. Peng, Green Chemical Approaches toward High-Quality Semiconductor Nanocrystals, Chem.-Eur. J.,2002,8,334-339.
    [16]Z.-Q. Tian, Z.-L. Zhang, J. Gao, B.-H. Huang, H.-Y. Xie, M. Xie, H. D. Abruna, D.-W. Pang, Color-tunable fluorescent-magnetic core/shell multifunctional nanocrystals, Chem. Commun.,2009,4025-4027.
    [17]B. Blackman, D. Battaglia, X. Peng, Bright and Water-Soluble Near IR-Emitting CdSe/CdTe/ZnSe Type-II/Type-I Nanocrystals, Tuning the Efficiency and Stability by Growth, Chem. Mater.,2008,20,4847-4853.
    [18]W. Zhang, G. Chen, J. Wang, B.-C. Ye, X. Zhong, Design and Synthesis of Highly Luminescent Near-Infrared-Emitting Water-Soluble CdTe/CdSe/ZnS Core/Shell/Shell Quantum Dots, Inorg. Chem.,2009,48,9723-9731.
    [19]G-Y. Lan, Y.-W. Lin, Y.-F. Huang, H.-T. Chang, Photo-assisted synthesis of highly fluorescent ZnSe(S) quantum dots in aqueous solution, J. Mater. Chem., 2007,17,2661-2666.
    [20]L. Zou, Z. Gu, N. Zhang, Y. Zhang, Z. Fang, W. Zhu, X. Zhong, Ultrafast synthesis of highly luminescent green- to near infrared-emitting CdTe nanocrystals in aqueous phase, J. Mater. Chem.,2008,18,2807-2815.
    [21]C. Wang, X. Gao, Q. Ma, X. Su, Aqueous synthesis of mercaptopropionic acid capped Mn2+-doped ZnSe quantum dots, J. Mater. Chem.,2009,19,7016-7022.
    [22]H. Li, W. Y. Shin, W.-H. Shih, Highly Photoluminescent and Stable Aqueous ZnS Quantum Dots, Ind. Eng. Chem. Res.,2010,49,578-582.
    [23]F. Aldeek, L. Balan, G Medjahdi, T. R. Carmes, J.-P. Malval, C. Mustin, J. Ghanbaja, R. Schneider, Enhanced Optical Properties of Core/Shell/Shell CdTe/CdS/ZnO Quantum Dots Prepared in Aqueous Solution, J. Phys. Chem. C, 2009,113,19458-19467.
    [24]J. M. Haremza, M. A. Hahn, T. D. Krauss, S. Chen, J. Calcines, Attachment of Single CdSe Nanocrystals to Individual Single-Walled Carbon Nanotubes, Nano Lett.,2002,2,1253-1258.
    [25]C. Lu, A. Akey, W. Wang, I. P. Herman, Versatile Formation of CdSe Nanoparticle-Single Walled Carbon Nanotube Hybrid Structures, J. Am. Chem. Soc.,2009,131,3446-3447.
    [26]Q. Li, B. Sun, I. A. Kinloch, D. Zhi, H. Sirringhaus, A. H. Windle, Enhanced Self-Assembly of Pyridine-Capped CdSe Nanocrystals on Individual Single-Walled Carbon Nanotubes, Chem. Mater.,2006,18,164-168.
    [27]K. Shin, S. i. Seok, S. H. Im, J. H. Park, CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition:use in photoelectrochemical cells, Chem. Commun.,2010,46,2385-2387.
    [28]Z. Liang, A. S. Susha, A. Yu, F. Caruso, Nanotubes Prepared by Layer-by-Layer Coating of Porous Membrane Templates, Adv. Mater.,2003,15,1849-1853.
    [29]C. W. Hock, The fibrillate structure of natural cellulose, J. Polym. Sci.,1952,8, 425-434.
    [30]T. Abitbol, D. Grey, CdSe/ZnS QDs Embedded in Cellulose Triacetate Films with Hydrophilic Surfaces, Chem. Mater.,2007,19,4270-4276.
    [31]S. Liu, L. Zhang, J. Zhou, R. Wu, Structure and Properties of Cellulose/Fe2O3 Nanocomposite Fibers Spun via an Effective Pathway, J. Phys. Chem. C,2008, 112,4538-4544.
    [32]M. Sureshkumar, D. Y. Siswanto, C.-K. Lee, Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles, J. Mater. Chem.,2010,20,6948-6955.
    [33]K. A. Mabmoud, K. B. Male, S. Hrapovic, J. H. T. Luong, Cellulose Nanocrystal/Gold Nanoparticle Composite as a Matrix for Enzyme Immobilization, ACSAppl. Mater. Interfaces,2009,1,1383-1386.
    [34]Z. Liu, M. Li, L. Turyanska, O. Makarovsky, A. Patane, W. Wu, S. Mann, Self-Assembly of Electrically Conducting Biopolymer Thin Films by Cellulose Regeneration in Gold Nanoparticle Aqueous Dispersions, Chem. Mater.,2010,22,2675-2680.
    [35]S. Padalkar, J. R. Capadona, S. J. Rowan, C. Weder, Y.-H. Won, L. A. Stanciu, R. J. Moon, Natural Biopolymers:Novel Templates for the Synthesis of Nanostructures, Langmuir,2010,26,8497-8502.
    [36]J. Huang, T. Kunitake, Nano-Precision Replication of Natural Cellulosic Substances by Metal Oxides, J. Am. Chem. Soc.,2003,125,11834-11835.
    [37]Y. Gu, J. Huang, Fabrication of natural cellulose substance derived hierarchical polymeric materials, J. Mater. Chem.,2009,19,3764-3770.
    [38]S. Li, Y. Wei, J. Huang, Facile Fabrication of Superhydrophobic Cellulose Materials by a Nanocoating Approach, Chem. Lett.,2010,39,20-21.
    [39]L. Qu, X. Peng, Control of Photoluminescence Properties of CdSe Nanocrystals in Growth, J. Am. Chem. Soc.,2002,124,2049-2055.
    [40]F. S. Riehle, R. Bienert, R. Thomann, G A. Urban, M. Kruger, Blue Luminescence and Superstructures from Magic Size Clusters of CdSe, Nano Lett.,2009,9,514-518.
    [41]I. Moriguchi, H. Maeda, Y. Teraoka, S. Kagawa, Preparation of TiO2 Ultrathin Film by Newly Developed Two-Dimensional Sol-Gel Process, J. Am. Chem. Soc.,1995,117,1139-1140.
    [1]H. Liang, D. Song, J. Gong, Signal-on electrochemiluminescence of biofunctional CdTe quantum dots for biosensing of organophosphate pesticides, Biosens. Bioelectron.,2014,53,363-369.
    [2]K. Yan, R. Wang, J. Zhang, A photoelectrochemical biosensor for o-aminophenol based on assembling of CdSe and DNA on TiO2 film electrode, Biosens. Bioelectron.,2014,53,301-304.
    [3]E. S. Speranskaya, N. V. Beloglazova, P. Lenain, S. D. Saeger, Z. Wang, S. Zhang, Z. Hens, D. Knopp, R. Niessner, D. V. Potapkin, I. Y. Goryacheva, Polymer-coatedfluorescent CdSe-based quantum dots for application in immunoassay, Biosens. Bioelectron.,2014,53,225-231.
    [4]L. Feng, A. Zhu, H. Wang, H. Shi, A nanosensor based on quantum-dot haptens for rapid, on-site immunoassay of cyanotoxin in environmental water, Biosens. Bioelectron.,2014,53,1-4.
    [5]A. Yang, Y. Zheng, C. Long, H. Chen, B. Liu, X. Li, J. Yuan, F. Cheng, Fluorescent immunosorbent assay for the detection of alpha lactalbumin in dairy products with monoclonal antibody bioconjugated with CdSe/ZnS quantum dots, Food Chem.,2014,150,73-79.
    [6]S. Gao, J. Yang, M. Liu, H. Yan, W. Li, J. Zhang, Y. Luo, Enhanced photovoltaic performance of CdS quantum dots sensitized highly oriented two-end-opened TiO2 nanotubes array membrane, J. Power Sources,2014,250,174-180.
    [7]Y.F. Zhu, D.H. Fan, G.H. Zhou, Y.B. Lin, L. Liu, A suitable chemical conversion route to synthesize ZnO/CdS core/shell heterostructures for photovoltaic applications, Ceram. Int.,2014,40,3353-3359.
    [8]J. Deng, M. Wang, X. Song, J. Liu, Controlled synthesis of aligned ZnO nanowires and the application in CdSe-sensitized solar cells, J. Alloy. Compd., 2014,588,399-405.
    [9]T. Ni, J. Yan, Y. Jiang, F. Zou, L. Zhang, D. Yang, J. Wei, S. Yang, B. Zou, Enhancement of the power conversion efficiency of polymer solar cells by functionalized single-walled carbon nanotubes decorated with CdSe/ZnS core-shell colloidal quantum dots, J. Mater. Sci.,2014,49,2571-2577.
    [10]J. Han, G. Fu, V. Krishnakumar, C. Liao, W. Jaegermann, M.P. Besland, Preparation and characterization of ZnS/CdS bi-layer for CdTe solar cell application, J. Phys. Chem. Solids,2013,74,1879-1883.
    [11]S. Liu, X. Wang, W. Zhao, K. Wang, H. Sang, Z. He, Synthesis, characterization and enhanced photocatalytic performance of Ag2S-coupled ZnO/ZnS core/shell nanorods, J. Alloy. Compd.,2013,568,84-91.
    [12]X. Wang, G Li, H. Zhu, J. C. Yu, X. Xiao, Q. Li, Vertically aligned CdTe nanotube arrays on indium tin oxide for visible-light-driven photoelectrocatalysis,Appl. Catal. B-Environ.,2014,147,17-21.
    [13]P. Praus, L. Svoboda, J. Tokarsky, A. Hospodkova, V. Klemm, Core/shell CdS/ZnS nanoparticles:Molecular modelling and characterization by photocatalytic decomposition of Methylene Blue, Appl. Surf. Sci.,2014, 292,813-822.
    [14]A. Das, C. M. Wai, Ultrasound-assisted synthesis of PbS quantum dots stabilized by 1,2-benzenedimethanethiol and attachment to single-walled carbon nanotubes, Ultrason. Sonochem.,2014,21,892-900.
    [15]H. Alehdaghi, M. Marandi, M. Molaei, A. Irajizad, N. Taghavinia, Facile synthesis of gradient alloyed ZnxCd1-xS nanocrystals using a microwave-assisted method, J. Alloy. Compd.,2014,586,380-384.
    [16]J.-J. Shi, S. Wang, T.-T. He, E.S. Abdel-Halim, J.-J. Zhu, Sonoelectrochemical synthesis of water-soluble CdTe quantum dots, Ultrason. Sonochem.,2014,21, 493-498.
    [17]H.-B. Ren, B.-Y. Wu, J.-T. Chen, X.-P. Yan, Silica-Coated S2- Enriched Manganese-Doped ZnS Quantum Dots asa Photoluminescence Probe for Imaging Intracellular Zn2+Ions,Anal. Chem.,2011,83,8239-8244.
    [18]L. Dan, H.-F. Wang, Mn-Doped ZnS Quantum Dot Imbedded Two-Fragment Imprinting Silica for Enhanced Room Temperature Phosphorescence Probing of Domoic Acid, Anal. Chem.,2013,85,4844-4848.
    [19]S. N. Azizi, M. J. Chaichi, P. Shakeri, A. Bekhradnia, Determination of atropine using Mn-doped ZnS quantum dots as novel luminescent sensitizers, J. Lumines., 2013,144,34-40.
    [20]M. Zhou, X. Chen, Y. Xu, J. Qu, L. Jiao, H. Zhang, H. Chen, X. Chen, Sensitive determination of Sudan dyes in foodstuffs by Mn-ZnS quantum dots, Dyes Pigment.,2013,99,120-126.
    [21]R.M. K. Whiffen, D.J. Jovanovic, Z. Antic, B. Bartova, D. Milivojevic, M.D. Dramicanin, M.G Brik, Structural, optical and crystalfield analyses of undoped and Mn2+-doped ZnS nanoparticles synthesized via reverse micelle route, J. Lumines.,2014,146,133-140.
    [22]Q. Pan, D. Yang, Y. Zhao, Z. Ma, G Dong, J. Qiu, Facile hydrothermal synthesis of Mn doped ZnS nanocrystals and luminescence properties investigations, J. Alloy. Compd,2013,579,300-304.
    [23]R. Begum, A. K. Sahoo, S. S. Ghosh, A. Chattopadhyay, Recovering hidden quanta of Cu2+-doped ZnS quantum dots in reductive environment, Nanoscale, 2014,6,953-961.
    [24]R. Begum, A. Chattopadhyay, Redox-Tuned Three-Color Emission in Double (Mn and Cu) Doped Zinc Sulfide Quantum Dots, J. Phys. Chem. Lett.,2014,5, 126-130.
    [25]N. Shanmugam, S. Cholan, N. Kannadasan, K. Sathishkumar, G Viruthagiri, Luminance behavior of Ce3+ doped ZnS nanostructures, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.,2014,118,557-563.
    [26]D. A. Reddy, D.H. Kim, S.J. Rhee, C.U. Jung, B.W. Lee, C. Liu, Hydrothermal synthesis of wurtzite Zn1-xNixS mesoporous nanospheres:With blue-green emissions and ferromagnetic Curie point above room temperature, J. Alloy. Compd.,2014,588,596-604.
    [27]B. Poornaprakash, S. Sambasivam, D. A. Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, Dopant induced RTFM and enhancement of fluorescence efficiencies in spintronic ZnS:Ni nanoparticles, Ceram. Int.,2014,40, 2677-2684.
    [28]W. Fang, Y. Liu, B. Guo, L. Peng, Y. Zhong, J. Zhang, Z. Zhao, Room temperature ferromagnetism and cooling effect in dilute Co-doped ZnS nanoparticles with zinc blende structure, J. Alloy. Compd,2014,584,240-243.
    [29]C. Tang, Low temperature synthesis and optical property of ZnS nanotubes, J. Exp. Nanosci.,2014,9,161-166.
    [30]C. Miao, G. Yang, Z. Bu, X, Lu, L. Zhao, W. Guo, Q. Xue, Preparation of large diameter and low density ZnS microtube arrays via a sacrificial template method, Mater. Lett.,2014,115,140-143.
    [31]Y. Xu, Z.W. Liu, Y.L. Xu, Y.Y. Zhang, J.L. Wu, Preparation and characterisation of graphene/ZnS nanocomposites via a surfactant-free method, J. Exp. Nanosci., 2014,9,415-420.
    [32]Y. Feng, N. Feng, G. Zhang, G. Du, One-pot hydrothermal synthesis of ZnS-reduced graphene oxide composites with enhanced photocatalytic properties, CrystEngComm,2014,16,214-222.
    [33]F. Liu, X. Shao, H. Li, M. Wang, S. Yang, Facile fabrication of Bi2S3-ZnS nanohybrids on graphene sheets with enhanced electrochemical performancesMater.Lett.,2013,108,125-128.
    [34]M. Sookhakian, Y.M. Amin, S. Baradaran, M.T. Tajabadi, A. M. Golsheikh, W.J. Basirun, A layer-by-layer assembled graphene/zinc sulfide/polypyrrole thin-film electrode via electrophoretic deposition for solar cells, Thin Solid Films,2014, 552,204-211.
    [35]J. Huang, T. Kunitake, Nano-precision replication of natural cellulosic substances by metal oxides, J. Am. Chem. Soc., 2003,125,11834-11835.
    [36]T. Niu, J. Xu, W. Xiao, J. Huang, Cellulose-based catalytic membranes fabricated by deposition of gold nanoparticles on natural cellulose nanofibres, RSC Adv.,2014,4,4901-4904.
    [37]T. Niu, J. Xu, J. Huang, Growth of aragonite phase calcium carbonate on the surface of titania-modified filter paper, CrystEngComm,2014,16,2424-2431.
    [38]V. Incani, C. Danumah, Y. Boluk, Nanocomposites of nanocrystalline cellulose for enzyme immobilization, Cellulose,2013,20,191-200.
    [39]T. Zhang, W. Wang, D. Zhang, X. Zhang, Y. Ma, Y. Zhou, L. Qi, Biotemplated Synthesis of Gold Nanoparticle-Bacteria Cellulose Nanofiber Nanocomposites and Their Application in Biosensing, Adv. Funct. Mater.,2010,20,1152-1160.
    [40]C. Song, B. Chen, Y. Chen, Y. Wu, Z. Zhuang, X. Lu, X. Qiao, X. Fan, Microstructures and luminescence behaviors of Mn2+ doped ZnS nanoparticle clusters with different core/shell assembled orders, J. Alloy. Compd.,2014,590, 546-552.
    [41]Z. Quan, Z. Wang, P. Yang, J. Lin, J. Fang, Synthesis and Characterization of High-Quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (Core/Shell) Luminescent Nanocrystals, Inorg. Chem.,2007,46,1354-1360.
    [42]M. J. Casciato, G Levitin, D. W. Hess, M. A. Grover, Synthesis of Optically Active ZnS-Carbon Nanotube Nanocomposites in Supercritical Carbon Dioxide via a Single Source Diethyldithiocarbamate Precursor, Ind Eng. Chem. Res., 2012,51,11710-11716.
    [43]Y. Kim, J.-Y. Kim, D.-J. Jang, One-Pot and Template-Free Fabrication of ZnS-(ethylenediamine)0.5 Hybrid Nanobelts, J. Phys. Chem. C,2012,116, 10296-10302.
    [44]S. A. Acharya, N. Maheshwari, L. Tatikondewar, A. Kshirsagar, S. K. Kulkarni, Ethylenediamine-Mediated Wurtzite Phase Formation in ZnS, Cryst. Growth Des.,2013,13,1369-1376.
    [45]M. Stefan, C. Leostean, O. Pana, M.-L. Soran, R.C. Suciu, E. Gautron, O. Chauvet, Synthesis and characterization of Fe3O4@ZnS and Fe3O4@Au@ZnS core-shell nanoparticles, Appl. Surf. Sci.,2014,288, 180-192.
    [46]S.-H. Hsu, S.-F. Hung, S.-H. Chien, CdS sensitized vertically aligned single crystal TiO2 nanorods on transparent conducting glass with improved solar cell efficiency and stability using ZnS passivation layerJ.Power Sources,2013,233, 236-243.
    [47]N. Wetchakun, B. Incessungvorn, K. Wetchakun, S. Phanichphant, Photocatalytic mineralization of carboxylic acids over Fe-loaded ZnS nanoparticles, Mater. Res. Bull.,2013,1668-1674.
    [48]R. Ma, P.-J. Zhou, H.-J. Zhan, C. Chen, Y.-N. He, Optimization of microwave-assisted synthesis of high-quality ZnSe/ZnS core/shell quantum dots using response surface methodology, Opt. Commun.,2013,291,476-481.
    [1]L. Gao, T. Nishikata, K. Kojima, K. Chikama, H. Nagashima, Water-and Organo-Dispersible Gold Nanoparticles Supported by Using Ammonium Salts of Hyperbranched Polystyrene:Preparation and Catalysis, Chem. Asian J.,2013, 8,3152-3163.
    [2]S. Goto, Y. Amano, M. Akiyama, C. Bottcher, T. Komatsu, Gold Nanoparticle Inclusion into Protein Nanotube as a Layered Wall, ComponentLangmuir,2013, 29,14293-14300.
    [3]M. Li, G. Chen, Revisiting catalytic model reactionp-nitrophenol/NaBH4 using metallic nanoparticles coated on polymeric spheres, Nanoscale,2013,5, 11919-11927.
    [4]N. Gupta, N. Badhwar, B. Pal, Fabrication of hollow SiO2 and Au(core)-SiO2(shell) nanostructures of different shapes by CdS template dissolution, J. Sol-Gel Sci. Technol,2013,68,284-293.
    [5]R. Li, P. Zhang, Y. Huang, C. Chen, Q. Chen, Facile Approach to Prepare Pd Nanoarray Catalysts within Porous Alumina Templates on Macroscopic Scales, ACSAppl. Mater. Interfaces,2013,5,12695-12700.
    [6]A. M. Signori, K. de O. Santos, R. Eising, B. L. Albuquerque, F. C. Giacomelli, J. B. Domingos, Formation of Catalytic Silver Nanoparticles Supported on Branched Polyethyleneimine Derivatives, Langmuir,2010,26,17772-17779.
    [7]W. H. Eisa, A. Shabaka, Ag seeds mediated growth of Au nanoparticles within PVA matrix:An eco-friendly catalyst for degradation of 4-nitrophenol, React. Funct. Polym.,2013,73,1510-1516.
    [8]Y. Chen, Y. Tang, S. Luo, C. Liu, Y. Li, TiO2 nanotube arrays co-loaded with Au nanoparticles and reduced graphene oxide:Facile synthesis and promising photocatalytic application, J. Alloy. Compd.,2013,578,242-248.
    [9]J. Liu, S. Ma, Q. Wei, L. Jia, B. Yu, D. Wang, F. Zhou, Parallel array of nanochannels grafted with polymerbrushes-stabilized Au nanoparticles forflow-through catalysis, Nanoscale,2013,5,11894-11901.
    [10]J. Macanas, L. Ouyang, M.L. Bruening, M. Munoz, J.-C. Remigy, J.-F. Lahitte, Development of polymeric hollow fiber membranes containing catalytic metal nanoparticles, Catal. Today,2010,156,181-186.
    [11]S. A. Aromal, D. Philip, Facile one-pot synthesis of gold nanoparticles using tannic acid and its application in catalysis, Physica E,2012,44,1692-1696.
    [12]H. Zhang, X. Yang, Synthesis of tetra-layer polymer composite microspheres and the corresponding hollow polymer microspheres with Au nanoparticles functionalized movable cores, Polym. Chem.,2010,1,670-677.
    [13]B.-H. Kim, I. S. Yoon, J.-S. Lee, Masking Nanoparticle Surfaces for Sensitive and Selective Colorimetric Detection of Proteins, Anal. Chem.,2013,85, 10542-10548.
    [14]G. Li, T. Li, Y. Deng, Y. Cheng, F. Shi, W. Sun, Z. Sun, Electrodeposited nanogold decorated graphene modified carbon ionic liquid electrode for the electrochemical myoglobin biosensor, J. Solid State Electrochem.,2013,17, 2333-2340.
    [15]N. Chaudhari, S. Warule, S. Agrawal, V. Thakare, S. Jouen, B. Hannoyer, B. Kale, K. Paknikar, S. Ogale, A hollow nanogold/meso-magnetite composite: pulsed laser synthesis, properties, and biosensing application, J. Nanopart. Res., 2013,15,2081-2097.
    [16]W. Xu, W. Jin, L. Lin, C. Zhang, Z. Li, Y Li, R. Song, B. Li, Green synthesis of xanthan conformation-based silver nanoparticles:Antibacterial and catalytic application, Carbohydr. Polym.,2014,101,961-967.
    [17]J. Liu, C. Vipulanandan, Effects of Au/Fe and Fe nanoparticles on Serratia bacterial growth and production of biosurfactant, Mater. Sci. Eng. C,2013,33, 3909-3915.
    [18]M.D. Teli, J. Sheikh, Bamboo rayon-copper nanoparticle composites as durable antibacterial textile materials, Compos. Interfaces,2014,21,161-171.
    [19]C. M. Barnett, M. Gueorguieva, M. R. Lees, D. J. McGarvey, C. Hoskins, Physical stability, biocompatibility and potential use of hybrid iron oxide-gold nanoparticles as drug carriers, J. Nanopart. Res.,2013,15,1706-1720.
    [20]W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson, S. Sun, Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO2 to CO, J. Am. Chem. Soc.,2013,135,16833-16836.
    [21]H. Gu, Y. Yang, J. Tian, G Shi, Photochemical Synthesis of Noble Metal (Ag, Pd, Au, Pt) on Graphene/ZnO Multihybrid Nanoarchitectures as Electrocatalysis for H2O2 Reduction, ACS Appl. Mater. Interfaces,2013,5,6762-6768.
    [22]X. Wang, Y. Long, Q. Wang, H. Zhang, X. Huang, R. Zhu, P. Teng, L. Liang, H. Zheng, Reduced state carbon dots as both reductant and stabilizer for the synthesis of gold nanoparticles, Carbon,2013,64,499-506.
    [23]C. Tamuly, M. Hazarika, S. Ch. Borah, M. R. Das, M. P. Boruah, In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC:Green chemistry approach, Colloid Surf. B-Biointerfaces, 2013,102,627-634.
    [24]N. C. Antonels, R. Meijboom, Preparation of Well-Defined Dendrimer Encapsulated Ruthenium Nanoparticles and Their Evaluation in the Reduction of 4-Nitrophenol According to the Langmuir-Hinshelwood Approach, Langmuir,2013,29,13433-13442.
    [25]Y. Lin, Y. Qiao, Y. Wang, Y. Yan, J. Huang, Self-assembled laminated nanoribbon-directed synthesis of noble metallic nanoparticle-decorated silica nanotubes and their catalytic applications, J. Mater. Chem.,2012,22, 18314-18320.
    [26]A. Mitra, D. Jana, G. De, Synthesis of Equimolar Pd-Ru Alloy Nanoparticles Incorporated Mesoporous Alumina Films:A High Performance Reusable Film Catalyst, Ind. Eng. Chem. Res.,2013,52,15817-15823.
    [27]D. Lee, H. Y. Jang, S. Hong, S. Park, Synthesis of hollow and nanoporous gold/platinum alloy nanoparticles and their electrocatalytic activity for formic acid oxidation, J. Colloid Interface Sci.,2012,388,74-79.
    [28]K. S. Shin, J. H. Kim, I. H. Kim, K. Kim, Novel fabrication and catalytic application of poly(ethylenimine)-stabilized gold-silver alloy nanoparticles, J. Nanopart. Res.,2012,14,735-745.
    [29]X. Zhang, Z. Su, Polyelectrolyte-Multilayer-Supported Au@Ag Core-Shell Nanoparticles with High Catalytic Activity, Adv. Mater.,2012,24,4574-4577.
    [30]S. Zhang, W. Wu, X. Xiao, J. Zhou, J. Xu, F. Ren, C. Jiang, Polymer-Supported Bimetallic Ag@AgAu Nanocomposites:Synthesis and Catalytic Properties, Chem. Asian J.,2012,7,1781-1788.
    [31]W. Li, A. Wang, X. Liu, T. Zhang, Silica-supported Au-Cu alloy nanoparticles as an efficient catalyst for selective oxidation of alcohols, Appl. Catal. A-Gen., 2012,433-434,146-151.
    [32]J. Xin, F. Zhang, Y. Gao, Y. Feng, S. Chen, A. Wu, A rapid colorimetric detection method of trace Cr (VI) based on the redox etching of Agcore-Aushell nanoparticles at room temperature, Talanta,2012,101,122-127.
    [33]H. He, X. Xu, H. Wu, Y. Jin, Enzymatic Plasmonic Engineering of Ag/Au Bimetallic Nanoshells and Their Use for Sensitive Optical Glucose Sensing, Adv. Mater.,2012,24,1736-1740.
    [34]A.-M. Dallaire, D. Rioux, A. Rachkov, S. Patskovsky, M. Meunier, Laser-Generated Au-Ag Nanoparticles For Plasmonic Nucleic Acid Sensing, J. Phys. Chem. C,2012,116,11370-11377.
    [35]C.-I. Wang, W.-T. Chen, H.-T. Chang, Enzyme Mimics of Au/Ag Nanoparticles for Fluorescent Detection of Acetylcholine, Anal. Chem.,2012,84,9706-9712.
    [36]J.-P. Lee, D. Chen, X. Li, S. Yoo, L. A. Bottomley, M. A. El-Sayed, S. Park, M. Liu, Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering, Nanoscale,2013, 5,11620-11624.
    [37]L. A. W. Green, T. T. Thuy, D. M. Mott, S. Maenosono, N. T. K. Thanh, Multicore magnetic FePt nanoparticles:controlled formation and properties, RSC Adv.,2014,4,1039-1044.
    [38]X. Hou, X. Zhang, S. Chen, H. Kang, W. Tan, Facile synthesis of Ni/Au, Ni/Ag hybrid magnetic nanoparticles:New active substrates for surface enhanced Raman scattering, Colloid Surf. A-Physicochem. Eng. Asp.,2012,403,148-154.
    [39]J. Zhang, Y. Yuan, X. Xu, X. Wang, X. Yang, Core/Shell Cu@Ag Nanoparticle: A Versatile Platform for Colorimetric Visualization of Inorganic Anions, ACS Appl. Mater. Interfaces,2011,3,4092-4100.
    [40]T. Niu, Y. Gu, J. Huang, Luminescent cellulose sheet fabricated by facile self-assembly of cadmium selenide nanoparticles on cellulose nanofibres, J. Mater. Chem.,2011,21,651-656.
    [41]Y. Luo, X. Liu, J. Huang, Heterogeneous nanotubular anatase/rutile titania composite derived from natural cellulose substance and its photocatalytic property, CrystEngComm,2013,15,5586-5590.
    [42]Y. Gu, D. Jia, J. Huang, Hierarchical fibrous titanium metal derived from cellulose substance, CrystEngComm,2013,15,8924-8928.
    [43]W. Xiao, Y. Luo, X. Zhang, J. Huang, Highly sensitive colourimetric anion chemosensors fabricated by functional surface modification of natural cellulose substance, RSC Adv.,2013,3,5318-5323.
    [44]J. Li, J. Xu, J. Huang, Nanofibrous vanadium-doped rutile titania derived from cellulose substance by flame synthesis, CrystEngComm,2014,16,375-384.
    [45]Y. Zhang, X. Liu, J. Huang, Hierarchical Mesoporous Silica Nanotubes Derived from Natural Cellulose Substance, ACS Appl. Mater. Interfaces,2011,3, 3272-3275.
    [46]J. Wang, W. Liu, H. Li, H. Wang, Z. Wang, W. Zhou, H. Liu, Preparation of cellulose fiber-TiO2 nanobelt-silver nanoparticle hierarchically structured hybrid paper and its photocatalytic and antibacterial properties, Chem. Eng. J., 2013,228,272-280.
    [47]H. Dong, J. F. Snyder, D. T. Tran, J. L. Leadore, Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles, Carbohydr. Polym., 2013,95,760-767.
    [48]R. Xiong, C. Lu, W. Zhang, Z. Zhou, X. Zhang, Facile synthesis of tunable silver nanostructures for antibacterial application using cellulose nanocrystals, Carbohydr. Polym.,2013,95,214-219.
    [49]X. Liu, Y. Luo, T. Wu, J. Huang, Antibacterial activity of hierarchical nanofibrous titania-carbon composite material deposited with silver nanoparticles, New J. Chem.,2012,36,2568-2573.
    [50]M. Zhou, Y. Gu, J. Huang, Hierarchical nanotubular clay materials derived from natural cellulose substance, Mater. Res. Bull.,2013,48, 3223-3231.
    [51]T. Niu, J. Xu, W. Xiao, J. Huang, Cellulose-based catalytic membranes fabricated by deposition of gold nanoparticles on natural cellulose nanofibres, RSC Adv.,2013, DOI:10.1039/C3RA44622K.
    [52]E. Lam, S. Hrapovic, E. Majid, J. H. Chong, J. H. T. Luong, Catalysis using gold nanoparticles decorated on nanocrystalline cellulose, Nanoscale,2012,4, 997-1002.
    [53]K.G Chandrappa, T.V. Venkatesha, Electrochemical bulk synthesis and characterisation of hexagonal-shaped CuO nanoparticles, J. Exp. Nanosci.,2013, 8,516-532.
    [54]C.-H. Tsai, S.-Y. Chen, J.-M. Song, I.-G. Chen, H.-Y. Lee, Thermal stability of Cu@Ag core-shell nanoparticles, Corrosion Sci.,2013,74,123-129.
    [55]T. Sun, E. Liu, J. Fan, X. Hu, F. Wu, W. Hou, Y. Yang, L. Kang, High photocatalytic activity of hydrogen production from water over Fe doped and Ag deposited anatase TiO2 catalyst synthesized by solvothermal method, Chem. Eng. J.,2013,228,896-906.
    [56]V. K. Gupta, N. Atar, M. L. Yola, Z. Ustundag, L. Uzun, A novel magnetic Fe@Au coreeshell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds, Water Res.,2014,48, 210-217.
    [1]R. A. Ahmed, A. M. Fekry, R. A. Farghali, A study of calcium carbonate/multiwalled-carbon nanotubes/chitosan composite coatings on Ti-6A1-4V alloy for orthopedic implants, Appl. Surf. Sci.,2013,285,309-316.
    [2]H.-D. Yu, Z.-Y. Zhang, K. Y. Win, J. Chan, S. H. Teoh, M.-Y. Han, Bioinspired fabrication of 3D hierarchical porous nanomicrostructures of calcium carbonate for bone regeneration, Chem. Commun.,2010,46,6578-6580.
    [3]S. Chen, D. Zhao, F. Li, R.-X. Zhuo, S.-X. Cheng, Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy, RSC Adv.,2012, 2,1820-1826.
    [4]Y. Svenskaya, B. Parakhonskiy, A. Haase, V. Atkin, E. Lukyanets, D. Gorin, R. Antolini, Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer, Biophys. Chem.,2013,182,11-15.
    [5]R. K. Pai, M. Cotlet, Highly Stable, Water-Soluble, Intrinsic Fluorescent Hybrid Scaffolds for Imaging and Biosensing, J. Phys. Chem. C,2011,115,1674-1681.
    [6]G Li, Z. Li, H. Ma, Synthesis of aragonite by carbonization from dolomite without any additives, Int. J. Miner. Process.,2013,123,25-31.
    [7]Z. Hu, M. Shao, Q. Cai, S. Ding, C. Zhong, X. Wei, Y. Deng, Synthesis of needle-like aragonite from limestone in the presence of magnesium chloride, J. Mater. Process. Technol,2009,209,1607-1611.
    [8]Z. Hu, Y. Deng, Synthesis of needle-like aragonite from calcium chloride and sparingly soluble magnesium carbonate, Powder Technol,2004,140,10-16.
    [9]R. K. Pai, K. Jansson, N. Hedin, Transport-Mediated Control of Particles of Calcium Carbonate, Cryst. Growth Des.,2009,9,4581-4583.
    [10]G.-T. Zhou, J. C. Yu, X.-C. Wang, L.-Z. Zhang, Sonochemical synthesis of aragonite-type calcium carbonate with different morphologies, New J. Chem., 2004,28,1027-1031.
    [11]D. Chakrabarty, S. Mahapatra, Aragonite crystals with unconventional morphologies, J. Mater. Chem.,1999,9,2953-2957.
    [12]Z. Huang, G. Zhang, Biomimetic Synthesis of Aragonite Nanorod Aggregates with Unusual Morphologies Using a Novel Template of Natural Fibrous Proteins at Ambient Condition, Cryst. Growth Des.,2012,12,1816-1822.
    [13]Y. Pan, X. Zhao, Y. Sheng, C. Wang, Y. Deng, X. Ma, Y. Liu, Z. Wang, Biomimetic synthesis of dendrite-shaped aragonite particles with single-crystal feature by polyacrylic acid, Colloids Surf, A,2007,297,198-202.
    [14]H. Matahwa, V. Ramiah, R. Sanderson, Calcium carbonate crystallization in the presence of modified polysaccharides and linear polymeric additives, J. Cryst. Growth,2008,310,4561-4569.
    [15]K. Naka, S. C. Huang, Y. Chujo, Formation of Stable Vaterite with Poly(acrylic acid) by the Delayed Addition Method, Langmuir,2006,22,7760-7767.
    [16]A. Kotachi, T. Miura, H. Imai, Polymorph Control of Calcium Carbonate Films in a Poly(acrylic acid)-Chitosan System, Cryst. Growth Des.,2006,6, 1636-1641.
    [17]H. K. Park, I. Lee, K. Kim, Controlled growth of calcium carbonate by poly(ethylenimine) at the air/water interface, Chem. Commun.,2004,24-25.
    [18]I. W. Kim, R. E. Robertson, R. Zand, Effects of Some Nonionic Polymeric Additives on the Crystallization of Calcium Carbonate, Cryst. Growth Des., 2005,5,513-522.
    [19]R. K. Pai, S. Hild, A. Ziegler, O. Marti, Water-Soluble Terpolymer-Mediated Calcium Carbonate Crystal Modification, Langmuir,2004,20,3123-3128.
    [20]R. K. Pai, S. Pillai, Water-Soluble Terpolymer Directs the Hollow Triangular Cones of Packed Calcite Needles, Cryst. Growth Des.,2007,7,215-217.
    [21]A. L. Litvin, S. Valiyaveettil, D. I. Kaplan, S. Mann, Template-directed synthesis of aragonite under supramolecular hydrogen-bonded langmuir monolayers, Adv. Mater.,1997,9,124-127.
    [22]R. K. Pai, S. Pillai, Divalent Cation-Induced Variations in Polyelectrolyte Conformation and Controlling Calcite Morphologies:Direct Observation of the Phase Transition by Atomic Force Microscopy, J. Am. Chem. Soc.,2008,130, 13074-13078.
    [23]D. Walsh, S. Mann, Fabrication of hollow porous shells of calcium carbonate from self-organizing media, Nature,1995,377,320-323.
    [24]F. Zhu, T. Nishimura, T. Sakamoto, H. Tomono, H. Nada, Y. Okumura, H. Kikuchi, T. Kato, Tuning the Stability of CaCO3 Crystals with Magnesium Ions for the Formation of Aragonite Thin Films on Organic Polymer Templates, Chem. Asian J.,2013,8,3002-3009.
    [25]N. Wada, K. Yamashita, T. Umegaki, Effects of divalent cations upon nucleation, growth and transformation of calcium carbonate polymorphs under conditions of double diffusion,J.Cryst. Growth,1995,148,297-304.
    [26]K. J. Davis, P. M. Dove, J. J. De Yoreo, The Role of Mg2+ as an Impurity in Calcite Growth, Science,2000,290,1134-1137.
    [27]G. G Wang, L. Q. Zhu, H. C. Liu, W. P. Li, Self-Assembled Biomimetic Superhydrophobic CaCO3 Coating Inspired from Fouling Mineralization in Geothermal Water, Langmuir,2011,27,12275-12279.
    [28]T. Niu, Y. Gu, J. Huang, Luminescent cellulose sheet fabricated by facile self-assembly of cadmium selenide nanoparticles on cellulose nanofibres, J. Mater. Chem.,2011,21,651-656.
    [29]Y. Luo, X. Liu, J. Huang, Nanofibrous rutile-titania/graphite composite derived from natural cellulose substance, J. Nanosci. Nanotechnol.,2013,13,582-588.
    [30]Y. Gu, J. Huang, Nanographite sheets derived from polyaniline nanocoating of cellulose nanofibers, Mater. Res. Bull.,2013,48,429-434.
    [31]X. Liu, Y. Zhang, T. Wu, J. Huang, Hierarchical nanotubular titanium nitride derived from natural cellulose substance and its electrochemical properties, Chem. Commun.,2012,48,9992-9994.
    [32]W. Xiao, H. Hu, J. Huang, Colorimetric detection of cysteine by surface functionalization of natural cellulose substance, Sens. Actuators, B,2012, 171-172,878-885.
    [33]C. Jin, Y. Jiang, T. Niu, J. Huang, Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification, J. Mater. Chem.,2012,22, 12562-12567.
    [34]W. Xiao, J. Huang, Immobilization of oligonucleotides onto zirconia-modified filter paper and specific molecular recognition, Langmuir,2011,27, 12284-12288.
    [35]M. Gonzalez, E. Hernandez, J. A. Ascencio, F. Pacheco, S. Pacheco, R. Rodriguez, Hydroxyapatite crystals grown on a cellulose matrix using titanium alkoxide as a coupling agent, J. Mater. Chem.,2003,13,2948-2951.
    [36]M.-G. Ma, L. H. Fu, R. C. Sun, N. Jia, Compared study on the cellulose/CaCO3 composites via microwave-assisted method using different cellulose types, Carbohydr. Polym.,2012,90,309-315.
    [37]M.-G Ma, L. H. Fu, S.-M. Li, X.-M. Zhang, R. C. Sun, Y.-D. Dai, Hydrothermal synthesis and characterization of wood powder/CaCO3 composites, Carbohydr. Polym.,2012,88,1470-1475.
    [38]Z. Zheng, B. Huang, H. Ma, X. Zhang, M. Liu, Z. Liu, K. W. Wong,W. M. Lau, Biomimetic Growth of Biomorphic CaCO3 with Hierarchically Ordered Cellulosic Structures, Cryst. Growth Des.,2007,7,1912-1917.
    [39]E. Dalas, P. G Klepetsanis, P. G Koutsoukos, Calcium Carbonate Deposition on Cellulose, J. Colloid Interface Sci.,2000,224,56-62.
    [40]N. Jia, S.-M. Li, M.-G Ma, R. C. Sun, J.-F. Zhu, Hydrothermal fabrication, characterization, and biological activity of cellulose/CaCO3 bionanocomposites, Carbohydr. Polym.,2012,88,179-184.
    [41]C. Vilela, C. S. Freire, P. A. Marques, T. Trindade, C. P. Neto, P. Fardim, Synthesis and characterization of new CaCO3/cellulose nanocomposites prepared by controlled hydrolysis of dimethylcarbonate, Carbohydr. Polym., 2010,79,1150-1156.
    [42]L. Liu, D. He, G-S. Wang, S. H. Yu, Bioinspired Crystallization of CaCO3 Coatings on Electrospun Cellulose Acetate Fiber Scaffolds and Corresponding CaC03 Microtube Networks, Langmuir,2011,27,7199-7206.
    [43]M.-G Ma, S.-J. Qing, S.-M. Li, J.-F. Zhu, L. H. Fu, R. C. Sun, Microwave synthesis of cellulose/CuO nanocomposites in ionic liquid and its thermal transformation to CuO, Carbohydr. Polym.,2013,91,162-168.
    [44]H. Gullapalli, V. S. M. Vemuru, A. Kumar, A. Botello-Mendez, R. Vajtai, M. Terrones, S. Nagarajaiah, P. M. Ajayan, Small,2010,6,1641-1646.
    [45]S. Anitha, B. Brabu, D. J. Thiruvadigal, C. Gopalakrishnan, T. S. Natarajan, Flexible Piezoelectric ZnO-Paper Nanocomposite Strain Sensor, Carbohydr. Polym.,2012,87,1065-1072.
    [46]S. Ye, D. Zhang, H. Liu and J. Zhou, ZnO nanocrystallites/cellulose hybrid nanofibers fabricated by electrospinning and solvothermal techniques and their photocatalytic activity, J. Appl. Polym. Sci.,2011,121,1757-1764.
    [47]A. J. Gimenez, J. M. Yanez-Limon, J. M. Seminario, ZnO-Paper Based Photoconductive UV Sensor, J. Phys. Chem. C,2011,115,282-287.
    [48]I. Perelshtein, G Applerot, N. Perkas, E. Wehrschetz-Sigl, A. Hasmann, G M. Guebitz, A. Gedanken, Antibacterial Properties of an In Situ Generated and Simultaneously Deposited Nanocrystalline ZnO on Fabrics, ACS Appl. Mater. Interfaces,2009,1,361-366.
    [49]G Zhang, D. Wang, Z.-Z. Gu, H. Mohwald, Fabrication of Superhydrophobic Surfaces from Binary Colloidal Assembly, Langmuir,2005,21,9143-9148.
    [50]Z. Hu, X. Zen, J. Gong, Y. Deng, Water resistance improvement of paper by superhydrophobic modification with microsized CaCO3 and fatty acid coating, Colloids Surf., A,2009,351,65-70.
    [51]S. Li, S. Zhang, X. Wang, Fabrication of Superhydrophobic Cellulose-Based Materials through a Solution-Immersion Process, Langmuir,2008,24, 5585-5590.
    [52]B. Balu, V. Breedveld, D. W. Hess, Fabrication of "Roll-off" and "Sticky" Superhydrophobic Cellulose Surfaces via Plasma Processing, Langmuir,2008, 24,4785-4790.
    [53]S. Li, Y. Wei, J. Huang, Facile fabrication of superhydrophobic cellulose materials by a nanocoating approach, Chem. Lett.,2010,39,20-21.
    [54]C. Jin, R. Yan, J. Huang, Cellulose substance with reversible photo-responsive wettability by surface modification, J. Mater. Chem.,2011,21,17519-17525.
    [55]J. Huang, T. Kunitake, Nano-precision replication of natural cellulosic substances by metal oxides, J. Am. Chem. Soc.,2003,125,11834-11835.
    [56]J. Huang, T. Kunitake, Nanotubings of titania/polymer composite:template synthesis and nanoparticle inclusion, J. Mater. Chem.,2006,16,4257-4264.
    [57]S.-W. Lee, I. Ichinose, T. Kunitake, Molecular Imprinting of Azobenzene Carboxylic Acid on a TiO2 Ultrathin Film by the Surface Sol-Gel Process, Langmuir,1998,14,2857-2863.
    [58]D. V. Parikh, D. P. Thibodeaux, B. Condon, X-ray Crystallinity of Bleached and Crosslinked Cottons, Text. Res. J.,2007,77,612-616.
    [59]Y. Ma, L. Qiao, Q. Feng, In-vitro study on calcium carbonate crystal growth mediated by organic matrix extracted from fresh water pearls, Mater. Sci. Eng. C, 2012,32,1963-1970.
    [60]R. Lakshminarayanan, S. Valiyaveettil, G L. Loy, Selective Nucleation of Calcium Carbonate Polymorphs:Role of Surface Functionalization and Poly(Vinyl Alcohol) Additive, Cryst. Growth Des.,2003,3,953-958.
    [61]W. Xiao, J. Liu, Q. Chen, Y. Wu, L. Dai, T. Wu, Controllable mineralization of calcium carbonate on regenerated cellulose fibers, Cryst. Res. Technol.,2011,46, 1071-1078.
    [62]F. Zhang, X. Yang, F. Tian, Calcium carbonate growth in the presence of water soluble cellulose ethers, Mater. Sci. Eng., C,2009,29,2530-2538.
    [63]Y. Du, L. Zhu, G Shan, Removal of Cd2+ from contaminated water by nano-sized aragonite mollusk shell and the competition of coexisting metal ions, J. Colloid Interface Sci.,2012,367,378-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700