用户名: 密码: 验证码:
飞机连接件承载孔三维应力集中与裂纹分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在航空航天工程中广泛使用的各种机械设备往往都是由结构复杂的各种部件构成的。在设备的使用过程中,构件由于受力以及材料本身存在的缺陷,往往容易出现破坏。当前广泛应用的疲劳断裂理论往往是基于二维断裂力学的平面理论,而实际构件由于结构较复杂,往往呈现出强烈的三维效应,因此,对于复杂结构的三维破坏研究具有重要的理论和实际意义。本文对含有裂纹板的三维断裂和带孔板的应力集中问题进行了研究,主要包括以下内容:
     1.含有边沿穿透型直裂纹的正交各向异性薄板在远端均匀拉应力作用下,用三维有限元和断裂力学的知识进行研究分析,获得了应力强度因子与相对裂纹长度之间的关系,讨论了裂纹尖端处的离面约束因子与相对裂纹长度和泊松比的关系,并获得了关于泊松比的离面约束因子的经验公式,为工程结构的三维剩余强度评估提供一定的参考。
     2.通过对铆钉连接的有限厚度板两端受有拉应力的作用这一问题的简化,研究了含有铆钉孔的有限厚度板一端受拉应力的作用,孔内受有与板端部拉应力相平衡的不同角度均匀压应力作用这一基本问题,运用线弹性叠加原理、有限元法分析了孔边应力集中与板的厚度以及不同加载角度的关系。
     3.基于有限元法研究了含有铆钉孔的有限厚度板端部受拉孔内受有与端部相平衡的、不同加载角度的正弦压应力一问题,讨论了不同加载角度和板的厚度对孔边应力集中的影响,发现加载角度和板厚的变化对三维应力集中系数有较大的影响,不能用简单的平面解和表面应力集中系数来代替三维最大应力集中系数。
Many widely used mechanical equipments in engineering such as aircrafts and aerospace crafts usually consist of complex components. During the service period, the damages of the components usually occur due to loads and inherent faults of the materials. The current widely used fatigue fracture methodology is mainly based on the traditional two-dimensional (2D) fracture theory. Furthermore, the strong three-dimensional (3D) effects often occur when they are appilied to complex structures. Therefore, researches on the three-dimensional damage of the complex mechanical structures have significant meanings in theory and applications. In the present thesis, we focused on the three-dimensional fracture of thin plates with cracks and the stress concentration of finite thickness plate with a pin hole. The main contents are as following:
     1.Under remote uniform tensile load, anisotropic thin plates with single edge through straight crack are investigated and analyzed using 3D finite element method. The relationship between the stress intensity factors and relative crack lengths is obtained.The influences of crack length and Poisson’s ratio for out-of-plane constraint factor at the crack tip are detailedly studied. For convenience of engineering applications, the empirical formula is obtained.
     2.Through the simplification of the problem of a double-lap mechanical joint of finite thickness isotropic plates with a pin-loaded hole under tensile load at both ends, we study it as a basis problem, that is, tension is applied on one end of the finite thickness plate with a hole, and equivalent even pressure with different angles is applied on the inside of the hole to balance the tension. The relationships between the stress concentration at the hole edge and the plate thicknesses and the loading angles are investigated by use of linear elastic superposition principle and the finite elements method.
     3.We also study another problem of a finite thickness plate with a pin-loaded hole. In this case, tension is applied on one end of the plate, and equivalent sine compressive stress with different angles is applied on the inside of the pin-loaded hole to balance the tension. The influences of the stress concentration by the different loading angles and the plate thicknesses are discussed. It is found that the loading angles and variation of plate thicknesses obviously affect the 3D stress concentration coefficients. Therefore, we cannot obtain reasonable results using simple planar solution or surface stress concentration coefficient instead of 3D maximum stress concentration coefficient.
引文
[1]罗辉,揭开材料破坏之谜-断裂力学入门.机械工业出版社,1989:1~8.
    [2] Griffith A. A. The phenomena of rupture and flow in solids, Phil. Trans. Royal Society of London, 1921: 163-197.
    [3] Griffith A. A. The Theory of Rupture. Proc. First Int. Congress of Applied Mechanics, Biezeno and Burgers, eds., Waltman Press, 1924: 55~63.
    [4] Irwin G. R. Analysis of stresses and strains near the end of crack traversing a plate, Journal of Applied Mechanics, 1957, 22: 361-364.
    [5] Irwin G. R. Fracture Dynamics, in: "Fracturing of Metals", ASM Publications, 1948: 147~166.
    [6] Irwin G. R. Fracture, Handbuch der Physik, vol. VI, Flügge, (ed.), Springer, 1958: 551~590.
    [7] Williams ML. On the stress distribution at the base of a stationary crack. ASME J Appl Mech, 1957, 24: 109~114.
    [8] Dugdale DS. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 1960, 8: 100~104.
    [9] Irwin G. R. Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, New York: Academic Press, 1962, 7: 55~129.
    [10] Paris PC, Gomez MP, Anderson WE. A rational analytical theory of fatigue. The Trend of Engineering, 1961, 13: 9~14.
    [11] Elber W. Fatigue crack propagation. PhD Thesis, University New South Wales, Australia; 1968.
    [12] Elber W. The significance of fatigue crack closure. In: Damage tolerance in aircraft structures, ASTM STP 486. Philadelphia, PA: American Society for Testing and Materials; 1971: 230~42.
    [13] Rice JR. A path independent integral and approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 1968, 35: 379~386.
    [14] Hutchinson JW. Singular behaviour at the end of a tensile crack in a hardening material.Journal of the Mechanics and Physics of Solids, 1968, 16: 13~31.
    [15] Rice JR, Rosengren GF. Plane strain deformation near a crack tip in a power-law hardening material. Journal of the Mechanics and Physics of Solids, 1968, 16: 1~12.
    [16] Sih GC. Handbook of Stress Intensity Factors for Researchers and Engineers I. Fracture and Solid Mechanics, Lehigh University, Bethlehem, PA, 1973.
    [17] Sih GC. Handbook of Stress Intensity Factors for Researchers and Engineers II. Fracture and Solid Mechanics, Lehigh University, Bethlehem, PA, 1975.
    [18] Al-Ani A.M., Hancock JW. J-dominance of short cracks in tension and bending. Journal of the Mechanics and Physics of Solids, 1991, 39: 23~43.
    [19] O’dowd NP, Shih CF. Family of crack-tip fields characterized by a triaxiality parameter-II. Structure of fields. Journal of the Mechanics and Physics of Solids, 1991, 39(8): 989~1015.
    [20] O’dowd NP, Shih CF. Family of crack-tip fields characterized by a triaxiality parameter-I. Fracture application. Journal of the Mechanics and Physics of Solids, 1992,40(8): 939~963.
    [21] Chao YJ, Yang S, Sutton MA. On the fracture of solids characterized by one or two parameters: theory and practice. Journal of the Mechanics and Physics of Solids, 1994, 42(4): 629~647.
    [22] Xia L, Wang TC, Shih CF. Higher-order analysis of crack tip fields in elastic power law hardening materials. Journal of the Mechanics and Physics of Solids, 1993, 41(4): 665~687.
    [23]黄维扬.工程断裂力学.航空工业出版社. 1992.
    [24]范天估.断裂力学基础.江苏科学技术出版社. 1978.
    [25] Bazant ZP, Estenssoro LF, Surface singularity and crack propagation. Int. J. Solids Struct, 1979, 15: 405~426.
    [26] Yang W, Freund LB, Transverse shear effects for through-cracks in an elastic plate. Int. J. Solids. Struct, 1985, 21: 977~994.
    [27] E. Mahgoub, X. M. Deng and M. A. Sutton, Three-dimensional stress and deformation fields around flat and slant cracks under remote Mode I loading conditions. Engng. Fracture Mech, 2003, 70: 2527~2542.
    [28] T. A. Cruse, Lateral constraint in a cracked, three dimensional elastic body, Int. J. Fracture.1970. 6: 326~334.
    [29] N. Levy, P. V. Marcal and J. R. Rice. Nucl. Eng. Des. 1971. 17: 64~71.
    [30] W. Brocks and J. Olschewski, On J-dominance of crack-tip fields in largely yielded 3D structures. Int. J. Solids. Struct, 1986, 22: 693~708.
    [31] T. Nakamura, D. M. Parks, Three-dimensional crack front fields in a thin ductile plate. J. Mech. Phys. Solids, 1990, 38: 787~.
    [32] M .Nevalainen and R. H. Dodds. Int. J. Fracture, 1995, 74: 131~142.
    [33] Y. Kim, X. K. Zhu and Y. J. Chao, Quantification of constraint on elastic–plastic 3D crack front by the J–A2 three-term solution. Engng. Fracture Mech, 2001, 68: 895~914.
    [34] X. M. Kong, N. Schluter and W. Dahl, Effect of triaxial stress on mixed-mode fracture. Engng. Fracture Mech, 1995, 52: 379~385.
    [35] H. Yuan, W. Brocks, Quantification of constraint effects in elastic-plastic crack front fields. J. Mech. Phys. Solids, 1998, 46: 219~241.
    [36]郭万林.三维断裂和疲劳裂纹扩展.西北工业大学博士论文.1991.
    [37] Guo Wanlin, Elastoplastic three-dimensional crack border field-I. Singular structure of the field. Engng. Fracture Mech, 1993, 46: 93~104.
    [38] Guo Wanlin, Elastoplastic three-dimensional crack border field-II. Asymptotic solution for the feld. Engng. Fracture Mech, 1993, 46: 105~113.
    [39] Guo Wanlin, Elastoplastic three-dimensional crack border field-III. Fracture parameters. Engng. Fracture Mech, 1995, 51(1): 51~71.
    [40]郭万林.复杂环境下的三维疲劳断裂.航空学报. 2002. 23(3): 215~220.
    [41] Muskhelishvili N I, Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen, 1963.
    [42] Savin GN, Stress Concentration around Holes. New York, Pergamon Press, 1961.
    [43] Sadowsky MA, Sternberg E, Stress concentration around an ellipsoidal cavity in an infinite body under arbitrary plane stress perpendicular to the axis of revolution of the cavity. J. Appl. Mech., 1947, 14: 191~210.
    [44] Blomerus PM, Hills DA, Kelly PA, The distributed dislocation method applied to the analysis of elastoplatic strain concentrations. J. Mech. Phys. Solids, 1999, 47: 1007~1026.
    [45] Durelli AJ, Parks VJ, Lopardo VJ, Stresses and finite strains around an ellipitic hole in finite plates subjected to uniform load. Int. J. Non-Linear Mech., 1970, 5: 397~404.
    [46] Theocaris PS, The evolution of caustics from holes to cracks. Int. J. Solids Struct., 1976, 12: 377~389.
    [47] Gao XL, A general solution of an infinte elastic plate with an elliptic hole under biaxial loading. Int. J. Pres. Ves. Pip., 1996, 67: 95~104.
    [48] Ting TCT, Yan GP, Anisotropic elastic solid with an elliptic hole or rigid inclusion, Int. J. Solids Struct., 1991, 27: 1879~1894.
    [49] Okumura M, Hasebe N, Nakamura T, Bimaterial plane with elliptic hole under uniform tension normal to the interface. Int. J. Fract., 1995, 71: 293~310.
    [50] Guo WL, Theoretical investigation of elastoplastic notch fields under triaxial stress constraint. Int. J. Fract., 2002, 115: 233~249.
    [51] Zhang T, Liu TG, Zhao Y, Liu JX, Analysis of stress field of finite plates weakened by holes. J.Huazhong Univ.of Sci.&Tech.(Nature Science Edition), 2002, 30: 87~89.
    [52] Yao WX, Gu Y, Computation of stress concentration factors and stress distributions for orthotropic finite width plates containing elliptical opening. Comput. Struct. Mech. Appl., 1990, 7: 56~64.
    [53] Chung MY, Ting TCT, Piezoelectric solid with an ellipic inclusion or hole. Int. J. Solids Struct., 1996, 33: 3343~3361.
    [54] Lu P, Williams FW, Green functions of piezoelectric material with an elliptic hole or inclusion. Int. J. Solids Struct., 1998, 35: 651~664.
    [55] Gao CF, Fan WX, Green functions for generalized 2D problems in piezoelectric media with an elliptic hole. Mech. Res. Commun., 1998, 25: 685~693.
    [56] Gao CF, Zhao YT, Wang MZ, An exact and explicit treatment of an elliptic hole problem in thermopiezoelectric media. Int. J. Solids Struct., 2002, 39: 2665~2685.
    [57] Bellett D, Taylor D, Marco S, Mazzeo E, The fatigue behaviour of three-dimensional stress concentrations. Int. J. Fatigue, 2005, 27: 207~221.
    [58] Sternberg E, Sadowsky MA, Three-dimensional solution for the stress concentration around a circular hole in a plate of arbitrary thickness. ASMEJ. Applied Mech., 1949, 16: 27~38.
    [59] Youngdahl CK, SternbergE, Three-dimensional stress concentration around a cylindrical hole in a semi-infinite elastic body. ASMEJ. Applied Mech., 1966, 33: 74~77.
    [60] Folias ES, Wang JJ, On the three-dimensional stress field around a circular hole in a plateof arbitrary thickness. Comput. Mech., 1990, 6: 379~391.
    [61] Li ZH, Guo WL, Kuang ZB, Three-dimensional elastic stress fields near notches in finite thickness plates. Int. J. Solids Struct., 2000, 37: 7617~7631.
    [62] Li ZH, Guo WL, Three-dimensional elastic stress fields ahead of blunt V-notches in finite thickness plates. Int. J. Fract., 2001, 107: 53~71.
    [63]李振环,王乘,徐学军等,有限厚双边U型切口板的三维弹塑性有限元分析.计算力学学报, 2002, 19: 324~331.
    [64]佘崇民,郭万林,张斌,孟波,有限厚中心圆孔板的最大三维应力集中.机械科学与技术, 2006, 25: 438~441.
    [65]杨政,霍春勇,赵新伟,郭万林,含圆孔有限厚度板的三维弹性应力场分析.西安交通大学学报, 2004, 38: 971~975.
    [66] Zheng Yang, Chang-Boo Kim, Chongdu Cho, Hyeon Gyu Beom, The concentration of stress and strain in finite thickness elastic plate containing a circular hole. International Journal of Solids and Structures, 2007,
    [67] L. Afferrante, M. Ciavarella, G. Demelio, On the stress concentration around a hole in a half-plane subject to moving contact loads. International Journal of Solids and Structures, 2006, 43: 3895~3904.
    [68] A. I. Zirka, M. P. Malezhik, I. S. Chernyshenko, Stress concentration in an orthotropic plate with a circular hole under dynamic loading. International Applied Mechanics, 2004, 40: 226~230.
    [69] Lotfi Toubal, Moussa Karama, Bernard Lorrain, Stress concentration in a circular hole in composite plate. Composite Structures, 2005, 68: 31~36.
    [70] X.D. Xu, H.P. Lee, C. Lu, The structural intensities of composite plates with a hole. Composite Structures, 2004, 65: 493~498.
    [71] E.Pan, B.Yang, G.Caia, F.G.Yuan, Stress analyses around holes in composite laminates using boundary element method. Engineering Analysis with Boundary Elements, 2001, 25: 31~40.
    [72] Chongmin She, Wanlin Guo, Three-dimensional stress concentrations at elliptic holes in elastic isotropic plates subjected to tensile stress. International Journal of Fatigue, 2007, 29: 330~335.
    [73] Chongmin She, Wanlin Guo, Numerical investigations of maximum stress concentration atelliptic holes in finite thickness piezoelectric plates. International Journal of Fatigue, 2006, 28: 438~445.
    [74] Peishi Yu, Wanlin Guo, Chongmin She, Junhua Zhao, The influence of Poisson’s ratio on thickness-dependent stress concentration at elliptic holes in elastic plates. International Journal of Fatigue, 2008, 30: 165~171.
    [75]郭万林,肖寿庭,钉载孔边裂纹的应力强度因子.西北工业大学学报, 1987, 5: 129~135.
    [76]徐芝纶,弹性力学(上册).人民教育出版社, 1980, 109~151.
    [77] B. Grüber, W. Hufenbach, L. Kroll, M. Lepper, B. Zhou, Stress concentration analysis of fibre-reinforced multilayered composites with pin-loaded holes. Composites Science and Technology, 2007, 67: 1439~1450.
    [78] Marie-Laure Dano, Elhassania Kamal, Guy Gendron, Analysis of bolted joints in composite laminates: Strains and bearing stiffness predictions. Composite Structures, 2007, 79: 562~570.
    [79] H.A. Whitworth, O. Aluko, N.A. Tomlinson, Application of the point stress criterion to the failure of composite pinned joints. Engineering Fracture Mechanics, 2007.
    [80] Ramazan Karakuzu, Cihan R?za ?al??kan, Mehmet Akta?, Bülent Murat ??ten, Failure behavior of laminated composite plates with two serial pin-loaded holes. Composite Structures, 2007.
    [81] H.A. Whitworth, M. Othieno, O. Barton, Failure analysis of composite pin loaded joints. Composite Structures, 2003, 59: 261~266.
    [82] Liebowitz H., Computational fracture mechanics: research and application. Engng. Fracture Mech., 1995, 50: 653~670.
    [83] Nishioka, Toshihisa, State of the art in computational dynamic fracture mechanics. JSME International Journal, 1994, 37: 313~333.
    [84] Hagedorn, Karl Edgar, Some aspects of fracture mechanics research during the last 25 years. Steel Research, 1998, 69: 206~213.
    [85]张鸿庆,王鸣,有限元的数学理论.科学出版社, 1991.
    [86]杨永谦,有限元法及其在结构分析中的应用.大连海运学院出版社, 1992.
    [87]李亚智,赵美英,万小朋等,有限元法基础与程序设计.科学出版社, 2004, 1~3.
    [88]熊峻江,飞行器结构疲劳与寿命设计.北京航空航天大学出版社, 2004.
    [89] Guo Wanlin. Stress intensity factors for corner cracks at holes subjected to biaxial and pin loads. Engineering Fracture Mechanics, 1993, 46: 473~479.
    [90] Wanlin Guo, Fatigue crack closure under triaxial stress constraint-I. Experimental investigation. Engineering Fracture Mechanics, 1994, 49: 265~275.
    [91] Wanlin Guo, Fatigue crack closure under triaxial stress constraint-II. Analytical model. Engineering Fracture Mechanics, 1994, 49: 277~285.
    [92] Chongmin She, Wanlin Guo, The out-of-plane constraint of mixed-mode cracks in thin elastic plates. International Journal of Solids and Structures, 2007, 44: 3021~3034.
    [93] Junhua Zhao, Wanlin Guo, Chongmin She, The in-plane and out-of-plane stress constraint factors and K-T-Tz description of stress field near the border of a semi-elliptical surface crack. International Journal of Fatigue, 2007, 29: 435~443.
    [94] Haijun Shen, Wanlin Guo, 3D constraint effect on 3D fatigue crack propagation. International Journal of Fatigue, 2005, 27: 617~623.
    [95] Shiwen Wang, Wanlin Guo, Yapen Shen, Effects of three-dimensional constraint on cracks on bimaterial interfaces. Engineering Fracture Mechanics, 1996, 55: 471~483.
    [96]张田忠,郭万林,杨政,有限厚度板圆孔应力集中的三维效应[A].柳春图.疲劳与断裂2000[C].北京:气象出版社,2000:513~ 517.
    [97] Krishnaswamy S, Jin Z H, Batra R C, Stress concentration in an elastic Cossesat plate undergoing extensional deformations [J]. ASMEJournal of Applied Mechanics, 1998, 65: 66~70.
    [98]宋锦良,李玉琴,有限变形下应力集中的三维效应[J].实验力学, 1995, 10:222~227.
    [99] César Echavarría, Peer Haller, Alexander Salenikovich, Analytical study of a pin–loaded hole in elastic orthotropic plates. Composite Structures, 2007, 79:107~112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700