用户名: 密码: 验证码:
复合材料I形梁分层的光纤超声探测技术数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,拉挤成型纤维增强复合材料(FRP)构件由于便于批量生产和优异的性能而得到了广泛的研究和应用。但由于此类材料的高度非均质性和各向异性,很容易使界面相失效,从而导致内部的分层破坏,并且由于材料的多界面、高阻尼特性使得传统无损检测技术很难满足工程中快速、有效、简便的要求,严重制约了此类复合材料的应用推广。因此,发展出一种高可靠性的分层检测技术已成为推广此类材料应用的关键。
     本课题提出了一种利用光纤超声探测技术结合小波信号分析检测I形FRP梁中分层的方法。该方法利用超声发射器在梁中产生超声应力波,用表面粘贴的光纤干涉仪来探测梁中应力波的传播情况,然后利用小波对此信号进行时频分析,结合梁中应力波的传播特性即可确定分层的位置和大小。
     本课题利用ABAQUS有限元软件对带分层的I形FRP简支梁进行模拟仿真,通过理论分析和仿真研究,证实了此方法对FRP梁中分层检测的可行性,为以后的实验研究提供了理论依据。本文的主要研究内容和成果如下:
     (1)利用平面体波波速计算理论对实验I形梁中应力波波速进行了推导计算,得出了三种模式体波的理论波速和应力波前两次传播到达光纤位置所需要的时间,并确定以准纵波作为主要研究对象。
     (2)通过提取特定路径上不同时刻的应力情况,检验了有限元模型对应力波传播的模拟情况,并结合应力波的衰减特性确定了合理的信号提取时长。在实际检测中需准确计算各种模式应力波的波速和传播情况,避免他们对有效信号的相互干扰。
     (3)通过对实验模型梁进行模拟,在保证分层面不接触的前提下提取不同激励点下的积分应变时程曲线,对11×10-5s之前的信号进行Morlet小波时频分析,得出第二峰值对应的qP波第二次到达光纤位置的时间t。然后根据位移—时间关系可算得各个激励点处反射面距中性层光纤的距离,通过与理论结果对比分析初步判定了我们提出的这种检测方法的可行性。
     (4)通过对含有不同分层面的分层梁进行模拟分析,分层过渡区长度与分层区长度有关,而分层面的宽度和分层区位置对其影响很小。随着分层面减小检测曲线波动性变大,分层区检测误差增大,但分层边界处检测曲线变化比较明显仍能较容易地确定分层区的位置和大小。
     (5)对局部同侧、居中和异侧三种分层形式进行模拟分析,光纤与分层的不同布置形式对检测结果影响很小,实际应用中光纤布置可以灵活采用后期外贴或者预埋集成。
     (6)通过对不同截面尺寸和不同位置分层梁进行模拟,截面尺寸越小信号成分复杂化,检测误差变大。分层在梁跨中位置时截面尺寸对检测结果影响比较小,但在实际应用中需注意梁端截面反射对检测结果的影响。
In recent years, pultruded section fiber-reinforced plastic (FRP) structures has been widely studied and used in many applications, due to its excellent performance and ease of production. However, the material’s heterogeneity and anisotropy is very easy to make the interface relative to failure, and resulting structure destruction.The traditional non-destructive technologies have many shortcomings because the material’s multi-interface and high damping characteristics, and them they are difficult to meet the engineering requirements in terms of rapidness, efficiency and simplicity. Therefore, developing a highly reliable layered detection technology has become the key to promote the application of such materials.
     In this issue a novel technique for detecting delamination in I beam is proposed. In this method a PZT transmitter was employed to create the stress waves in the beam, and an optical fiber interferometric sensor was attached to the surface of the beam to detect the stress wave propagation in the beam. By analyzing the propagation characteristics of ultrasound and the wavelet time-frequency spectrum of the signal, the delamination location can be identified.
     This thesis using ABAQUS finite element software simulates the simply supported I-shape FRP beams with delamination. Based on the theoretical analysis and simulation results, the feasibility of delamination detection with the proposed technique is demonstrated. The main research contents and results are as follows:
     (1) By using the theory of plane body wave, we calculated out the velocity of three model body wave in experimental I-shaped beam and the time required of the wave transmit to the location of the optical fiber. Finally we determine using quasi-longitudinal wave as the main object of study.
     (2) We tested the finite element model by extracting stress conditions on a specific path of different moments, and determined a reasonable signal extraction duration by combined with the stress wave attenuation characteristics. In practice, we should calculate the stress wave velocity and dissemination of circumstances accurately, to prevent them from interfering with each other for effective signal.
     (3) Through simulation the experimental model beams, under the premise of non-contact we extraction the integral strain-time curve under various incentive points, and use Morlet wavelet time-frequency analysis the signal before 11×10-5s, them obtained the time t of the qP-wave reach to the location of the optical fiber for the second time corresponds to the second peak.Then according to the relationship of displacement and time we can calculate the distance between the neutral fiber and reflector under the various incentives point. Through the comparative with the theoretical results we have proposed a preliminary determination of the feasibility of this detection method.
     (4) Through simulation the beam with different hierarchical levels delamination we know that, the length of affected zone have relation with the length of the stratified area, while the sub-level width and their tiered zone has little effect. With the area of delamination become smaller the volatility of the detection curve become larger, and detection error under stratified area increased, but the boundary of layer still can be detect easily and able to determine the location and size of the delamination zone.
     (5) Comper the simulation result of ipsilateral, middle and different side stratified we know that, fiber and the different forms of hierarchical arrangement has little effect on the test results, in practical application the optical fiber can be stick on the beam flexibly or embedded into the beam.
     (6) Through simulation the beam with different size sections and different delamination locations we know that when the cross-section size becomes smaller then the signal components more complicate and the detection of errors become larger. In practical applications we should pay attention to the impact of the reflecter from the end of the beam.
引文
1王文焕. FRP加固混凝土结构技术及应用.中国建筑工业出版社, 2007: 3
    2钟静玲.直升机纤维增强复合材料的超声无损检测方法及其应用.直升机技术. 2005, (3): 29~32
    3周丽君.纤维增强复合材料在桥梁工程中的应用.广东建材. 2006, (9): 26~28
    4李永川,黄勇.关于土木工程中的FRP应用问题.东北电力学院学报. 2005, 25(4): 56~60
    5赵荣海. FRP筋的特点及其在土木工程中的应用.海峡科学. 2008, (11): 67~69
    6钱鹏,叶列平.铝合金及FRP-铝合金组合结构在结构工程中的应用.建筑科学. 2006, 22(05): 100~105
    7王金凤,杨勇新,乐清瑞. FRP复合材料及其在土木工程中的应用研究.华侨大学学报. 2005, 26(1): 1~6
    8 O'Connor, S. Jerome. GRP bridge decks and superstructures in the USA. Reinforced Plastics. 2008, 52(6): 26~31
    9 A. S. Hani, F. D. Julio, Q. Pizhong, A. K. Sam. Analysis and design of fiber reinforced plastic composite deck-and-stringer bridges. Composite Structures. 1997, 38(1-4): 295~307
    10 J. Knippers, E. Pelke, M. Gabler, D. Berger. Bridges with Glass Fibre Reinforced Polymers (GFRP) decks - The new Road Bridge in Friedberg. Stahlbau. 2009, 78(7): 462~470
    11 D. Gsell, M. Motavalli. Indoor Cable-Stayed GFRP Bridge at EMPA. Proceedings of the 4th International Conference on Advanced Composite Materials in Bridges and Structures, Switzerland Calgary, 2004: 56~59
    12杨金纯,陈利.纤维增强复合材料在桥梁工程中的应用.产业用纺织品. 2006, 4(187): 20~23
    13 R. Cyga, K. Czaja. Wood-reinforced polymer-matrix composites. Przemysl Chemiczny. 2008, 87(9): 932~936
    14 L. Ye, P. Feng, K. Zhang, L. Lin, W. H. Hong. FRP in civil engineering in China: Research and Applications. 6th International Symposium onFibre-Reinforced Polymer - Reinforcement for Concrete Structures, Singapore, 2003: 1401~1412
    15王小永,钱华.先进复合材料中的主要缺陷与无损检测技术评价.无损探伤. 2006, 30(4): 1~6
    16 E. C. Juan, M. L. James, D. H. Keith. Experimental behavior of monolithic composite cuff connections for fiber reinforced plastic box sections. Composite Structures. 2005, 67(3): 333~345
    17张立功,张佐光.先进复合材料中主要缺陷分析.玻璃钢/复合材料. 2001, (2): 42~45
    18 N. Elvin, C. K. Y. Leung, V. S. Sudarshanam. A novel fiber optic delamination detection scheme: Theoretical and experimental feasibility studies. Journal of Intelligent Material Systems and Structures. 1999, 10(4): 314~321
    19国防科技工业无损检测人员资格鉴定与认证培训教材编审委员会编.无损检测综合知识.机械工业出版社, 2004: 57~74
    20周圣林,董一平.飞机复合材料的NDT方法研究.飞机设计. 2007, 27(6): 43~46
    21 E. Ayorinde, R. Gibson, S. Kulkarni, F. Z. Deng, H. Mahfuz. Reliable low-cost NDE of composite marine sandwich structures. Composites Part B-Engineering. 2008, 39(1): 226~241
    22 B. B. Djordjevic. NDE for prognostic structural characterization. 8th International Conference of the Slovenian-Society-for-Non-Destructive-Testing on the Application of Contemporary Non-Destructive Testing in Engineering, Portoroz Slovenia, 2005: 1~10
    23 M. Ekenel, J. J. Myers. Nondestructive evaluation of RC structures strengthened with FRP laminates containing near-surface defects in the form of delaminations. Science and Engineering of Composite Materials. 2007, 14(4): 299~315
    24杨宝刚,金虎,任华友,吴东流.复合材料的射线检测技术.宇宙材料工艺. 2004, (2): 26~28
    25齐共金,雷洪,耿荣生,景鹏.国外航空复合材料无损检测技术的新进展.航空维修与工程. 2008, (5): 25~28
    26李俊杰,韩焱,王黎明.复合材料X射线检测方法研究.弹箭与制导学报. 2008, 28(2): 215~217
    27金虎,杨宝刚,任华友,吴东流.利用CT技术检测碳/碳复合材料的研究.宇航材料工艺. 2004, (2): 66~68
    28皇甫劭炜,童小燕,姚磊江,李斌,潘应雄.复合材料层合板损伤的声发射试验研究.机械科学与技术. 2009, 28(5): 669~673
    29曹晔,刘波,开桂云,董孝义.光纤光栅传感技术研究现状及发展前景.传感器技术. 2005, 24(12): 1~4
    30 P. L. Fuhr, D. R. Huston. Corrosion detection in reinforced concrete roadways and bridges via embedded fiber optic sensors. Smart Materials and Structures. 1998, 7(2): 217~228
    31 D. Zonta, M. Pozzi, H. Wu. Experimental Evaluation of a Smart Prestressed Element Instrumented with Multiplexed Interferometric Fiber Optic Sensors. Proceedings of the 4th European Workshop on Structural Health Monitoring, Cracow, Poland, 2008: 863~870
    32 S. Takeda, T. Mizutani, T. Nishi, N. Uota, Y. Hirano. Monitoring of a CFRP-Stiffened panel manufactured by VaRTM using fiber-optic sensors. Advanced Composite Materials. 2008, 17(2): 125~137
    33 T. Kosaka, H. Kurimoto, K. Osaka. Strain monitoring of braided composites by using embedded fiber-optic strain sensors. Advanced Composite Materials. 2004, 13(3-4): 157~170
    34 H. Li, J. Ou, Z. Zhou. Applications of optical fibre Bragg gratings sensing technology-based smart stay cables. Optics and Lasers in Engineering. 2009, 47(10): 1077~1084
    35 S. Takeda, Y. Okabe, N. Takeda. Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors. Composites Part A-Applied Science and Manufacturing. 2002, 33(7): 971~980
    36 H. Tsuda, J. Takahashi, K. Urabe, T. Ikeguchi. Damage monitoring of carbon fiber-reinforced plastics with Michelson interferometric fiber-optic sensors. Journal of Materials Science. 1999, 34(17): 4163~4172
    37江毅,许颖.表面粘贴光纤干涉仪测量复合材料梁的分层.测试技术学报. 2003, 17(4): 354~358
    38江毅,许颖, C. K. Y. Leung.埋入光纤Mach-Zehnder干涉仪检测复合材料梁的分层.复合材料学报. 2004, 21(1): 129~133.
    39 C. K. Y. Leung, Z. Yang, Y. Xu, P. Tong, S. K. L. Lee. Delamination detection in laminate composites with an embedded fiber optical interferometric sensor. Sensors and Actuators A: Physical. 2005, 119(2): 336~344
    40杨建国.小波分析及其工程应用.机械工业出版社, 2005: 26
    41葛哲学,沙威.小波分析理论与MATLAB R2007实现.电子工业出版社, 2007: 15
    42飞思科技产品研发中心. MATLAB 7.0辅助小波分析与应用.电子工业出版社, 2005: 20
    43许颖,梁坚凝,江毅.用光纤干涉仪检测I形复合材料梁腹板/翼缘连接处的分层.复合材料学报. 2007, 24(2): 143~150
    44 A. R. Martin, G. F. Fernando, K. F. Hale. Impact damage detection in filament wound tubes using embedded optical fibre sensors. Smart Materials and Structures. 1997, 6(4): 470~476
    45 K. S. Kim, L. Kollar, G. S. Springer. A Model of Embedded Fiber Optic Fabry-Perot Temperature and Strain Sensors. Journal of composite materials. 1993, 27(17): 1618~1662
    46 H. Alemohammad, E. Toyserkani. Modeling and analysis of fiber optic Bragg grating shape sensors. ASME International Mechanical Engineering Congress and Exposition, Seattle WA. Proceedings of the Asme International Mechanical Enginering Congress and Exposition. 2008: 907~916
    47 X. M. Wang, M. Li. Propagation of elastic plane waves in homogeneous and transversely isotropic media. Chinese Journal of Acoustics. 1998, 17(3): 280~288
    48 Y. Kuo, H. Lin, C. Wang. Sound transmission across orthotropic laminates with a 3D model. Applied Acoustics. 2008, 69(11): 951~959
    49张海燕,他得安,刘镇清.层状各向异性复合板中的兰姆波.科学出版社, 2008: 21~23
    50 H. Y. Zhang, Z. Q. Liu. Propagation of elastic plane waves in homogeneous anisotropic media. Journal of Shanghai University (English Edition). 2004, 8(2): 164~168
    51庄茁等. ABAQUS非线性有限元分析与实例.科学出版社, 2005: 217
    52罗春霞. FRP补丁式分层无损检测新方法的理论研究.哈尔滨工业大学. 2007: 19
    53 Jiang Y, Leung C K Y, Mandy Ng, Motavalli M, Feltrin G, Gsell D. Delamination detection in an I-section glass fiber reinforced plastic beam with an optical fiber-based stress wave method. Smart material and structures. 2009, 18(6): 1~6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700