用户名: 密码: 验证码:
人类细胞生长相关新基因hOLFML1和C10ORF58的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分泌蛋白是一类具有重要生理功能的蛋白,参与了细胞信号传递、形态发生、细胞凋亡、细胞分化、免疫防御等多种过程。由于它们能够适应不同的药物运输机制,可以用作临床治疗药物或治疗靶点。为了寻找新的分泌蛋白并研究其生物学功能,本研究运用生物信息学预测结合实验验证的策略从人类公共蛋白数据库中筛选并鉴定新的与细胞生长密切相关的分泌蛋白基因。
     在第一部分研究工作中,我们采用上述的策略筛选到了一个新的人类分泌蛋白基因hOLFML1(人Olfactomedin样蛋白1,human Olfactomedin-like protein 1),该基因编码蛋白全长为402个氨基酸,C端含有OLF(Olfactomedin)结构域,是一个N-连接的糖基化分泌蛋白,可以被分泌到培养基中。Northern实验显示hOLFML1 mRNA主要在小肠、肝脏、心脏和肺中表达。通过制备它的抗体,我们检测到了hOLFML1蛋白的内源性分泌,而且发现hOLFML1蛋白的分泌是有血清依赖性的。小肠组织的免疫组化实验显示,hOLFML1蛋白主要在小肠的绒毛边缘表达。此外还发现:hOLFML1的表达能明显地促进细胞的生长,而hOLFML1的RNAi却能抑制细胞的生长。当在培液中加入hOLFML1的抗体后,它能起到部分阻断hOLFML1的生物学功能的作用。
     在第二部分研究工作中,基于同样的策略,我们识别了一个含信号肽的人类新基因C10ORF58(人第10号染色体的58号开放读码框,Q9BRX8。简称RX8)。它是一个高度保守的基因,在线虫等低等多细胞生物中就已经存在它的直系同源基因。RX8基因的组织表达比较广谱,其中在脑、心、肾、胰腺、肝脏和睾丸中RX8呈现高表达。在HepG2-Teton细胞株中,诱导表达的RX8能明显地抑制细胞的生长和细胞克隆的形成,并使细胞周期中处于合成期的细胞数减少和新生蛋白的翻译量降低。此外,RX8还能选择性地增强BFA(Brefeldin A)等破坏内质网药物的促凋亡作用。细胞定位分离实验显示RX8是一个定位于内质网上的整合膜蛋白。通过酵母双杂交实验,我们找到了RX8的一个互作蛋白CAML(钙离子调控的亲环素配体蛋白,calcium-modulating cyclophilin ligand)。通过细胞的Co-IP实验、体外的GST-Pulldown实验以及免疫荧光实验,我们证实了RX8和CAML蛋白在细胞内存在着相互作用。进一步证明了RX8、CAML和EGFR(表皮生长因子受体)在细胞内能形成一个复合体。此外,我们还发现RX8的过表达能明显抑制EGF信号通路下游分子ERK1/2的活化,使其磷酸化水平下降。而RX8的下调表达却明显地促进ERK1/2的磷酸化,而且这种磷酸化能被EGF信号通路ERK1/2分子上游的MEK特异性的抑制剂PD98059所抑制。根据以上这些实验结果,本文提出了一个初步的分子模型假说:EGFR的正常循环依赖于结合在内质网上的CAML蛋白;而当有RX8蛋白表达时,RX8能破坏或者竞争性地抑制EGFR和CAML之间的结合,从而使EGF信号下游分子ERK1/2的激活受到抑制,进而出现生长明显减慢的细胞学现象。
     在第三部分中,我们初步描述了基于同样策略筛选到的一个新的人类分泌蛋白基因C12ORF39(人第12号染色体39号开放读码框)。免疫印迹试验表明,在转染的HeLa细胞中带有c-myc标签的C12ORF39蛋白可以被分泌到培养基中。在氨基酸序列上,这个蛋白的中间包含有一个典型的酰胺化的蛋白酶加工处理信号(Gly-Arg-Arg基序,GRR Motif)。但C12ORF39蛋白并没有因而被水解成短肽,而是一个具有全长序列但不包含信号肽的蛋白。
     本文对这三个人类分泌蛋白新基因的发现和初步研究结果对于进一步深入了解其生物学功能有着重要的理论研究意义和实际应用前景。
Secreted proteins play important roles in many fundamental cellular and organism functions,such as signaling pathway,morphogenesis,apoptosis,cell differentiation and immune defense.Moreover,secreted proteins have properties that let themselves to be particularly utilized as therapeutic agents or targets.It is interesting and important to search for novel secreted proteins and study their biological functions.The strategy of bioinformatic prediction combined with experimental confirmation was used to isolate and identify novel potential human secreted protein genes which are associated with cell growth from the public protein database in this work.
     In the first part,we researched a novel member of human olfactomedin family, called hOLFML1(human Olfactomedin-like protein 1),which encodes 402 aa with an OLF domain in its C-terminus.hOLFML1 protein could be secreted into culture medium and was subjected to the N-linked glycosylational modification.Northern blot analysis indicated that hOLFML1 was mainly expressed in small intestine,liver, lung,and heart.Furthermore,immunohistochemical study on human small intestine demonstrated that it localized preferentially surrounding the intestinal villi. Interestingly,when overexpressed in HeLa cell lines.The recombinant hOLFML1 protein can promote the proliferation of cells and increase the percentage of S phase. Moreover,the rabbit anti-hOLFML1 antibody could block growth and cell cycle progression.Surprisingly,in human hepatocarcinoma Huh7 cells,knockdown of hOLFML1 negatively altered the effect of hOLFML1 on the cell growth and cell cycle profile.Together,our findings suggest that hOLFML1 is primarily expressed as an extracellular glycoprotein which could enhance the growth of cells and facilitate cell cycle progression in vitro.
     In the second part,we report a novel human gene C100RF58(chromosome10 open-reading framework 58,Q9BRX8,short for RX8),with a signal peptide but cannot secreted into serum.C10ORF58 is a very conserved gene in evolution,and there is a orthologuous gene existing in C.elegans.Realtime PCR assay indicated that RX8 ubiquitously expressed in adult human tissues,especially in brain,heart,kidney, pancreas and testis.In HepG2-Teton cell lines,the induced expression of RX8 inhibited cell growth and the formation of cell colones,and deduced S phase cell number and the de novo protein synthesis.Moreover,RX8 can specifically enhance the apoptosis-stimulating activity of BFA(Brefeldin A).Furthermore,subcellular fractionation assay showed that RX8 is an integrated membrane protein in endoplasmic reticulum.We found the interacting protein of RX8:CAML (calcium-modulating cyclophilin ligand) via yeast two-hybrid experiment.Then,we confirmed the interaction of RX8 and CAML thought co-immunoprecipitation, GST-pulldown and immunofluorescence assay.Importantly,we found that RXS, CAML and EGFR(EGF Receptor) co-existed in a complex.Interestingly,the Overexpression of RX8 significantly reduced the phosphorylation level and inhibited the activation of EGF signaling pathway downstream molecules:ERK1/2.On the other hand,the knockdown of RX8 by RNAi promoted the phosphorylation of ERK1/2,and the promotion could be block by the specific inhibitor of MEK1/2: PD98059.Finally,We provide a hypothetic molecular model.The normal recycling of EGFR depended on CAML which integrated in the endoplasmic reticulum.When the RX8 is overexpressed,RX8 could interfere or competitively inhibit CAML and EGFR interaction,therefore,the activation of ERK1/2 and cell growth were been inhibited.
     In the third part,we describe a novel secreted protein,named C12ORF39 (chromosome12 open-reading framework 39),in the middle of which contains a typical amidation-proteolytic processing signal(Gly-Arg-Arg motif).Western blotting assay indicated that the c-myc tagged C12ORF39 could be secreted into culture medium in transfected HeLa cells.Interestingly,C12ORF39 protein is not been hydrolysated,but is a full-length sequence protein without signal peptides.
     Our current research results about the three novel human genes will help to understand more deeply their biological functions and discovery their applied Prospects.
引文
[1]GRIMMOND S M,MIRANDA K C,YUAN Z,et al.The mouse secretome:functional classification of the proteins secreted into the extracellular environment[J].Genome Res,2003,13(6B):1350-9.
    [2]LADUNGA I.Large-scale predictions of secretory proteins from mammalian genomic and EST sequences[J].Curr Opin Biotechnol,2000,11(1):13-8.
    [3]BONIN-DEBS A L,BOCHE I,GILLE H,et al.Development of secreted proteins as biotherapeutic agents[J].Expert Opin Biol Ther,2004,4(4):551-8.
    [4]HUXLEY-JONES J,FOORD S M,BARNES M R.Drug discovery in the extracellular matrix[J].Drug Discov Today,2008,13(15-16):685-94.
    [5]FUKUDA M E,IWADATE Y,MACHIDA T,et al.Cathepsin D is a potential serum marker for poor prognosis in glioma patients[J].Cancer Res,2005,65(12):5190-4.
    [6]MCINTOSH M W,LIU Y,DRESCHER C,et al.Validation and characterization of human kallikrein 11 as a serum marker for diagnosis of ovarian carcinoma[J].Clin Cancer Res,2007,13(15 Pt 1):4422-8.
    [7]BIGNOTTI E,RAVAGGI A,TASSI R A,et al.Trefoil factor 3:a novel serum marker identified by gene expression profiling in high-grade endometrial carcinomas [J].Br J Cancer,2008,99(5):768-73.
    [8]LIPPINCOTT-SCHWARTZ J,ROBERTS T H,HIRSCHBERG K.Secretory protein trafficking and organelle dynamics in living cells[J].Annu Rev Cell Dev Biol,2000,16(557-89.
    [9]PALADE G.Intracellular aspects of the process of protein synthesis[J].Science,1975,189(4200):347-58.
    [10]BRENNAN S O,MYLES T,PEACH R J,et al.Albumin Redhill(-1 Arg,320Ala——Thr):a glycoprotein variant of human serum albumin whose precursor has an aberrant signal peptidase cleavage site[J].Proc Natl Acad Sci U S A,1990,87(1):26-30.
    [11]DRICKAMER K,KWOH T J,KURTZ D T.Amino acid sequence of the precursor of rat liver alpha 2 micro-globulin[J].J Biol Chem,1981,256(8):3634-6.
    [12]ROMISCH K.Endoplasmic reticulum-associated degradation[J].Annu Rev Cell DevBiol, 2005,21(435-56.
    [13]RUBARTELLI A, COZZOLINO F, TALIO M, et al. A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence [J]. EMBO J, 1990, 9(5):1503-10.
    [14] HUGHES R C. Secretion of the galectin family of mammalian carbohydrate-binding proteins [J]. Biochim Biophys Acta, 1999,1473(1): 172-85.
    [15]HE Z, SUN X, MEI G, et al. Nonclassical secretion of human catalase on the surface of CHO cells is more efficient than classical secretion [J]. Cell Biol Int, 2008,32(4): 367-73.
    [16] NICKEL W. The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes [J]. Eur J Biochem, 2003, 270(10):2109-19.
    [17]NICKEL W. Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells [J]. Traffic, 2005,6(8): 607-14.
    [18]SEELENMEYER C, WEGEHINGEL S, TEWS I, et al. Cell surface counter receptors are essential components of the unconventional export machinery of galectin-1 [J]. J Cell Biol, 2005,171(2): 373-81.
    [19]BACKHAUS R, ZEHE C, WEGEHINGEL S, et al. Unconventional protein secretion: membrane translocation of FGF-2 does not require protein unfolding [J]. J Cell Sci, 2004,117(Pt 9): 1727-36.
    [20] ANDREI C, MARGIOCCO P, POGGI A, et al. Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: Implications for inflammatory processes [J]. Proc Natl Acad Sci U S A, 2004, 101(26): 9745-50.
    [21]SORENSEN V, ZHEN Y, ZAKRZEWSKA M, et al. Phosphorylation of fibroblast growth factor (FGF) receptor 1 at Ser777 by p38 mitogen-activated protein kinase regulates translocation of exogenous FGF1 to the cytosol and nucleus [J]. Mol Cell Biol, 2008, 28(12): 4129-41.
    [22] LIU F, RONG Y P, ZENG L C, et al. Isolation and characterization of a novel human thioredoxin-like gene hTLP19 encoding a secretory protein [J]. Gene, 2003,315(71-8.
    [23] ZHOU Y B, LIU F, ZHU Z D, et al. N-glycosylation is required for efficient secretion of a novel human secreted glycoprotein, hPAP21 [J]. FEBS Lett, 2004,576(3): 401-7.
    [24] ZENG L C, LIU F, ZHANG X, et al. hOLF44, a secreted glycoprotein with distinct expression pattern, belongs to an uncharacterized olfactomedin-like subfamily newly identified by phylogenetic analysis [J]. FEBS Lett, 2004, 571(1-3): 74-80.
    [25] WANG X R, ZHOU Y B, LIU F, et al. A novel recently evolved gene C19orf24 encodes a non-classical secreted protein [J]. Cell Mol Biol Lett, 2006,11(2): 161-70.
    [26] ZHOU Y B, CAO J B, YANG H M, et al. hZG16, a novel human secreted protein expressed in liver, was down-regulated in hepatocellular carcinoma [J]. Biochem Biophys Res Commun, 2007,355(3): 679-86.
    [27] ZHOU Y B, CAO J B, WAN B B, et al. hBolA, novel non-classical secreted proteins, belonging to different BolA family with functional divergence [J]. Mol Cell Biochem, 2008,317(1-2): 61-8.
    [28]YOKOE H, ANHOLT R R. Molecular cloning of olfactomedin, an extracellular matrix protein specific to olfactory neuroepithelium [J]. Proc Natl Acad Sci U S A,1993,90(10): 4655-9.
    [29]BAL R S, ANHOLT R R. Formation of the extracellular mucous matrix of olfactory neuroepithelium: identification of partially glycosylated and nonglycosylated precursors of olfactomedin [J]. Biochemistry, 1993, 32(4): 1047-53.
    [30]FURUTANI Y, MANABE R, TSUTSUI K, et al. Identification and characterization of photomedins: novel olfactomedin-domain-containing proteins with chondroitin sulphate-E-binding activity [J]. Biochem J, 2005, 389(Pt 3): 675-84.
    [31]BAREMBAUM M, MORENO T A, LABONNE C, et al. Noelin-1 is a secreted glycoprotein involved in generation of the neural crest [J]. Nature cell biology, 2000,2(4): 219-25.
    [32] MORENO T A, BRONNER-FRASER M. The secreted glycoprotein Noelin-1 promotes neurogenesis in Xenopus [J]. Developmental biology, 2001, 240(2): 340-60.
    [33]NAGANO T, NAKAMURA A, MORI Y, et al. Differentially expressed olfactomedin-related glycoproteins (Pancortins) in the brain [J]. Brain research, 1998,53(1-2): 13-23.
    [34]TSUDA H, SASAI N, MATSUO-TAKASAKI M, et al. Dorsalization of the neural tube by Xenopus tiarin, a novel patterning factor secreted by the flanking nonneural head ectoderm [J]. Neuron, 2002, 33(4): 515-28.
    [35]LORIA P M, HODGKIN J, HOBERT O. A conserved postsynaptic transmembrane protein affecting neuromuscular signaling in Caenorhabditis elegans [J]. J Neurosci, 2004, 24(9): 2191-201.
    [36]HILLIER B J, VACQUIER V D. Amassin, an olfactomedin protein, mediates the massive intercellular adhesion of sea urchin coelomocytes [J]. J Cell Biol, 2003,160(4): 597-604.
    [37]HILLIER B J, MOY G W, VACQUIER V D. Diversity of olfactomedin proteins in the sea urchin [J]. Genomics, 2007, 89(6): 721-30.
    [38]BLOM N, GAMMELTOFT S, BRUNAK S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites [J]. J Mol Biol, 1999, 294(5):1351-62.
    [39] THOMPSON J D, HIGGINS D G, GIBSON T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice [J]. Nucleic Acids Res, 1994,22(22): 4673-80.
    [40]TAMURA K, DUDLEY J, NEI M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 [J]. Mol Biol Evol, 2007, 24(8):1596-9.
    [41]SAMBROOK J, RUSSELL D W. The condensed protocols from Molecular cloning : a laboratory manual [M]. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2006.
    [42]SAMBROOK J, RUSSELL D W. Molecular cloning : a laboratory manual [M].3rd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2001.
    [43]KYTE J, DOOLITTLE R F. A simple method for displaying the hydropathic character of a protein [J]. J Mol Biol, 1982,157(1): 105-32.
    [44] JAMESON B A, WOLF H. The antigenic index: a novel algorithm for predicting antigenic determinants [J]. Comput Appl Biosci, 1988,4(1): 181-6.
    [45] WOLF H, MODROW S, MOTZ M, et al. An integrated family of amino acid sequence analysis programs [J]. Comput Appl Biosci, 1988,4(1): 187-91.
    [46]ZENG L C, HAN Z G, MA W J. Elucidation of subfamily segregation and intramolecular coevolution of the olfactomedin-like proteins by comprehensive phylogenetic analysis and gene expression pattern assessment [J]. FEBS Lett, 2005,579(25): 5443-53.
    [47]SEVIGNY M B, LI C F, ALAS M, et al. Glycosylation regulates turnover of cyclooxygenase-2 [J]. FEBS Lett, 2006, 580(28-29): 6533-6.
    [48] GUT A, KAPPELER F, HYKA N, et al. Carbohydrate-mediated Golgi to cell surface transport and apical targeting of membrane proteins [J]. Embo J, 1998, 17(7):1919-29.
    [49] GRANGER J, SIDDIQUI J, COPELAND S, et al. Albumin depletion of human plasma also removes low abundance proteins including the cytokines [J]. Proteomics,2005, 5(18): 4713-8.
    [50]SOLASSOL J, MARIN P, DEMETTRE E, et al. Proteomic detection of prostate-specific antigen using a serum fractionation procedure: potential implication for new low-abundance cancer biomarkers detection [J]. Analytical biochemistry,2005, 338(1): 26-31.
    [51]KUHNERT F, DAVIS C R, WANG H T, et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1 [J]. Proc Natl Acad Sci U S A, 2004,101(1): 266-71.
    [52] ZHANG J, LIU W L, TANG D C, et al. Identification and characterization of a novel member of olfactomedin-related protein family, hGC-1, expressed during myeloid lineage development [J]. Gene, 2002,283(1-2): 83-93.
    [53]ESHED Y, FEINBERG K, POLIAK S, et al. Gliomedin mediates Schwann cell-axon interaction and the molecular assembly of the nodes of Ranvier [J]. Neuron, 2005,47(2): 215-29.
    [54]MAERTENS B, HOPKINS D, FRANZKE C W, et al. Cleavage and oligomerization of gliomedin, a transmembrane collagen required for node of ranvier formation [J]. J Biol Chem, 2007,282(14): 10647-59.
    [55] LEE J A, ANHOLT R R, COLE G J. Olfactomedin-2 mediates development of the anterior central nervous system and head structures in zebrafish [J]. Mechanisms of development, 2008,125(1-2): 167-81.
    [1] LIU F, RONG Y P, ZENG L C, et al. Isolation and characterization of a novel human thioredoxin-like gene hTLP19 encoding a secretory protein [J]. Gene, 2003,315(71-8.
    [2] ZENG L C, LIU F, ZHANG X, et al. hOLF44, a secreted glycoprotein with distinct expression pattern, belongs to an uncharacterized olfactomedin-like subfamily newly identified by phylogenetic analysis [J]. FEBS Lett, 2004,571(1-3): 74-80.
    [3] ZHOU Y B, LIU F, ZHU Z D, et al. N-glycosylation is required for efficient secretion of a novel human secreted glycoprotein, hPAP21 [J]. FEBS Lett, 2004,576(3): 401-7.
    [4] ZENG L C, HAN Z G, MA W J. Elucidation of subfamily segregation and intramolecular coevolution of the olfactomedin-like proteins by comprehensive phylogenetic analysis and gene expression pattern assessment [J]. FEBS Lett, 2005,579(25): 5443-53.
    [5] WANG X R, ZHOU Y B, LIU F, et al. A novel recently evolved gene C19orf24 encodes a non-classical secreted protein [J]. Cell Mol Biol Lett, 2006,11(2): 161-70.
    [6] ZHOU Y B, CAO J B, YANG H M, et al. hZG16, a novel human secreted protein expressed in liver, was down-regulated in hepatocellular carcinoma [J]. Biochem Biophys Res Commun, 2007,355(3): 679-86.
    [7] WAN B, ZHOU Y B, ZHANG X, et al. hOLFMLl, a novel secreted glycoprotein, enhances the proliferation of human cancer cell lines in vitro [J]. FEBS Lett, 2008,582(21-22): 3185-92.
    [8] ZHOU Y B, CAO J B, WAN B B, et al. hBolA, novel non-classical secreted proteins, belonging to different BolA family with functional divergence [J]. Mol Cell Biochem, 2008, 317(1-2): 61-8.
    [9] SUGANO Y, MURAMATSU R, ICHIYANAGI A, et al. DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family: ASP171 replaces the distal histidine of classical peroxidases [J]. J Biol Chem, 2007, 282(50):36652-8.
    [10]RHEE S G, KANG S W, CHANG T S, et al. Peroxiredoxin, a novel family of peroxidases [J]. IUBMB Life, 2001, 52(1-2): 35-41.
    [11]RHEE S G, KANG S W, NETTO L E, et al. A family of novel peroxidases, peroxiredoxins [J]. Biofactors, 1999,10(2-3): 207-9.
    [12]BRUMMELKAMP T R, BERNARDS R, AGAMI R. A system for stable expression of short interfering RNAs in mammalian cells [J]. Science, 2002,296(5567): 550-3.
    [13]KYTE J, DOOLITTLE R F. A simple method for displaying the hydropathic character of a protein [J]. JMol Biol, 1982,157(1): 105-32.
    [14]DU M X, JOHNSON R B, SUN X L, et al. Comparative characterization of two DEAD-box RNA helicases in superfamily Ⅱ: human translation-initiation factor 4A and hepatitis C virus non-structural protein 3 (NS3) helicase [J]. Biochem J, 2002,363(Pt 1): 147-55.
    [15] MILLER S, KASTNER S, KRIJNSE-LOCKER J, et al. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner [J]. J Biol Chem, 2007,282(12): 8873-82.
    [16]TRAN D D, RUSSELL H R, SUTOR S L, et al. CAML is required for efficient EGF receptor recycling [J]. Dev Cell, 2003, 5(2): 245-56.
    [17]BRAM R J, CRABTREE G R. Calcium signalling in T cells stimulated by a cyclophilin B-binding protein [J]. Nature, 1994, 371(6495): 355-8.
    [18]TRAN D D, EDGAR C E, HECKMAN K L, et al. CAML is a p56Lck-interacting protein that is required for thymocyte development [J]. Immunity, 2005, 23(2):139-52.
    [19]NAGANO J, KITAMURA K, HUJER K M, et al. Fibrocystin interacts with CAML, a protein involved in Ca2+ signaling [J]. Biochem Biophys Res Commun,2005, 338(2): 880-9.
    [20] VON BULOW G U, BRAM R J. NF-AT activation induced by a CAML-interacting member of the tumor necrosis factor receptor superfamily [J]. Science, 1997,278(5335): 138-41.
    [21] VON BULOW G U, RUSSELL H, COPELAND N G, et al. Molecular cloning and functional characterization of murine transmembrane activator and CAML interactor (TACI) with chromosomal localization in human and mouse [J]. Mamm Genome, 2000, 11(8): 628-32.
    [22] HOLLO WAY M P, BRAM R J. A hydrophobic domain of Ca2+-modulating cyclophilin ligand modulates calcium influx signaling in T lymphocytes [J]. J Biol Chem, 1996, 271(15): 8549-52.
    [23]HOLLOWAY M P, BRAM R J. Co-localization of calcium-modulating cyclophilin ligand with intracellular calcium pools [J]. J Biol Chem, 1998, 273(26):16346-50.
    [24] KIM H S, MORALES V M, DASS C, et al. Cloning of the gene encoding the mouse homologue of the human calcium signal-modulating ligand [J]. Gene, 1995,163(2): 323-4.
    [25] YUAN X, YAO J, NORRIS D, et al. Calcium-modulating cyclophilin ligand regulates membrane trafficking of postsynaptic GABA(A) receptors [J]. Mol Cell Neurosci, 2008,38(2): 277-89.
    [26] VARTHAKAVI V, HEIMANN-NICHOLS E, SMITH R M, et al. Identification of calcium-modulating cyclophilin ligand as a human host restriction to HIV-1 release overcome by Vpu [J]. Nat Med, 2008,14(6): 641-7.
    [27]GUO S, LOPEZ-ILASACA M, DZAU V J. Identification of calcium-modulating cyclophilin ligand (CAML) as transducer of angiotensin Il-mediated nuclear factor of activated T cells (NFAT) activation [J]. J Biol Chem, 2005,280(13): 12536-41.
    [1]SASAKI A,TAKETOMI T,KATO R,et al.Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Rafl[J].Nat Cell Biol,2003,5(5):427-32.
    [2]SCHMIDT M,GOEBELER M,POSERN G,et al.Ras-independent activation of the Raf/MEK/ERK pathway upon calcium-induced differentiation of keratinocytes[J].J Biol Chem,2000,275(52):41011-7.
    [3]SCHOLL F A,DUMESIC P A,BARRAGAN D I,et al.Mekl/2 MAPK kinases are essential for Mammalian development,homeostasis,and Raf-induced hyperplasia[J].Dev Cell,2007,12(4):615-29.
    [4]SCHUBERT K M,DURONIO V.Distinct roles for extracellular-signal-regulated protein kinase(ERK) mitogen-activated protein kinases and phosphatidylinositol 3-kinase in the regulation of Mcl-1 synthesis[J].Biochem J,2001,356(Pt 2):473-80.
    [5]MIZUMOTO Y,KYO S,MORI N,et al.Activation of ERK1/2 occurs independently of KRAS or BRAF status in endometrial cancer and is associated with favorable prognosis[J].Cancer Sci,2007,98(5):652-8.
    [6]KOLCH W.Meaningful relationships:the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions[J].Biochem J,2000,351 Pt 2(289-305.
    [7]LEE C H,YUN H J,KANG H S,et al.ERK/MAPK pathway is required for changes of cyclin D1 and B1 during phorbol 12-myristate 13-acetate-induced differentiation of K562 cells[J].IUBMB Life,1999,48(6):585-91.
    [8]LIU L,CUNDIFF P,ABEL G,et al.Extracellular signal-regulated kinase(ERK) 5 is necessary and sufficient to specify cortical neuronal fate[J].Proc Natl Acad Sci U S A,2006,103(25):9697-702.
    [9]BIND E,KLEYNER Y,SKOWRONSKA-KRAWCZYK D,et al.A novel mechanism for mitogen-activated protein kinase localization[J].Mol Biol Cell,2004,15(10):4457-66.
    [10]SUN M,WEI Y,YAO L,et al.Identification of extracellular signal-regulated kinase 3 as a new interaction partner of cyclin D3[J].Biochem Biophys Res Commun,2006,340(1):209-14.
    [11]ZHENG Q,YIN G,YAN C,et al.14-3-3beta binds to big mitogen-activated protein kinase 1 (BMK1/ERK5) and regulates BMK1 function [J]. J Biol Chem, 2004, 279(10):8787-91.
    [12]SCHRAGER J A, DER MINASSIAN V, MARSH J W. HIV Nef increases T cell ERK MAP kinase activity [J]. J Biol Chem, 2002,277(8): 6137-42.
    [13] ABE M K, KAHLE K T, SAELZLER M P, et al. ERK7 is an autoactivated member of the MAPK family [J]. J Biol Chem, 2001,276(24): 21272-9.
    [14]ASADA S, KASUYA Y, HAMA H, et al. Cytodifferentiation potentiates aFGF-induced p21(ras)/Erk signaling pathway in rat cultured astrocytes [J]. Biochem Biophys Res Commun, 1999,260(2): 441-5.
    [15] SEARS R, NUCKOLLS F, HAURA E, et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability [J]. Genes Dev, 2000, 14(19):2501-14.
    [16]EBLEN S T, SLACK J K, WEBER M J, et al. Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes [J]. Mol Cell Biol, 2002,22(17): 6023-33.
    [17]GYS1N S, LEE S H, DEAN N M, et al. Pharmacologic inhibition of RAF->MEK->ERK signaling elicits pancreatic cancer cell cycle arrest through induced expression of p27Kipl [J]. Cancer Res, 2005, 65(11): 4870-80.
    [18] SUN H, KING A J, DIAZ H B, et al. Regulation of the protein kinase Raf-1 by oncogenic Ras through phosphatidylinositol 3-kinase, Cdc42/Rac and Pak [J]. Curr Biol,2000,10(5): 281-4.
    [19] KING A J, SUN H, DIAZ B, et al. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338 [J]. Nature, 1998, 396(6707): 180-3.
    [20] MASON C S, SPRINGER C J, COOPER R G, et al. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation [J]. EMBO J, 1999, 18(8):2137-48.
    [21]BOMMHARDT U, SCHEURING Y, BICKEL C, et al. MEK activity regulates negative selection of immature CD4+CD8+ thymocytes [J]. J Immunol, 2000, 164(5):2326-37.
    [22]AVRUCH J. MAP kinase pathways: the first twenty years [J]. Biochim Biophys Acta, 2007,1773(8): 1150-60.
    [23]SHAUL Y D, SEGER R. The MEK/ERK cascade: from signaling specificity to diverse functions [J]. Biochim Biophys Acta, 2007,1773(8): 1213-26.
    [24]LELOUP L, DAURY L, MAZERES G, et al. Involvement of the ERK/MAP kinase signalling pathway in milli-calpain activation and myogenic cell migration [J]. Int J Biochem Cell Biol, 2007,39(6): 1177-89.
    [25]CHAMBARD J C, LEFLOCH R, POUYSSEGUR J, et al. ERK implication in cell cycle regulation [J]. Biochim Biophys Acta, 2007,1773(8): 1299-310.
    [26]WEYTS F A, LI Y S, VAN LEEUWEN J, et al. ERK activation and alpha v beta 3 integrin signaling through Shc recruitment in response to mechanical stimulation in human osteoblasts [J]. J Cell Biochem, 2002, 87(1): 85-92.
    [27]KHOKHLATCHEV A V, CANAGARAJAH B, WILSBACHER J, et al.Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation [J]. Cell, 1998,93(4): 605-15.
    [28] PAYNE D M, ROSSOMANDO A J, MARTINO P, et al. Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase) [J]. EMBO J, 1991,10(4): 885-92.
    [29]SEGER R, AHN N G, POSADA J, et al. Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells [J]. J Biol Chem, 1992,267(20): 14373-81.
    [30]NGUYEN D H, CATLING A D, WEBB D J, et al. Myosin light chain kinase functions downstream of Ras/ERK to promote migration of urokinase-type plasminogen activator-stimulated cells in an integrin-selective manner [J]. J Cell Biol, 1999, 146(1):149-64.
    [31]ROSENFELDT H, GRTNNELL F. Fibroblast quiescence and the disruption of ERK signaling in mechanically unloaded collagen matrices [J]. J Biol Chem, 2000, 275(5):3088-92.
    [32]SILVANY R E, ELIAZER S, WOLFF N C, et al. Interference with the constitutive activation of ERK1 and ERK2 impairs EWS/FLI-1-dependent transformation [J].Oncogene, 2000, 19(39): 4523-30.
    [33]PEYSSONNAUX C, PROVOT S, FELDER-SCHMITTBUHL M P, et al. Induction of postmitotic neuroretina cell proliferation by distinct Ras downstream signaling pathways [J]. Mol Cell Biol, 2000, 20(19): 7068-79.
    [34]TSAI P I, KAO H H, GRABBE C, et al. Fak56 functions downstream of integrin aPS3bn and suppresses MAPK activation in neuromuscular junction growth [J]. Neural Develop, 2008,3(1): 26.
    [35]RAJALINGAM K, SCHRECK R, RAPP U R, et al. Ras oncogenes and their downstream targets [J]. Biochim Biophys Acta, 2007,1773(8): 1177-95.
    [36]SO E Y, OH J, JANG J Y, et al. Ras/Erk pathway positively regulates Jakl/STAT6 activity and IL-4 gene expression in Jurkat T cells [J]. Mol Immunol, 2007, 44(13):3416-26.
    [37]SOOND S M, EVERSON B, RICHES D W, et al. ERK-mediated phosphorylation of Thr735 in TNFalpha-converting enzyme and its potential role in TACE protein trafficking [J]. J Cell Sci, 2005,118(Pt 11): 2371-80.
    [38]LEE S J, SAKURAIH, KOIZUMI K, et al. MAPK regulation and caspase activation are required in DMNQ S-52 induced apoptosis in Lewis lung carcinoma cells [J]. Cancer Lett, 2006,233(1): 57-67.
    [39] LI X, HERZ J, MONARD D. Activation of ERK signaling upon alternative protease nexin-1 internalization mediated by syndecan-1 [J]. J Cell Biochem, 2006,99(3): 936-51.
    [40] ALESSID R, GOMEZ N, MOORHEAD G, et al. Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines [J]. Curr Biol, 1995, 5(3): 283-95.
    [41]PULIDO R, ZUN1GA A, ULLRICH A. PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif [J]. EMBO J, 1998, 17(24):7337-50.
    [42] SUN H, CHARLES C H, LAU L F, et al. MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo [J]. Cell, 1993, 75(3): 487-93.
    [43]KANG C D, DO I R, KIM K W, et al. Role of Ras/ERK-dependent pathway in the erythroid differentiation of K562 cells [J]. Exp Mol Med, 1999, 31(2): 76-82.
    [44]YAO Z, DOLGINOV Y, HANOCH T, et al. Detection of partially phosphorylated forms of ERK by monoclonal antibodies reveals spatial regulation of ERK activity by phosphatases [J]. FEBS Lett, 2000, 468(1): 37-42.
    [45]ZHU X, PRICE-SCHIAVI S A, CARRAWAY K L. Extracellular regulated kinase (ERK)-dependent regulation of sialomucin complex/rat Muc4 in mammary epithelial cells [J]. Oncogene, 2000,19(38): 4354-61.
    [46]MISHIMA K, INOUE K, HAYASHI Y. Overexpression of extracellular-signal regulated kinases on oral squamous cell carcinoma [J]. Oral Oncol, 2002, 38(5): 468-74.
    [47]SMALLEY K S. A pivotal role for ERK in the oncogenic behaviour of malignant melanoma? [J]. Int J Cancer, 2003,104(5): 527-32.
    [48]SANTEN R J, SONG R X, MCPHERSON R, et al. The role of mitogen-activated protein (MAP) kinase in breast cancer [J]. J Steroid Biochem Mol Biol, 2002, 80(2):239-56.
    [49]CARPIO L C, STEPHAN E, KAMER A, et al. Sphingolipids stimulate cell growth via MAP kinase activation in osteoblastic cells [J]. Prostaglandins Leukot Essent Fatty Acids, 1999,61(5): 267-73.
    [50]MALEMUD C J. Inhibitors of stress-activated protein/mitogen-activated protein kinase pathways [J]. Curr Opin Pharmacol, 2007,7(3): 339-43.
    [51] YANG X, GABUZDA D. Regulation of human immunodeficiency virus type 1 infectivity by the ERK mitogen-activated protein kinase signaling pathway [J]. J Virol,1999, 73(4): 3460-6.
    [52] LEE H J, KIM D I, KANG G H, et al. Phosphorylation of ERKl/2 and Prognosis of Clear Cell Renal Cell Carcinoma [J]. Urology, 2008,
    [53]ZHANG J, TANG X, LU C, et al. Staurosporine aglycone bilaterally regulates ERK1/2 phosphorylation in rat pulmonary arterial smooth muscle cells [J]. Can J Physiol Pharmacol, 2008, 86(7): 424-30.
    [54]ZHU X, LEE H G, RAIN A A K, et al. The role of mitogen-activated protein kinase pathways in Alzheimer's disease [J]. Neurosignals, 2002, 11(5): 270-81.
    [55]TANIMURA S, ASATO K, FUJISHIRO S H, et al. Specific blockade of the ERK pathway inhibits the invasiveness of tumor cells: down-regulation of matrix metalloproteinase-3/-9/-14 and CD44 [J]. Biochem Biophys Res Commun, 2003, 304(4):801-6.
    [56]EPLING-BURNETTE P K, BAI F, WEI S, et al. ERK couples chronic survival of NK cells to constitutively activated Ras in lymphoproliferative disease of granular lymphocytes (LDGL) [J]. Oncogene, 2004, 23(57): 9220-9.
    [57]KOPAKKALA-TANI M, ELO M A, SIRONEN R K, et al. High hydrostatic pressure induces ERK and PI3 kinase phosphorylation in human HCS-2/8 chondrosarcoma cells [J]. Cell Mol Biol (Noisy-le-grand), 2004, 50(4): 485-90.
    [58]FUJITA Y, MARUYAMA S, KOGO H, et al. Caveolin-1 in mesangial cells suppresses MAP kinase activation and cell proliferation induced by bFGF and PDGF [J]. Kidney Int, 2004, 66(5): 1794-804.
    [59] SMITH E R, SMEDBERG J L, RULA M E, et al. Regulation of Ras-MAPK pathway mitogenic activity by restricting nuclear entry of activated MAPK in endoderm differentiation of embryonic carcinoma and stem cells [J]. J Cell Biol, 2004, 164(5):689-99.
    [60]DZAMKO N L, SCHERTZER J D, RYALL J, et al. AMPK independent pathways regulate skeletal muscle fatty acid oxidation [J]. J Physiol, 2008,
    [61] CURRY J M, EUBANK T D, ROBERTS R D, et al. M-CSF signals through the MAPK/ERK pathway via Spl to induce VEGF production and induces angiogenesis in vivo [J]. PLoS ONE, 2008,3(10): e3405.
    [62]ZHENG B, FIUMARA P, LI Y V, et al. MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival [J]. Blood, 2003, 102(3): 1019-27.
    [63]QIN H, ISHIWATA T, WANG R, et al. Effects of extracellular matrix on phenotype modulation and MAPK transduction of rat aortic smooth muscle cells in vitro [J]. Exp Mol Pathol, 2000,69(2): 79-90.
    [64]BULAYEVA N N, WATSON C S. Xenoestrogen-induced ERK-1 and ERK-2 activation via multiple membrane-initiated signaling pathways [J]. Environ Health Perspect, 2004,112(15): 1481-7.
    [65]BRANCA M, CIOTTI M, SANTINI D, et al. Activation of the ERK/MAP kinase pathway in cervical intraepithelial neoplasia is related to grade of the lesion but not to high-risk human papillomavirus, virus clearance, or prognosis in cervical cancer [J]. Am J Clin Pathol, 2004, 122(6): 902-11.
    [66]CAREY A M, PRAMANIK R, NICHOLSON L J, et al. Ras-MEK-ERK signaling cascade regulates androgen receptor element-inducible gene transcription and DNA synthesis in prostate cancer cells [J]. Int J Cancer, 2007, 121(3): 520-7.
    [67] LIU X, XIE R, LIU S. Rat parathyroid hormone 1-34 signals through the MEK/ERK pathway to induce cardiac hypertrophy [J]. J Int Med Res, 2008, 36(5): 942-50.
    [68] YANG R, PIPERDI S, GORLICK R. Activation of the RAF/Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase Kinase/Extracellular Signal-Regulated Kinase Pathway Mediates Apoptosis Induced by Chelerythrine in Ostepsarcoma [J]. Clin Cancer Res, 2008,14(20): 6396-404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700