用户名: 密码: 验证码:
机载雷达SAR/GMTI及非正侧视线阵STAP技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地面运动目标指示(Ground Moving Target Indication,GMTI)作为战场侦察的一部分是军用机载监视雷达所必须具备的一项基本功能,也是雷达信号处理领域中的一个重要问题。本文的研究工作主要围绕多通道SAR/GMTI技术以及非正侧视阵列结构下的STAP技术展开,主要内容及创新点如下:
     1.研究了基于样本协方差矩阵特征分解的双通道SAR动目标检测技术。传统的基于样本协方差矩阵特征分解得到的动目标检测量如第二特征值、干涉相位及相似度,由于只利用了协方差矩阵的幅度和相位的单方面信息来实现慢动目标的检测,因而其检测效果并不理想。为此,本文在样本协方差矩阵特征分解的基础上,通过对上述三个参量进行有效组合,提出了两种新的动目标检测算法——椭圆检测算法和第二特征值—干涉相位联合检测算法。前者是通过对干涉相位和相似度进行变换得到的动目标检测量;后者是将杂波第二特征值和干涉相位联合统计特性的研究结果用于慢动目标的检测,与此同时,还结合了第二特征值、干涉相位门限预处理。文中通过仿真及实测数据实验对上述几种动目标算法的性能进行了验证与对比。
     2.对多通道SAR/GMTI通道盲均衡处理技术进行了研究。首先,建立了多通道SAR/GMTI回波信号模型;接着,对基于回波数据相关矩阵特征分解的通道盲均衡算法的基本工作原理进行分析,分析结果表明,该算法主要存在两个缺点:一是收敛速度慢;二是算法的有效性受干扰信号的影响较大。针对算法收敛速度慢的缺点,论文提出了一种快速收敛的通道盲均衡算法。实测数据的实验结果表明,该算法可有效减少收敛所需的样本数目,但与原通道盲均衡算一样,该算法的有效性同样会受干扰信号的影响。基于此,在随后的研究中,将中值估计方法引入到该算法中,又提出了一种新的对干扰信号鲁棒的通道盲均衡算法,文中实测数据的实验结果验证了新算法的有效性。
     3.研究了多通道SAR动目标检测技术以及速度估计。针对机载多通道SAR/GMTI系统及实测数据,提出一种新的地面慢动目标检测算法。新算法利用多级维纳滤波器实现多通道SAR系统杂波抑制,同时结合对角加载技术和改进的自适应功率剩余非均匀检测器,进一步改善SAR系统在非均匀环境下的动目标检测性能,最后通过实测数据实验对该算法的有效性和优越性进行了验证。随后,介绍了两种动目标径向速度估计方法,分别是最大似然估计方法和基于稀疏恢复的动目标径向速度估计方法,后者是新提出的一种动目标径向速度估计方法,该方法将稀疏恢复理论应用到动目标的径向速度估计中去,目的是为了提高系统对动目标径向速度的估计精度。文中给出了上述两种动目标径向速度估计方法的实测数据处理结果。
     4.研究了非正侧视阵列结构下的STAP技术。首先,分析了非正侧视阵列结构下杂波的分布特性;接着,对STAP技术的基本工作原理进行了研究;随后,分析了两种非自适应杂波距离相关性补偿算法——多普勒频移补偿算法和角度—多普勒补偿算法,并通过仿真实验对两种算法的补偿性能进行了对比分析;在这之后,介绍了两种自适应杂波距离相关性补偿算法——自适应角度—多普勒补偿算法和快速自适应角度—多普勒补偿算法,后者是本文新提出的一种补偿算法,它将分块处理和近似投影子空间跟踪技术引入到原自适应角度—多普勒补偿算法中,从而来减少原算法的运算量。文中通过仿真实验对两种自适应杂波距离相关性补偿算法的性能进行对比分析。
Ground Moving Target Indication (GMTI) as a part of tactical reconnaissance is a necessaryfunction of the airborne surveillance radar for military application, and is a hot issue in the field ofradar signal processing. This thesis mainly investigates multi-channel Synthetic Aperture RadarGround Moving Target Indication (SAR/GMTI) technique and Space Time Adaptive Processing(STAP) technique for non-sidelooking Uniform Linear Array (ULA). The major work can besummarized as follows:
     1. Two-channel SAR/GMTI techniques based on eigen-decomposition of the covariancematrix are investigated. The previous studies turn out that the decomposition elements such as thesecond eigenvalue, the Along-Track Interferometric (ATI) phase and the similarity can be used asGMTI metrics. However, unfortunately, their GMTI performance is so low since those threemetrics only utilize the phase or amplitude information of the SAR image pair to detect movingtargets. To further enhance GMTI performance, two new composite metrics are introduced and areapplied to detect moving targets. One is called ellipse detector, jointing the similarity and the ATIphase information together and changing the two random variables into one random variable. Theother examines the statistic of the second eigenvalue and the ATI phase for ground moving targetindication. Based on this statistic, a Constant False Alarm Rate (CFAR) detector can be designedto solve the problem of GMTI. To detect slow moving targets more accurately, the secondeigenvalue and the ATI phase pre-thresholds are implemented before this CFAR detector. Finally,the detection capability of the two proposed methods is demonstrated by numerical experimentson simulated data and measured SAR data.
     2. Channel blind equalization techniques for multi-channel SAR/GMTI system areresearched. First, the echo model for multi-channel SAR/GMTI is built up. Second, the principleof channel blind equalization algorithm based on Eigen-Decomposition of data covariance matrixis investigated. However, it turns out that this algorithm has two fatal disadvantages. One is that itsuffers from a slow convergence rate. The other is that the effectiveness of this algorithm isseriously influenced by the moving target signal in training samples. Third, to improve itsconvergence rate, reduced-dimension technique is used into this algorithm and a new channelblind equalization algorithm is proposed. Experimental results on measured SAR data demonstratethat the proposed algorithm shows a fast convergence rate and is able to calibrate channelmismatch with much less sample support. However, unfortunately, this new algorithm is the sameto old one, and its effectiveness is also influenced by the moving target signal in training samples.Fourth, in order to enhance the robustness of the algorithm to moving target signal, median estimate is applied to the proposed algorithm. Finally, the validity of modified algorithm isdemonstrated by measured SAR data.
     3. Multi-channel SAR ground moving target detection and radial velocity estimation areinvestigated. At first, a novel approach to moving target detection is proposed for Multi-channelSAR system. This approach utilizes Multistage Wiener Filter to suppress clutter. To improveGMTI performance in heterogeneous clutter environment, this new approach also combinesDiagonal Loading (DL) techniques and modified Adaptive Power Residual Non-HomogeneityDetector (APR-NHD). Numerical experiments on measured SAR data are presented todemonstrate the validity and advantage of this new algorithm. Subsequently, two methods toestimate moving target’s radial velocity are introduced. One is the maximum likelihood estimation.The other is to use spare signal reconstruction for moving target’s velocity estimation. Comparedwith the former, the latter improves estimation precision of moving target’s velocity estimation.Finally, the validity of two estimation methods is demonstrated by Numerical experiments onmeasured SAR data.
     4. STAP technique for non-sidelooking ULA is researched. First, space-time two-dimensionaldistribution of clutter spectrum in non-sidelooking ULA is analyzed. Second, two non-adaptivecompensation methods for clutter range dependence such as Doppler Warping (DW) method andAngle Doppler Compensation (ADC) method are introduced. Meanwhile, Numerical experimentson simulation data are presented to analyze and compare compensation performance of twomethods. Third, two adaptive compensation methods for clutter range dependence such asAdaptive Angle Doppler Compensation (A2DC) method and Fast Adaptive Angle DopplerCompensation (FA2DC) method are introduced. FA2DC method is a new adaptive compensationmethod. In order to address the computational burden of A2DC method, FA2DC method insertsblock processing and Projection Approximation Subspace Tracking (PAST) technique into A2DCmethod. Finally, Numerical experiments on simulation data are presented to analyze and comparecompensation performance of two methods for clutter range dependence.
引文
[1] Northrop Grumman: Protect “E-8C Joint-STARS”[EB/OL]. http://www. Northopgrumman.com/protectjointstars/.
    [2] H. Shnitkin. Joint-STARS phased array radar antenna [J]. IEEE Aerospace and ElectronicSystems Magazine,1994,9(10):856-859.
    [3] J. N. Entzminger. Joint-STARS and GMTI: past, present and future [J]. IEEE Trans. onAerospace and Electronic Systems,1999,35(2):748-761.
    [4] E. F. Stockburger, D. N. Held. Interferometric moving ground target imaging [A]. In:Proc.Of the IEEE Radar Conference [C], Alexandria, VA, USA,1995:438-443.
    [5] J. S. A. Hepburn, C. P. Doyle. Motion compensation for ASTOR long range SAR [A]. In:Proc. of the IEEE Position Location and Navigation Symposium (PLANS’90), Las Vegas,NV, USA,1990:205-211.
    [6] Raytheon: ASTOR SAR Imagery [EB/OL]. http://www. raytheon.com/capabilities/products/astor/sar_imagery/index.html.
    [7]王永良,彭应宁.空时自适应信号处理.北京:清华大学出版社,2000.
    [8] R. Klemm. Principles of Space-Time Adaptive Processing.London, U.K.: Inst Elect Eng,2002.
    [9]蒋庆权.机载雷达技术发展动向.空载雷达:2004(1):1-4.
    [10] L. E. Brennan and I. S. Reed. Theory of adaptive radar. IEEE Trans on Aerosp ElectronSyst, March1973, Vol.9:237-252.
    [11] J. Ward. Space-Time Adaptive Processing for Airborne Radar Systems. Lincoln, Lab, Mass,Inst Technol, Lexington, MA, Tech Rep1015, DTIC AD-A293032,1994.
    [12] R. Klemm. Space-time adaptive processing: principles and applications. IEE Proc.-RadarSonar Navigation and Avionics9, London: IEE press,1998.
    [13] D. A. Ausherman, A. Kozma, et al.,“Developments in Radar Imaging”, IEEE Trans. onAerosp. Electron. Syst., Vol.20, No.4,1984, pp.363-399.
    [14] Carl A.Wiley,“Synthetic Aperture Radars”, IEEE Trans.on AES, Vol.21, No.3, May1985,pp.440-443.
    [15] J. H. G Ender, A. R. Brenner. PAMIR-a wideband phased array SAR/GMTI system.EUSAR’02, Cologne, June2002.
    [16] A. R. Brenner, J. H. G Ender. First experimental results achieved with the new verywidedband SAR system PAMIR. EUSAR’02, Cologne, June2002.
    [17] A. R. Brenner, J. H. G Ender. Demonstration of advanced reconnaissance techniques withthe airborne SAR/GMTI sensor PAMIR. IEE Proc.-Radar Sonar Naivigation, Vol.153, No.2, April2006:152-162.
    [18] M. W. Long. Airborne early warning system concepts. Boston: Artech House,1992.
    [19] G. W. Titi. An overview of the ARPA mountaintop program. Proc. of the1994AdaptiveAntenna Systems Symposium,1994:53-59.
    [20] M. O. Little, W. P. Berry. Real-time multi-channel airborne radar measurements. IEEEInternational Radar Conference RADAR’97, New York,1997.
    [21] R.Klemm. Some properties of space-time covariance matrices. Int. Cof. on Radar, Paris,1986:357-362.
    [22] L. E. Brennan., Staudaher,F.M. Subclutter visibility demonstration. Technical Report RL-TR-92-21, Adaptive Sensor Incoporated, March1992
    [23] R. Klemm. Adaptive airborne MTI: an auxiliary channel approach. IEE Proc. F, June1987,134(3),:269-276.
    [24]保铮,张玉洪,廖桂生,等.机载预警雷达空时二维滤波的一种方案及其改进[C].机载雷达研讨会,北京,1992年12月:24-38.
    [25]保铮,廖桂生,吴仁彪等.相控阵机载雷达杂波抑制的时空二维自适应滤波[J].电子学报1993,21(9):1-7
    [26] Wang Yongliang, Bao Zheng and Liao Guisheng. Three united configurations on adaptivespatial-temporal processing for airborne surveillance radar system[C]. Internationalconference on signal processing (ICSP’93), Beijing,1993:381-386.
    [27] Wang Yongliang, Peng Yingning and Bao zheng. Space-time processing for airborne radarwith various array orientation[J]. IEE Proc.Radar, Sonar Navigation., Dec.,144(6),1997:330-340.
    [28] L. E. Brennan, D. J. Piwinski, F. M. Standaher. Comparison of space-time adaptiveprocessing approaches using experimental airborne radar data. IEEE International RadarConference, Massachusetts, USA,1993:176-181
    [29] H. Wang, L. Cai. On adaptive spatial-temporal processing for airborne surveillance radarsystems. IEEE Trans. on AES.,30(3), July1994:660-670.
    [30]王永良,吴志文,彭应宁.适于非均匀杂波环境的空时自适应处理方法[J].电子学报,1999,27(9):56-58.
    [31]陈建文,王永良,陈辉.机载相控阵雷达波束多普勒域部分自适应处理方法研究[J].电子学报,2001,29(12):1032-1035.
    [32] A. M. Haimovich. The Eigencanceler: Adaptive radar by eigenanalysis methods. IEEETrans. on AES.,1996,32(2):532-542.
    [33] A. M. Haimovich, M. Berin. Eigenanalysis-based space-time adaptive radar: performanceanalysis. IEEE Trans. on AES,1997,33(4):1170-1179.
    [34] A. M. Haimovich. Asymptotic distribution of the conditional signal-to-noise ratio in aeigenanalysis-based adaptive array. IEEE Trans. on AES,1997,33(3):988-996.
    [35] A. M. Haimovich, C. Peckham, T. Ayoub. Performance analysis of reduced-rank STAP. Proc.of the IEEE National Radar Conf., Syracuse, NY, USA, May1997:42-47.
    [36] T. F. Ayoub, A. M. Haimovich, M. L. Pugh. Reduced-rank STAP for high PRF radar. IEEETrans. on AES,1999,35(3):953-962.
    [37] Mingwei Shen, Daiyin Zhu, Zhaoda Zhu. An Efficient Reduced-Rank STAP based onPASTd Algorithm.2007IET International Conference on Radar Systems, Edinburgh UK,Oct.,2007:1-5
    [38] Mingwei Shen, Daiyin Zhu, Zhaoda Zhu.Reduced Rank STAP Using a Modified projectionapproximation subspace tracking deflation approach.IET Radar, Sonar&Navigation,2009,3(1):93-100
    [39] J. S. Goldstein, S. M. Kogon, I. S. Reed,et al. Partially adaptive radar signal processing: thecross-spectral approach. Proc. of the29th Asilomar Conf. On Signals, Systems andComputers, Pacific Grove, CA, Nov.1995:1383-1387.
    [40] J. S. Goldstein,P. A. Zulch, I. S. Reed. Reduced rank space-time adaptive radar processing.Proc. of the IEEE International Acoustics, Speech, and Signal Processing Conf. Atlanta, GA,USA, May1996:1173-1176.
    [41] J. S. Goldstein, I. S. Reed, R. N. Smith. Low-complexity subspace selection for partialadaptivity. Proc. of the IEEE Military Communications Conf., McLean, VA, USA, Oct.1996:597-601.
    [42] J. S. Goldstein, I. S. Reed. Reduced rank adaptive filtering. IEEE Trans. on SP,1997,45(2):493-496.
    [43] J. S. Goldstein, I. S. Reed. Subspace selection for partially adaptive sensor array processing.IEEE Trans. on AES,1997,33(2):539-554.
    [44] J. S. Goldstein, I. S. Reed. Theory of partially adaptive radar. IEEE Trans. on AES,1997,33(4):1309-1325.
    [45] I. S. Reed, J. S. Goldstein,. A tutorial on space-time adaptive processing. Proc. of the IEEENational Radar Conf., Syracuse, NY, USA, May1997.
    [46] J. S. Goldstein, I. S. Reed, L. L. Scharf. A multistage representation of the Wiener filterbased on orthogonal projections. IEEE Trans. on IT,1998,44(7):2943-2959.
    [47] J. S. Goldstein, I. S. Reed, P. A. Zulch, W. L. Melvin. A multistage STAP CFAR detectiontechnique. Proc. of the IEEE National Radar Conf., Dallas, TX, USA, May1998:111-116.
    [48] P. A. Zulch, J. S. Goldstein, R. J. Guerci, I. S. Reed. Comparison of reduced-rank signalprocessing techniques. Proc. of the32th Asilomar Conf. On Signals, Systems andComputers, Pacific Grove, CA, USA, Nov.1998:421-425.
    [49] J. S. Goldstein, I. S. Reed, P. A. Zulch,. Multistage partially adaptive STAP CFAR detectionalgorithm. IEEE Trans. on AES,1999,35(2):645-661.
    [50] C. D. Peckham, A. M. Haimovich, T. F. Ayoub, J. S. Goldstein, I. S. Reed. Reduced-rankSTAP performance analysis. IEEE Trans. on AES,2000,36(2):664-676.
    [51] C. D. Richmond. Statistical performance analysis of the adaptive sidelobe blanker detectionalgorithm. Proceedings of the31th Asilomar Conference on Signals, Systems andComputing, Pacific Grove, CA, November,1997:872-876.
    [52] D. J. Rabideau, A. O. Steinhard. Improving the performance of adaptive arrays innon-stationary environments through data-adaptive training. Proceedings of the30thAsilomar Conference on Signals, Systems and Computing, Pacific Grove, CA, November,1996:75-79.
    [53] J. R. Guerci. Theory and application of covariance matrix tapers for robust adaptivebeamforming. IEEE Trans. on SP.,1999,47(4):977-985.
    [54] D. J. Rabideau, A. O. Steinhardt. Improved adaptive clutter cancellation throughdata-adaptive training. IEEE Trans on Aerosp Electron Syst,1999,35(3):879-891.
    [55] W. L. Melvin. Space-time adaptive radar performance in heterogeneous clutter.IEEE Transon Aerosp Electron Syst,36(2),2000:621-633.
    [56] M. Stephen. Kogon, A. Michael, Zatman. STAP adaptive weight training using phase andpower selection criteria, Proceedings of the35th Asilomar Conference on Signals, Systemsand Computers, Pacific Grove, CA, November,2001:98-102.
    [57] W. L. Melvin, M. C. Wicks, R. D. Brown. Assessment of multichannel airborne radarmeasurements for analysis and design of space-time processing architectures and algorithms.IEEE National Radar Conference, Ann Arbor, Michigan,1996:130-135.
    [58] Berin, A. M. Haimovich. Signal cancellation effects in adaptive radar Mountaintop data-set.Proc of IEEE ICASSP,1996:2614-2617.
    [59] W. L. Melvin, M. C. Wicks. Improving practical space-time adaptive radar, IEEEInternational Radar Conference, Syracuse, New York, May1997:48-53.
    [60] R. S. Adve, T. B. Hale, M. C. Wicks. Transform domain localized processing usingmeasured steering vectors and non-homogeneity detection. Proc. of the IEEE NationalRadar Conf, Boston, MA, USA,1999:285-290.
    [61] R. S. Adve, M. C. Wicks, T. B. Hale, et al. Ground moving target indication usingknowledge based space time adaptive processing. IEEE International Radar Conference,May2000:735-740.
    [62]王彤,保铮.空时二维自适应处理的目标污染样本挑选方法[J].电子学报2001,29(12A):1840-1844.
    [63]王彤.机载雷达简易STAP方法及其应用,[博士学位论文].西安:西安电子科技大学,2001.
    [64] W. L. Melvin, J. R. Guerci. Adaptive detection in dense target environments. Proc.of theIEEE National Radar Conf, Atlanta, GA, USA,2001:187-192.
    [65] T. K. Sarkar, N. Sangruji. An adaptive nulling system for a narrow-band signal with alook-direction constraint utilizing the conjugate gradient method. IEEE Trans. on AP.,1989,37(7):940-944.
    [66] S. Park, T. K. Sarkar. A deterministic eigenvalue approach to space time adaptive processing.Proc. of the IEEE Int. Phased Array Systems and Technology Symposium, Boston, MA,USA,1996.372-375.
    [67] S. Park, T. K. Sarkar. A modified generalized eigenvalue approach to space-time adaptiveprocessing. Proc. of the IEEE Int. Antennas and Propagation Symposium. Atlanta, GA, USA,1998.1292-1295.
    [68] T. K. Sarkar, H. Wang, W. S. Park,et al.. A deterministic least-squares approach tospace-time adaptive processing, IEEE Trans. on AP.,2001,49(1):91-103.
    [69] T. K. Sarkar, R. Adve. Space-time adaptive processing using circular arrays. IEEE AP.Magazine,2001,43(1):138-143.
    [70] J. T. Carlo, T. K. Sarkar, M. C. Wicks. A least square multiple constraint direct data domainapproach for STAP. In Proceedings of2003IEEE Radar Conference. Huntsville, Alabama,May2003:431-438.
    [71] W. Choi, T. K. Sarkar. Phase-only adaptive processing based on a direct data domain leastsquares approach using the conjugate method. IEEE Trans. on AP,2004,52(12):3265-3272.
    [72] W. Choi, T. K. Sarkar. Minimum Norm Property for the Sum of the Adaptive Weight for aDirect Data Domain Least Squares Algorithm. IEEE Trans. on AP.,2006,54(3):1045-1050.
    [73] W. Choi, T. K. Sarkar, H. Wang, et,al. Adaptive processing using real weights based on adirect data domain least squares approach. IEEE Trans on AP,2006,54(1):182-191.
    [74] S.Burintramart, T. K. Sarkar, Zhang Y, et al. Performance comparison betweenstatistical-based and direct data domain STAP. Digital Signal Processing,2007,17(2):737-755.
    [75] M. Rangaswamy, B. Himed, J. H. Michels. Performance analysis of the nonhomogeneitydetector for STAP applications. Proc. of the IEEE National Radar Conf, Atlanta, GA, USA,2001:193-197.
    [76] M. C. Wicks, W. L. Melvin, P. Chen. An efficient architecture for nonhomogeneitydetection in space-time adaptive processing airborne early warning radar. Proc. Of the IEEERadar Conf, Edinburgh, UK,1997:295-299.
    [77]陈建文,王永良,皇甫堪等..基于非均匀检测的机载雷达空时自适应处理方法[J].数据采集与处理,2000,15(1):44-47.
    [78]陈建文.机载雷达空时自适应处理方法研究.[博士学位论文]长沙:国防科学技术大学,2000.
    [79] Y. L. Wang, J. W. Chen, Z. Bao,et al. Robust space-time adaptive processing for airborneradar in nonhomogeneous clutter environments [J]. IEEE Trans. on AES.,2003,39(1):71-81.
    [80] B. Himed, Y. Salama, J. H. Michel. Improved detection of close proximity targets usingtwo-step NHD. Proc. of the IEEE Radar Conf., Alexandria, VA, USA,2000:781-786.
    [81] K. Gerlach, S. D. Blunt, M. L. Picciolo. Robust adaptive matched filtering using theFRACTA algorithm. IEEE Transactions on Aerospace and Electronic Systems,2004,40(3):929-945.
    [82] S. D. Blunt, K. Gerlach. Efficient robust AMF using the FRACTA algorithm. IEEETransactions on Aerospace and Electronic Systems,2005,41(2):537-548.
    [83] A. K. Shackelford, K. Gerlach, S. D. Blunt. Partially adaptive STAP using the FRACTAalgorithm. IEEE Transaction on Aerospace and Electronic Systems,2009,45(1):58-69.
    [84] R. S. Adve, T. B. Hale, M. C. Wicks. Practical joint domain localized adaptive processing inhomogeneous and nonhomogeneous environments. Part2:Nonhomogeneous environments.IEE Proc.-Radar, Sonar Navig.,2000,147(2):66-74.
    [85] G. K. Borsari. Mitigating effects on STAP processing caused by an inclined array. Proc. ofthe IEEE National Radar Conference. Dallas, TX, USA,1998,135-140.
    [86] O. Kreyenkamp, R. Klemm. Doppler compensation in forward-looking STAP radar. Pro ofIEE Radar Sonar Navigation.2001.148(5):253-258.
    [87]谢文冲,王永良.基于CMT技术的非正侧面阵机载雷达杂波抑制方法研究[J].电子学报,2007,35(3):441-444.
    [88] F. Colone, M. Fornari and P. Lombardo. A spectral slope-based approach for mitigatingbistatic STAP clutter dispersion. Proc. of the2007IEEE Radar Conference, Boston,Massachusetts, Apr.17-20,2007,408-413.
    [89]龚清勇.非均匀环境下机载雷达STAP技术研究.[博士学位论文].南京:南京航空航天大学,2010.
    [90] B. Himed, Y. H. Zhang and A. Hajjari. STAP with angle-Doppler compensation for bistaticairborne radar. Proc. of the IEEE National Radar Conference. Long Beach, CA, USA,2002.
    [91] B. Himed. Effects of bistatic clutter dispersion on STAP system. Proc. of the IEEE NationalRadar Conference. Long Beach, CA, USA,2002,311-317.
    [92] B. Himed. Effects of bistatic clutter dispersion on STAP system. Proc. of IEE Radar,Sonarand Navigation.2003,150(1):28-32.
    [93]赵军.均匀圆形天线和非正侧视均匀线性天线机载相控阵雷达STAP技术研究.[博士学位论文].南京:南京航空航天大学,2009.
    [94] M. L. Melvin, B. Himed and M. E. Davis. Doubly adaptive bistatic clutter filtering. Proc. of2003IEEE Radar conference, Huntsville, AL, May,2003,171-178.
    [95] M. L. Melvin and M. E. Davis. Adaptive cancellation method for geometry-inducednonstationary bistatic clutter environments [J]. IEEE Transaction on AES.,2007,43(2):651-672.
    [96]田斌,朱岱寅,朱兆达.一种快速的自适应角度-多普勒补偿算法[J].航空学报.2011,32(9):1705-1713.
    [97] B. Yang. Projection approximation subspace tracking [J]. IEEE Transaction on SignalProcessing,1995,43(1):95-107.
    [98] M. Zatman. Circular array STAP. IEEE Trans. on AES,2000,36(2):510~517.
    [99] A. Jaffer, B. Himed, P. T. Ho. Estimation of range-dependent clutter covariance byconfiguration parameter estimation. Proc. of the IEEE Int. Radar Conf., Arlington, VA, USA,May2005:596-601.
    [100] T. Yardibi, J. Li, P. Stoica. Nonparametric and sparse signal representations in arrayprocessing via iterative adaptive approaches.42nd Asilomar Conference on Signals,Systems and Computers, Pacific Grove, CA, October2008:278-282.
    [101] R. K. Raney. Synthetic aperture imaging radat and moving targets [J]. IEEE Transaction onAES.,1917,3(1):499-505.
    [102] A. Freeman, A. Curie. Synthetic aperture radar imaging for moving targets. GEC Journal ofResearch,1987:106-115.
    [103] S. Barbarossa. Detection and Imaging of Moving Objects with Synthetic Aperture Radar,part1: optimal detection and parameter estimation theory. IEE Proceedings-F,1992,139(1):79-88.
    [104] S. Barbarossa. Detection and imaging of moving objects with synthetic aperture radar, part2: joint time-frequency analysis by wigner-ville distribution. IEE Proceedings-F,1992,139(1):89-97.
    [105] J. R. Moreira, A. Keydel. A new MTI-SAR approach using the reflectivity displacementmethod. IEEE Trans. on Geosci. Remote Sensing,1995,33(5):1238-1244.
    [106] C. H. Gierull. Moving Target Detection with Along-track SAR Interferometry-a TheoreticalAnalysis. technical report, Defense R&D, Canada,2002.
    [107] C. W. Chen. Performance Assessment of Along-track Interferometry for Detection GroundMoving Targets. Proc. of IEEE radar conference,2004:99-104.
    [108] A. Budillon, V. Pascazio, G. Schirinzi. Moving target detection in along trackSAR interferometry from in-phase and quadrature components data. Geoscience andRemote Sensing Symposium, Boston, USA,2008,1178-1181.
    [109] C. H. Gierull. Statistics of SAR interferograms with application to moving target detection[R]. Technical Report TR2001-045, Defence Research and Development, Canada,2001.
    [110] E. Chapin and C. W. Chen. Airborne along-track interferometry for GMTI [J]. IEEETransactions on Aerospace and Electronic Systems,2009,24(5):13-18.
    [111] M. I. Skolnik. Radar handbook.2nd ed. New York: McGraw-Hill,1990.
    [112] M. I. Skolnik. Introduction to radar systeM.3rd ed. New York: McGraw-Hill,2001.
    [113] Wang, H.S.C. Mainlobe Clutter Cancellation by DPCA for Space-Based Radars. AerospaceApplications Conference,1991. Digest,1992IEEE,3-8Feb1991:1-28.
    [114] L. Lightstone, D. Faubert, G. Remple. Multiple phase center DPCA for airborne radar. IEEENational Radar Conference,1991:36-40.
    [115] P. G. Richardson. Relationships between DPCA and adaptive space-time processingtechniques for clutter suppression. IEEE International Radar Conference, Paris,1994:295-300.
    [116] T. J. Nohara. Comparison of DPCA and STAP for space-based radar. IEEE InternationalRadar Conference,1995:113-119.
    [117]王永良,陈建文,吴志文.现代DPCA技术研究.电子学报,2000,28(6):118-121.
    [118] I. C. Sikaneta. C. Gierull, J. Y. houinard., Metrics for SAR-GMTI Based on Eigen-decomposition of the Sample Covariance Matrix, IEEE National Radar Conference, USA,2003,442-477.
    [119] I. C. Sikaneta, J. Y. houinard, Eigen-decomposition of the multi-channel covariance matrixwith applications to SAR-GMTI [J]. IET Signal Processing,84(9),2004,1501-1535.
    [120] I. C. Sikaneta, PHD thesis proposal: Detection of ground moving objects with syntheticaperture radar [D], University of Ottawa,2002.
    [121]田斌,朱岱寅,朱兆达.利用样本协方差矩阵特征分解实现双通道SAR动目标检测[J],电子与信息学报.2010,32(11):2636-2641.
    [122] Tian Bin,Zhu Dai-yin,Zhu Zhao-da. An Improved SAR-GMTI Method based onEigen-Decomposition of the Sample Covariance Matrix,Journal of Electronic (China).2010,27(3):382-390.
    [123] Tian Bin,Zhu Dai-yin,Zhu Zhao-da. A novel moving target detection approach fordual-channel SAR system, Progress in Electromagnetics Research Journal.2011,vol.115:191-206.
    [124]时公涛.基于干涉图的多通道SAR地面慢动目标自动检测技术研究.[博士学位论文]长沙:国防科学技术大学,2009.
    [125] M Rüegg, E Meier, D. Nüesch. Capabilities of Dual-Frequency Millimeter Wave SAR WithMonopulse Processing for Ground Moving Target Indication. IEEE Transaction ONGeosciences and Remote Sensing,2007,45(3):539-553.
    [126] B. Friedlander, B. Porat. VSAR: A high-resolution radar system for ocean imaging. IEEETransactions on Aerospace and Electronic Systems,1998,34(3):755-776.
    [127] B. Friedlander, B. Porat. VSAR: A high-resolution radar system for detection of movingtarget. Proc. IEE Radar, Sonar Navigat.,1997,144(4):205-218.
    [128] J. Xu, G Li, Y. N. Peng, et al. Prametric Velocity Synthetic Aperture Radar: Signal Modelingand Optimal Methods. IEEE Transaction on Geoscience and remote sensing,2008,46(9):2463-2480.
    [129]张绪锦.多相位中心接收SAR/GMTI技术研究,[博士学位论文].南京:南京航空航天大学,2009.
    [130] M. E. Tobin, M.Greenspan. Smuggling Interdiction Using an Adaptation of theAN/APG-76Multimode Radar, IEEE AES system magazine,1996,11(11):19-24.
    [131] M. E. Tobin. Real Time Simultaneous SAR/GMTI in a Tactical Airborne Enviroment.EUSAR’96, Konigswindter, Germany,1996:63-66.
    [132] E. Yadin. Evaluation of Noise and Clutter Induced Relocation Errors in SAR MTI. inproceedings of IEEE International Radar Conference, Alexandria VA,1995:650-655.
    [133]叶少华.机载SAR原始数据成像处理和干涉SAR/GMTI技术研究,[博士学位论文],南京航空航天大学,2002.
    [134] J. Ender. Detection and Estimation of Moving Target Signals by Multi-Channel SAR.1996EUSAR Conference (EUSAR’96), K nigswinter, Germany,1996:411-417.
    [135] J. Ender. Space-time processing for multichannel synthetic aperture radar. Electronics&Communication Engineering Journal,1999,11(1):29-38.
    [136] Wulf-Dieter Wirth. Radar techniques using array antennas. London, U.K.: The Institution ofElectrical Engineers,2001.
    [137] Z. F. Li, Z. Bao, et al. Image autocoregistration and InSAR interferogram estimation usingjoint subspace projection. IEEE Trans on Geoscience and Remote Sensing,2006,44(2):288-297.
    [138]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法.[博士学位论文].西安:西安电子科技大学,2006.
    [139]曾操,廖桂生,杨志伟,刘聪锋.基于样本加权的三通道SAR-GMTI机载数据处理及性能分析[J].电子学报,2009,37(3):506-512.
    [140] Di Wu, Daiyin Zhu, Zhaoda Zhu. Knowledge-Aided Multichannel Adaptive SAR/GMTIProcessing: Algorithm and Experimental Results. EURASIP Journal on Advances in SignalProcessing,2010, special Issue on Advances in Multidimensional Synthetic Aperture RadarSignal Processing:1-12.
    [141]田斌,朱岱寅,吴迪,朱兆达.一种基于多级维纳滤波的多通道SAR动目标检测算法[J].电子与信息学报,2011,33(10):2420-2426.
    [142]田斌,朱岱寅,朱兆达.利用多级维纳滤波器实现多通道SAR动目标检测,第十一届全国雷达学术年会,长沙,2010.
    [143] Goodman NR. Statistical analysis based on a certain multivariate complex Gaussiandistribution, Annals of Mathematical Statistics,34(1),1963,152-177.
    [144] J. Beebee. Exact covering systems and the Gauss-Legendre multiplication formula for theGamma function. Proceedings of the American Mathematical Society,120(1994),1061-1065.
    [145]袁昊,周荫清,李景文.基于幅度和相位联合的ATI动目标检测新方法[J].北京航空航天大学学报,33(2),2007,169-175.
    [146] D. Zhu, S. Ye and Z. Zhu. Polar format agorithm using chirp scaling for spotlightSARimage formation. IEEE Transactions on Aerospace and Electronic systems,44(2008)4,1433-1448.
    [147] D. Zhu, X. Mao and Y. Li. Far-field limit of PFA for SAR moving target imaging.Asian-Pacific Synthetic Aperture Radar Conference, Xian, Shanxi,26-30October2009,214-218.
    [148] J. H. G. Ender. The airborne experimental multi-channel SAR system AER-Ⅱ.1996EUSAR Conf Proceedings, K nigswinter, Germany,49-52.
    [149] A. K. Gabriel, R. M. Goldstein. Crossed orbit interferometry: theory and experimentalresults from SIR-B [J]. Int. J. Remote Sensing,1988,9(5):857-872.
    [150] Wu Shun-jun, Li Ying-jun. Adaptive channel equalization for space time adaptiveprocessing [C]. IEEE International Radar conference. lexandria,1995:624-628.
    [151]彭小亮,李荣峰,王永良等.两种修正的自适应通道均衡方法[J].电子与信息学报,2006,28(6):658-662.
    [152] Koerbor M A, Funhrmann D R. Radar antenna calibration using range-Doppler data [C].IEEE7th SP Workshop on Statistical Signal&Array Processing. Quebec: IEEE,1994:441-444.
    [153] Ender J H G. Space time processing for multichannel synthetic aperture radar [C]. IEEColloquium on [C]. Space Time Adaptive Processing, London: E,1998:611-618.
    [154]杨志伟,廖桂生,曾操.基于雷达回波数据相位矢量的通道盲均衡[J].电子学报,2008,36(9):1682-1686.
    [155]周争光,廖桂生,朱圣棋.一种对强目标信号污染稳健的自适应通道盲均衡算法[J].西安电子科技大学学报,2009,36(6):1103-1107.
    [156]田斌,朱岱寅,朱兆达.多通道SAR/GMTI通道盲均衡算法[J],电子与信息学报,录用。
    [157] M. L. Picciol, K. Gerlach. Median cascaded canceller for robust adaptive array processing.IEEE Transactions on Aerospace and Electronic Systems,2003,39(3):883~900.
    [158] M. L. Picciol, K. Gerlach. Reiterative median cascanded canceler for robust adaptive arrayprocessing [J]. IEEE Transactions on Aerospace and Electronic Systems,2007,43(2):428-442.
    [159] K. Gerlach, M. L. Picciol. Robust, reduced rank, loaded reiterative median cascadedcanceller. IEEE Transactions on Aerospace and Electronic Systems,2011,47(1):15-25.
    [160]张小飞,汪飞,徐大专.阵列信号处理的理论和应用[M].北京:国防工业出版社,2010:26-27.
    [161]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社,2002:56-57.
    [162]范钦珊.数学手册[M].北京:高等教育出版社,2000:112-114.
    [163] E. Yadin. A Performance Evaluation Model for a Two Port Interferometer SAR-MTI. inproceedings of IEEE National Radar Conference, Ann Arbor, Michigan,1996:261-266.
    [164]吴迪,朱岱寅,朱兆达.一种非均匀环境中双端口干涉SAR/GMTI杂波抑制算法[J].电子学报:2010,38(9):2179-2183.
    [165]吴迪.机载雷达STAP及SAR/GMTI技术研究.[博士学位论文].南京:南京航空航天大学,2011.
    [166]沈明威.和差波束空时处理动目标检测技术研究.[博士学位论文].南京:南京航空航天大学,2008.
    [167]廖桂生,杨志伟,曾操.基于信号拟合和目标跟踪的正侧视雷达无模糊径向速度估计[J].自然科学进展,2008,18(4):449-455.
    [168] D. L. Donoho. Compressed sensing [J]. IEEE Trans. on Information Theory.2006,52(4):1289-1306.
    [169] E. J. Cand and T. Tao. Near optimal signal recovery from random projections: universalencoding strategies [J]. IEEE Trans. on Information Theory.2006,52(12):5406-5425.
    [170] I. S. Reed, D. J. Mallett and L. E. Brennan. Rapid convergence rate in adaptive arrays. IEEETrans. AES,10(6),1974:53~863.
    [171] J.D. Hiemstra. PHD thesis proposal: Robust implementations of the multistage wiener filter[D].[Ph. D. dissertation], Virginia Polytechnic Institute and State University, USA,2003.
    [172] H. V. Trees. Optimum array processing [M]. John Wiley, New York, USA,2003, Chapter4.
    [173] J.D. Hiemstra, et al. Application of the L-curve technique to loading level determination inadaptive beamforming [C], The36thAsilomar Conference on Signals, System andComputers,2002, Chantilly, USA, pp:1261-1266.
    [174] A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method[J]. Soviet Math. Doklady,1963,(4):1035-1038.
    [175] P. C. Hansen. Analysis of discrete ill-posed problems by means of the L-curve [J]. SIAMReview,1992,34(4):561-580.
    [176]何友,关键,彭应宁等.雷达自动检测与恒虚警处理[M].北京,清华大学出版社,1995.
    [177] D. L. Donoho, Y. Tsaig. Extensions of compressed sensing [J]. Signal Processing.2006,86(3):533-548.
    [178] S. J. Kim, K. Koh, M. Lustig, etc. A method for large scale regularized least squares [J].IEEE Journal on Selected Topics in Signal Processing,2007,4(1):606-617.
    [179]M. A. T. Figueiredo, R. D. Nowak, S. J. Wright. Gradient projection for spare reconstruction:application to compressed sensing and other inverse problems [J]. Journal of SelectedTopics in Signal Processing: Special Issue on Convex Optimization Methods for SignalProcessing,2007,1(4):586-598.
    [180] I. Daubechies, M. Defrise, C. De Mol. An iterative thresholding algorithm for linear inverseproblems with a sparsity constraint [J]. Comm. Pure Appl. Math.,2004,57(11):1413-1457.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700