用户名: 密码: 验证码:
全风化花岗岩改良土工程特性及其在高速铁路建设中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国高速铁路正处于全面发展的建设时期,为了保证列车安全、舒适、平稳的运行,高速铁路对路基变形有严格的要求。新建武广客运专线沿线的相当一段线路穿越全风化花岗岩地段,A、B组填料缺乏,如果完全依靠外运合格填料,则既不经济,又不合理。为了保证工程能够高效、安全、经济的建设,必须对一些地段的花岗岩风化物进行改良,使其达到所要求的填料标准。本文在综合分析国内外全风化花岗岩研究现状基础上,通过理论分析、室内试验、和仿真数值分析等方法,对全风化花岗岩及其改良土的工程特性进行了研究,主要的研究内容和结论如下:
     (1)通过大量的试验研究表明,沿线大多数全风化花岗岩的物理力学性质差,内摩擦角小,吸水能力强,天然含水量大,粘结力小,结构松散,液塑限高,细颗粒含量较多,粉砂含量较高,风化花岗岩的强度指标不高,承载力低,如CBR值较低、回弹模量小等,除此之外,还有抗变形能力以及长期水稳性差等特征。
     (2)通过对不同掺加剂掺入量的改良土进行颗粒分析、液塑限、压缩特性、击实特性、水稳定性、强度特性等一系列试验,表明全风化花岗岩改良后土的塑性指数降低;颗粒分析曲线左移,颗粒粗化效果明显;击实曲线变平缓,驼峰变宽,这使得在施工中对含水量的控制范围变宽,施工质量更易把握;压缩性降低;渗透性下降;水稳定性提高;强度提高等。对于DK2097+560工点的黄色全风化花岗岩,掺加6%生石灰就能满足高速铁路对路基填料的要求;DK2116+200工点的红色全风化花岗岩,不宜采用生石灰改良,掺加6%水泥可以满足高速铁路对路基填料的要求。
     (3)运用MATLAB软件自身携带的BP网络工具建立模型对生石灰改良土无侧限抗压强度进行预测,并对影响因素进行分析。改良土存在一个最优的掺灰量,无侧限抗压强度随着压实度的增大而提高,泡水后强度会明显的降低,且强度随着龄期的延长而不断增长。
     (4)利用ANSYS软件建立路基仿真模型,研究改良土作为路基填料时,在不同车速、不同轮重下以及基床表层厚度改变时的动力特性。动力响应沿深度方向呈衰减的趋势,沿路基横向上,最大值出现在钢轨下或右线中心线上。在不同车速下,位移、速度、加速度、应力等物理量的响应并不是随着车速的增大而增大。在不同轮重下,位移、速度、加速度、应力等物理量的响应与轮重存在着拟线性函数关系,随着轮重的增加而增大。随着基床表层厚度的增大,移、速度、加速度、应力等物理量的响应值均有所减小。
At present, it is in the constraction period of high-speed railway in China. To ensure the train safety, comfortability, smooth operation, there are strict requirements for the embankment deformation of high-speed railway. Wuhan-Guangzhou passenger rail line passes through a wide range of weathered granite, and lack of A、B group fillings, It is uneconomic and unreasonable for transporting qualified filler completely. To ensure that the project can be efficient safe and economic and reach the required standard of filling, It is necessary to improve weathered granite completely. Based on comprehensive analysis of research of weathered granite at home and abroad, engineering properties of weathered granite and its improvement were studied through theoretical analysis、laboratory test and numerical simulation methods. Main contents and conclusions are as fellows:
     (1) Through a large number of expermimental studies, it is shown that physical and mechanical properties of weathered granite are poor: smaller internal friction angle, better absorption capacity, bigger natural moisture content, smaller force, loosely, higher liquid and plastic limits, higher content of fine particles, higher silt content, lower strength index of weathered granite, lower carrying capacity, lower CBR value, smaller modulus,deformation resistance and long-term water stability are poor.
     (2) Through experiments of improved soil with different additive, including analysis of particle, liquid limit and plastic limit, characteristics of compression, characteristics of compaction, stability with water, properties of strength, it is shown that:plasticity index was decreased; curve of particle anslysis was to the left and coarsening effect of particle was obvious; curve of compaction became gently which made the control of water content in easier construction; compressibility and permeability were decreased; permeability decreased; stability with water was increased; strength was increased. For DK2097+560, improved soil with 6% lime was able to meet the requirement; but not suitable mixing lime for DK2116+200, improved soil mixing with 6% cement was able to meet the requirement of high-speed railway.
     (3) Unconfined compression strength was predicted with BP model of MATLAB software,and influencing factors of unconfined compression strength was analyzed. There was an optimal incorporation for improved soil mixing with lime. Unconfined compression strength increased with increase of degree of compaction, and decreased after soaking. The strength will grow with age.
     (4) Formed element simulation model of embankment from ANSYS. When improved soil was used as a filling, dynamic characteristics were studied at different speed、different wheelload and different thickness of surface-based bed. Dyamic response reduced with increase of the depth. Maximum appeared under the rail or the center line of the right line. Dynamic response did not increase with increase of speed. There was a linear function between dynamic response and wheelload. Response increased with wheelload. Dynamic respose reduced with thickness of surface-based bed increased.
引文
[1]王炳龙.高速铁路路基工程.北京:中国铁道版设,2007:1-30
    [2]编委会.高速铁路路基工程施工新技术手册.北京:中国铁道出版社,2008:50-100
    [3]舒海明.高速铁路软硬改良土试验及施工工艺研究,长沙:中南大学硕士学位论文,2008
    [4]叶阳升,罗梅云.浅谈客运专线路基结构与填料标准[A].铁道科学技术新进展—铁道科学研究院五十五周年论文集,2005:211-214
    [5]侯江波,王永和.全风化花岗岩石灰改良土室内试验分析.西部交通科技,2009,(2):76-80
    [6]刘永红.石灰改良黄土路堤特性试验研究.成都:西南交通大学硕士学位论文,2007
    [7]张登良,加固土原理.北京:人民交通出版社,1990:5-10
    [8]日本铁道施设协会.《建造物设计标准解说》(土构造物),1978
    [9]铁道部标准计量研究所.国外高速铁路标准及规程汇编/德国铁路土工建筑物规范(DS836),1995
    [10]周易平.高速铁路路基填料改良技术的研究.北京:铁道部科学研究院硕士学位论文,2000
    [11]蔡德凯.滨海高速公路路基填料改良及其应用研究.天津:天津大学硕士学位论文,2005
    [12]Bell F G. Lime stabilization of clay minerals and soils. Engineering Geology,1996,412(4):223-237
    [13]Osula D 0 A. Lime s tabilization of clay minerals and soils. Engineering Geology,1996,42(1):71-80
    [14]Locat J, Tremblay H, Leroueil S. Mechanical and hydraulic behavior of a soft inorgranic clay treated with lime. Canadian Geotechnical Journal 1996.33(4):654-659
    [15]梁爱华.高速铁路路基填料—水泥改良土的工程性质.天津:天津大学硕士学位论文,2005
    [16]吴明友.铁路路基填料分类及压实标准研究.成都:西南交通大学硕士学位论文,1998
    [17]龚军平.高速铁路路基填料改良土工程性质试验及施工技术研究.成都:西南交通大学硕士学位论文,2002
    [18]Al-Abdul Wahhab HI, Asi, I M. Improvement of marl and dune sand for highway construction in arid areas. Building and Environment,1997, 32(3):271-279
    [19]武广客运专线全风化花岗岩报告
    [20]翟阳、罗锦添、李焯芬.不排水条件下饱和全风化花岗岩填土的工程性能.烟台大学学报,2002,(2):52-56
    [21]马宏剑,方磊.掺砂处理全风化花岗岩路基填了室内CBR试验研究.苏州科技学院学报,2006,(1):22-25
    [22]张军、王静梅、李志勇.风化花岗岩路基土动态力学性能的试验研究.公路,2004,(5):138-141
    [23]陈洋、刘天乐、姜东方.福建沿海地区花岗岩残积土工程地质特性研究.中国水运,2007,(9):66-67
    [24]刘祖富.福建可以专线铁路全风化花岗岩物理力学性质研究.铁路勘测技术学会论文集,2006,116-118
    [25]刘胜娥、罗林生.海南省花岗岩残积土的工程特性研究.岳阳师范学院学报。2001,(2):48-50
    [26]简文彬、陈文庆、郑登贤.花岗岩残积土的崩解试验研究.中国土木工程学会第九届土力学及岩土工程学术会议论文集,2003,25-28
    [27]吴能森、赵尘、侯伟生.花岗岩残积土的成因、分布及工程特性研究.平顶山工学院学报,2004,(4):1-4
    [28]张文华.花岗岩残积土的抗剪强度及土质边坡稳定分析.水文地质工程地质,1994,(3)、:41-42
    [29]朱德昌.花岗岩残积土的试验及测试研究.福建建筑,1999,(2):42-44
    [30]阳发清、孙瑞娟.花岗岩残积土物理力学性质及变形特性的研究.勘察科学技术,2002,(6):34-37
    [31]尚彦军、岳中琦、王思敬、赵建军.全风化花岗岩脆性破裂和塑性蠕变对比CT表证.第八次全国岩石力学与工程学术大会论文集,241-246
    [32]李志勇、谢强.全风化花岗岩动强度特性研究.中南公路工程,2005,(3):28-31
    [33]赵建军、王思敬、尚燕军、岳中琦.香港全风化花岗岩饱和直剪试验中的剪胀问题.工程地质学报,2005,(13):44-48
    [34]赵建军、王思敬、尚燕军、岳中琦.全风化花岗岩抗剪强度影响因素分析.岩土力学,2005,(4):624-628
    [35]刘好正.风化花岗岩工程特性与路基工程.路基工程,2003,(5):41-46
    [36]袁聚云.土工试验与原位测试.上海:同济大学出版社,2004
    [37]刘成宇.土力学.北京:中国铁道出版社
    [38]张际先.神经网络及其在工程中的应用.北京:机械工业出版设.1996:1-2
    [39]Weigend A B etal. Predicting the future:a connectionlist approach. Int 1, J. Neur. SYS.1990, (1):193-209
    [40]Dean, AndrewR, BrianHFiedler。ForeCastingwarm-season burn-off low clouds at the San Froneisco international airporn using linear regressionand a neural network。JAPPI Meteor.2002,41(6):629-639
    [41]非思科技研发中心.神经网络与MATLAB7实现.北京:电子工业出版社,2005,35-80
    [42]Rumelhart D E.Mclelland J. Parallel distributed proessing. Cambridge MA:MIT Press,1986:274-299
    [43]Sietsme J, Dow I JF. Creating artificial neural networks that general 1 ze. Neural Networks.1991,4(1):67-69
    [44]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计.北京:清华大学出版社,35-50
    [45]侯福均,吴祈.BP神经网络在铁路客运市场时间序列预测中的应用.运筹与管理,2003,12(4):73-75
    [46]Li D Q, Selig E T. Wheel/track dynamic interaction:track substructure perspective [J]. Vehicle System Dynamics,1995,24(S):183-196.
    [47]李军世,李克钏.高速铁路路基动力反应的有限元分析[J].铁道学报,1995,17(1):66-75.
    [48]雷晓燕.高速列车对道碴的动力响应[J].铁道学报,1997,19(1):114-121.
    [49]Hall L. Simulations and analyses of train-induced ground vibrations in finite element models[J]. Soil Dynamics and Earthquake Engineering,2003,23(5):403-413.
    [50]0'Brien J, Rizos D C. A 3D BEM-FEM methodology for simulation of high speed train induced vibrations [J]. Soil Dynamics and Earthquake Engineering,2005,25(2):285-301.
    [51]边学成,陈云敏.列车荷载作用下轨道和地基的动响应分析[J].力学学 报,2005,37(4):477-484.
    [52]马学宁,梁波.高速铁路路基结构时变系统耦合动力分析[J].铁道学报,2006,28(5):65-70.
    [53]陈斌,陈国兴,苏晓梅.城市轨道交通振动作用下地表响应分析[J].南通大学学报,2006,5(增):51-54.
    [54]王永和,杨果林,李献民等.路桥过渡段设置方式试验报告[R].长沙:中南大学,2003:3-48
    [55]罗强.高速铁路路桥过渡段动力学性能分析及工程试验研究[D].成都:西南交通大学,2003
    [56]何群.全风化花岗岩高速铁路路基的动力特性及稳定性研究[D].长沙:中南大学博士论文,2007
    [57]曾庆元等.列车桥梁时变系统振动分析理论与应用[M].北京:中国铁道出版社,1999:23-67
    [58]张协崇.客运专线涵涵过渡段动力特性试验研究及仿真分析.长沙:中南大学硕士论文。2009
    [59]卿启湘.高速铁路无碴轨道软岩路基系统动力特性研究[D].长沙:中南大学博士论文,2005
    [60]聂志红.高速铁路轨道路基竖向动力响应研究[D].长沙:中南大学博士论文,2005
    [61]王其昌.高速铁路土木工程[M].成都:西南交通大学出版设,1999:35-67
    [62]翟婉明.车辆—轨道耦合动力学[M].北京:科学出版社,2006-225
    [63]冯宗禹,朱玉江,王清洁.软岩作为填料的探讨[J].路基上程,1995,(5):23-27
    [64]王永顺.软岩作为铁路路堤填料的施工技术[J].铁道标准设计,2003,(5):10-13.
    [65]严学斌.软岩路基施工技术研究[J].中国科技信息,2006,(13):68-69.
    [66]刘长海,刘平平,李冬梅.软岩填筑路基施工技术[J].北方交通,2008,(3):68-70.
    [67]洪岩.利用风化软岩作为铁路路基填料的施丁方法[J].路基Ⅰ:程,2002,(3):40.
    [68]吴明友.铁路路基填料分类及压实标准研究[D].成都:西南交通大学,2004.
    [69]柳墩利.铁路路基压实标准的研究[D].北京:铁道科学研究院.2004.
    [70]WILSON N E, ELGOHARY M M. Consolidation of sils under cyclic loading[J]. CanadianGeotechnicalJournal,1974,11(3):420-423.
    [71]FAVARETTI M, SORANZO M. A simplified consolidation theory in cyclic loadingconditions[C]Proceedings of International Symposium on Compression and Consolidation of Clayey Soils. Japan:Hiroshima,1995, VOl.1:405-409.
    [72]RAHAL MA, VEUZ A R. Analysis of settlement and pore pressure induced by cyclic loading of soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1998,124(12):1208-1210.
    [73]WU Shi—ming. One dimensional consolidation of saturated clay under cyclic loading[J]. Journal ofZhejiang University,1998,22(5):60-70.
    [74]Gibson R. E, Schimman R. L and Pu S L. Plane strain and axially symmetric consolidmion of a clay layer on a smooth imperious base[J], Appl Math,1970(23):505-512.
    [75]Booker J. R. The Consolidation of a finite layer subject to surface loading [J]. Int. J Solidsstructures,1974(10):1053-1062.
    [76]李小和.客运专线路基地段铺设无碴轨道有关问题的探讨.铁道工程学报,2005,89(5):20-24
    [77]赵国堂.高速铁路无碴轨道结构[M].北京:中国铁道出版社,2006
    [78]夏禾,张楠.车辆与结构动力相互作用[M].北京:科学出版社,2005
    [79]练松良.轨道工程[M].上海:同济大学出版社,2006
    [80]翟婉明.车辆-轨道藕合动力学研究的新进展[J].中国铁道科学,2002,23(2):1-14
    [81]陈泽深,王成国.车辆-轨道系统高中低频动力学模型的理论特征及其应用范围的研究[J].中国铁道科学,2004,25(4):1-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700