用户名: 密码: 验证码:
特种长周期光纤光栅基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2000~2003年,笔者所在实验室针对高频CO2激光单侧写入长周期光纤光栅(LPFG)的光学特性和相应器件进行了初步研究,取得的成果得到了国内外专家的初步认可。本文在此基础上进行更深一步的拓展研究,其基本思想是在初步完善非对称折变型LPFG模式耦合理论分析方法和高频CO2激光写入LPFG的成栅机理分析和测量基础上,按照提高环境响应灵敏度、克服传感参量交叉敏感和实现多参数测量的总体思想,比较系统的研究特种LPFG的光栅结构、折变模型、写入方法、传输特性、环境响应特性,以及潜在应用等。论文主要内容如下:
     ①论文按照横截面折变非对称分布的相对大小将光栅横截面分割成多层圆波导,并将各圆环层按周向折射率大小不同进行离散分块,再基于多层圆波导理论和数值计算方法来近似计算光栅各个模式的模场,最后利用模式耦合方程和修正的布拉格条件来讨论这种非对称折变型LPFG的模式耦合特征。非对称LPFG模式耦合数值分析方法的完善为特种LPFG的探索提供了理论基础。
     ②论文研究认为残余应力释放、快速固化、光纤致密化和熔融变形是高频CO2激光写入法能成栅的主要原因,但采用不同写入方法和不同的激光写入能量在不同的光纤类型上制作光栅时其重要性不同。论文测试了激光在光纤上不同作用位置和不同辐射能量所引起的光纤纤芯或包层的折射率平均变化量。这些研究为实现特种LPFG结构的写入提供了实验制作的基础。
     ③在国际上首次提出并利用高频CO2激光写出了边缘折变型LPFG,并比较系统的研究了这类光栅的模式耦合特征和传输特性,最后对这类光栅的部分环境响应特性进行了实验研究,结果表明:(1).由于边缘折变型LPFG折变主要发生在包层,因此环境参量的变化很容易改变包层模场的分布,从而提高了谐振峰对环境参量的响应灵敏度。比如环境折射率响应灵敏度相比普通LPFG提高了约4倍、通过形成周期缺槽型LPFG可将应变灵敏度提高到? 100 pm /με(在0 ~100με的应变范围内); (2).边缘折变型光纤光栅具有非常强的方向耦合性,可基于此设计旋转型光开关等光通信器件; (3).边缘折变型LPFG具有较高的偏振相关损耗(PDL),可通过多边写入的方法降低PDL,最小可达0.22dB。
     ④在国际上首次提出并利用高频CO2激光制作出了旋转非对称折变型LPFG (R-LPFG),并比较系统的研究了这类光栅的模式耦合特征和传输特性,最后对这类光栅的部分环境响应特性进行了实验研究,结果表明:(1).当光栅旋转度逐渐变大时,R-LPFG单一的谐振峰会逐渐分裂成两个,这是与以往所有光栅类型所不同的透射谱特征; (2).从R-LPFG单个谐振峰分裂出来的两个分裂峰的温度灵敏度几乎相同; (3). R-LPFG两分裂峰具有极性相反的应变灵敏度,特别的,缺槽型R-LPFG两分裂峰的应变灵敏度绝对值可达~50 pm /με(在0 ~ 600με的范围内);(4).出现分裂峰的R-LPFG,同向扭曲时,两分裂峰逐渐靠拢,最后合成一个峰;反向扭曲时,两分裂峰逐渐分离。(5).可利用R-LPFG两分裂峰的间距实现无温度补偿的应变、扭曲等物理量的测量。
     ⑤在国际上首次提出非对称折变型超长周期光纤光栅(ULPFG)的结构,并提出利用空间频率的思想来讨论这类光栅的模式耦合特征和传输特性。文中还将边缘折变和旋转折变思想应用于ULPFG中从而形成了边缘折变非对称型ULPFG (E-ULPFG)和旋转折变非对称型ULPFG(R-ULPFG)。在利用高频CO2激光写出这些光栅结构后实验研究了它们的部分环境响应特性,结果表明:(1). ULPFG具有比LPFG更多的谐振峰。(2).由于ULPFG各谐振峰的环境响应特性与实际发生耦合的子光栅级次和包层模阶次密切相关,因此ULPFG每个谐振峰对环境参量如折射率、扭曲等的灵敏度都不一样。(3). E-ULPFG可以进一步加强ULPFG的光学特性,比如边缘缺槽型ULPFG可以实现应变和折射率的高灵敏度测量等;(4).可以利用R-ULPFG各组分裂峰的间距实现无温度补偿的应变、扭曲等物理量的多参数测量等。
     ⑥论文基于特种LPFG实验研究了部分适用于光纤通信或传感领域的新器件:(1).具有方向相关性的光栅型耦合器; (2).利用R-LPFG实现了EDFA的动态增益均衡器;(3).利用ULPFG实现了温度和折射率的同时测量;(4).利用R-LPFG实现了无温度补偿的应变、扭曲等物理量的测量;(5).利用ULPFG等特种光纤光栅实现了温度、应变、扭曲三参数的同时测量; (6).论文提出利用缺槽型E-LPFG和R-LPFG设计可调谐带阻滤波器;(7).利用具有特殊透射谱的LPFG和微加工制作高性能带通滤波器等。
     论文的主要创新点为:①.独立探索了三大类特种LPFG结构,从而丰富了LPFG的结构体系;②.比较系统的研究了三类特种LPFG的耦合特征、传输特性、环境响应特性等,为光纤传感和通信领域提供了若干可供选择的全光纤型器件;③.基于特种LPFG设计了几种光纤传感和通信用基础器件。通过本论文的研究,笔者已将部分科研成果发表在《Optics Letters》、《IEEE Photonics Technology Letters》、《Applied Optics》、《Optics Communications》、《Electronics Letters》、《Chinese Physics Letters》、《物理学报》等国际、国内著名期刊上,到目前为止以第一作者(或导师第一,学生第二)发表SCI论文13篇,申请发明专利5项,授权1项。
The optical characteristics and corresponding devices based on side-written long period fiber grating (LPFG) induced by high frequency CO2 laser pulses were studied in our research group during 2000 to 2003. This thesis is an extension of the above mentioned basic study. In order to strengthen the environmental response sensitivities, overcome the cross-affections of sensing and realize the multi-parameters measurement, three types of specific structures of LPFG are explored and proposed, including the model of refractive index, the theoretical analysis of transmission spectrum, fabrication methods, environmental response characteristics and potential applications. The main contents are as follows:
     1) The transverse refractive index distribution of LPFG with asymmetric refractive index modulation in the cross-section is divided into multilayer circular waveguides, which are then discretized according to the magnitude of index. The mode field of LPFG can be approximately calculated by making use of multilayer circular waveguide theory and numerical method. The mode coupling characteristics of this asymmetric LPFG is discussed by adopting coupled-mode equation sets and the revised Bragg condition. The numerical method of mode coupling for asymmetric LPFG provides theoretical foundation for the exploration of special LPFGs.
     2) The release of residual stress, rapid solidification, fiber densification and fused distortion are discovered to be the main mechanism of forming gratings induced by CO2 laser, which plays different role for different fiber, scanning method and laser power. The core/cladding index change caused by different inducing position and laser power is measured in this thesis. It provides the basis of experimental fabrication for special LPFGs.
     3) The structure of edge-written LPFG (E-LPFG) is proposed and fabricated by using high frequency CO2 laser pulses, for the first time to our knowledge. The mode coupling features are investigated and environmental response characteristics are studied experimentally. It’s indicated that: (1).The environmental response sensitivities of E-LPFG with refractive index modulation in the fiber cladding were enhanced because the cladding mode fields were easily affected by the change of the environmental parameters. For example, the environmental index response sensitivity is increased by a factor of 4 compared with general LPFG, and the strain sensitivity of LPFG with periodical grooves si up to ? 100p m /μεfor0 ~100με. (2). E-LPFG has strong orientated coupling behavior, based on which optical communication devices, such as rotated optical switch, can be designed. (3).The PDL of E-LPFG is the greatest, and then is the double-edge-written LPFG. The multi-edge-written grating has the least PDL, which can be as less as 0.22dB.
     4) The structure of asymmetric LPFG with rotary refractive index modulation (R-LPFG) along the fiber axis is proposed and fabricated by using high frequency CO2 laser pulses, for the first time to our knowledge. The mode coupling features are investigated and environmental response characteristics are studied experimentally. It’s observed that: (1) The transmission spectrum has different features according to the rotation angle. For small angle, resonance peak is unique, however, when the angle becomes greater, the resonance peak will be split into two, which is different from the transmission spectrum of previous all LPFGs. (2). For R-LPFG with greater rotation angle, the two split peaks have almost the same temperature sensitivity. (3). For R-LPFG with greater rotation angle, the two split peaks have opposite wavelength shift direction when it was applied strain. Besides, the sensitivity of R-LPFG with rotary grooves along fiber axis can be up to~50 pm /μεfor0 ~ 600με. (4). For R-LPFG with greater rotation angle, When co-twisted, the two peaks keep close and combine into one peak finally; when counter-twisted, the two peaks walk off. (5). The high sensitivity torsion meter and strain meter without temperature compensation can be designed by adopting the wavelength spacing between the two split peaks to measure the environmental variables.
     5) For the first time, the structure of asymmetric ultra long period fiber grating (ULPFG) is proposed to our knowledge. Also, the method of combining sub-fiber-gratings linearly with different frequency is firstly proposed. Two new grating structures of ULPFG--asymmetric edge-written ULPFGs (E-ULPFGs) and ULPFGs with rotary refractive index change are formed (R-ULPFGs). The above three ULPFGs are induced by high frequency CO2 laser and their environmental response characteristics are studied systematically. It shows that: (1). ULPFG has more resonance peaks than general LPFGs in that core mode can couple with more cladding modes. (2). Because the environmental response characteristics of each resonance peak has close relationship with the coupled level of sub-fiber gratings and the order of cladding modes, the environmental index and torsion sensitivity of ULPFG are different for each resonance peaks. (3). Based on the features of E-ULPFGs, the optical features of ULPFG can be strengthened, for example E-ULPFGs can be used to measure strain and index with high sensitivity. (4) Based on the features of R-ULPFGs, the variables such as strain and torsion can be measured by using the spacing of split peaks.
     6) Based on the specific LPFGs, new devices partly applicable to optical fiber communciation or sensor area are studied. (1). Grating coupler is produced by using two special LPFGs. (2). The EDFA gain equalizer is produced by using R-LPFG. (3). The temperature and index can be measured simultaneously by using ULPFG. (4). For R-LPFG, the strain and torsion measurement without temperature compensation can be realized by using R-LPFG with greater rotation angle. (5). The temperature, strain and torsion measurement can be realized simultaneously by using ULPFG. (6). In addition, adjustable band rejection filter can be designed by using E-LPFG or R-LPFG with periodical grooves along the fiber axis. (7). The bandpass filter with high performance can be devised by adopting LPFGs with specific transmission spectrum and micro-processing methods.
引文
[1] K. C. Kao and G. A. Hockham. Dielectric-fibre surface waveguides for optical frequencies[C], Proc. IEE, 1966, Vol.113, pp: 1151-1158.
    [2] J. R. Marciante. Fiber Technologies for Terawatt Lasers[C], OFC/NFOEC 2007, ONF6.
    [3] K. O. Hill, Y. Fujii, D. C. Johnson, et al. Photosensitivity in optical fiber waveguide: application to reflection filter fabrication[J], Appl. Phys. Lett., 1978, Vol.32, No.10, pp: 647-649.
    [4] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Spie. Long-Period fiber gratings as band-rejection filters[J], J. Lightwave Technol. , 1996, Vol.14, No.1, pp: 58-65.
    [5] N. Chen, B. F. Yun, Y. P. Cui. Cladding index modulated fiber grating[J], Optics Communications, 2006, Vol.259, pp: 587–591.
    [6] D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar. Long-period fibre grating fabrication with focused CO2 laser pulses[J], Electronics Lett., 1998, Vol.34, No.3, pp: 302-303.
    [7] X. W. Shu, L. Zhang, I. Bennion. Fabrication and characterisation of ultra-long-period fibre gratings[J], Optics Communications, 2002, Vol.203, pp: 277-281.
    [8] Zhu Tao, Rao Yun-jiang, Mo Qiu-ju. Simultaneous Measurement of Refractive Index and Temperature Using a Single Ultra-Long-Period Fiber Grating[J], IEEE Photonics Technology Letters, 2005, Vol.17, No.12, pp: 2700- 2702.
    [9] T. Zhu, Y. J. Rao, and J. L. Wang. Characteristics of Novel Ultra-Long-Period Fiber Gratings Fabricated by High-Frequency CO2 Laser Pulses[J], Optics Communications, 2007, Vol.277, pp: 84-88.
    [10] F. Ouellette. Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides[J], Opt. Lett., 1987, Vol.12, No.10, pp: 847-849.
    [11] G. Agrawal, and S. Radic. Phase-shifted fiber Bragg gratings and their applications for wavelength de-multiplexing[J], IEEE Photon. Technol. Lett., 1994, Vol.6, No.8, pp: 995-997.
    [12] L.R. Chen. Design of flat-top bandpass filters based on symmetric multiple phase-shifted long-period fiber gratings[J], Optics Communications, 2002, Vol.205, pp: 271-276.
    [13] V. Mizrahi, and J. E. Sipe. Optical properties of photosensitive fiber phase gratings[J], J. of Lightwave Technol., 1993, Vol.11, No.10, pp: 1513-1517.
    [14] T. Erdogan, and J. E. Sipe. Tilted fiber phase gratings[J], J. Opt. Soc. Am. A, 1996, Vol.13, No.2, pp: 296-313.
    [15] M. C. P. Huy, G. Laffont, V. Dewynter and P. Ferdinand, Tilted Fiber Bragg Grating photowritten in microstructured optical fiber for improved refractive index measurement[J], Optics Express, 2006, Vol.14, No.22, pp: 10359-10370.
    [16] K. S. Lee, and T. Erdogan, Fiber mode coupling in transmissive and reflective tilted fiber gratings[J], Applied Optics, 2000, Vol. 39, No. 9, pp: 1394-1404.
    [17] T. Erdogan. Fiber grating spectra[J], J. of Lightwave Technol., 1997, Vol.15, No.8, pp: 1277-1294.
    [18] X. W. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion. Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement[J], Optics Letters, 2001, Vol.26, No.11, pp: 774-776.
    [19] In Kag Hwang, Seok Hyun Yun, Erik Gentzsch, et al. Profile-controlled long-period fiber gratings based on period microbends[C]. OFC’99, 1999, FK6, pp: 177-179.
    [20] M. L. von Bibra and A. Roberts, J. Canning. Fabrication of long-period fiber gratings by use of focused ion-beam irradiation[J], Opt. Lett. 1999, Vol.24, No.11, pp: 765-767.
    [21] H. Georges, and M. Abdelrafik. Characterizations at very high tmeprature of electric arc-induced long-period fiber gratings[J], Optics Communications, July 2002, 208, pp: 329-335.
    [22] In Kag Hwang, Seok Hyun Yun, and Byoung Yoon Kim. Long period fiber gratings based on period microbends[J], Opt. Lett., 1999, Vol.24, No.18, pp: 1263-1265.
    [23] Rao Y J, Wang Y P, Ran Z L, Zhu T, Yu B M. Characteristics of novel long–period fiber gratings written by focused high-frequency CO2 laser pulses[C], Asia-Pacific Optical and Wireless Communications 2001, Proc. SPIE, 2001, 4581, pp: 327-333.
    [24] Yun-Jiang Rao, Tao Zhu, Zeng-Lin Ran, Ban-Mei Yu, Yi-Ping Wang. Applications of CO2-induced long-period fibre gratings in Er-doped fibre amplifiers[C], Asia-Pacific Optical and Wireless Communications 2001, Proc. SPIE, 2001, 4581, pp: 319-326.
    [25] H. Patrick and S. L. Gilbert. Growth of Bragg gratings produced by continuous-wave ultraviolet light in optical fiber[C], Opt. Lett., 1993, Vol.18, pp: 1484-1486.
    [26] J. L. Archambault, L. Reekie, and P. St. J. Russell. 100% reflectivity Bragg reflectors produced in optical fibers by single excimer pulses[J], Electronics Lett, 1993, Vol.29, No.5, pp: 453-454.
    [27] C.Y. Lin, and L. A. Wang. Loss-tunable long period fibre grating made from etched corrugation structure[J], Electronics Lett., 1999, Vol.35, No.21, pp: 1872-1873.
    [28] S. Y. Liu, H. Y. Tam, and M. S. Demokan. Low-cost microlens array for long-period grating fabrication[J], Electronics Lett., 1999, Vol.35, No.1, pp: 79-81.
    [29] Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu. Highly tunable Bragg gratings in single-mode polymer optical fibers[J], IEEE Photonics Technol. Lett., 1999, Vol.11, No.3, pp: 352-354.
    [30] H. Y. Liu, G. D. Peng, P. L. Chu, Y. Koike and Y. Watanabe. Photosensitivity in low-loss perfluoroploymer (CYTOP) fibre material[J]. Electronics Lett., 2001, Vol.37, No.6, pp: 347-348.
    [31] K. O. Hill and G. Meltz. Fiber Bragg grating technology fundamentals and overview[J], J. Lightwave Technology, 1997, Vol.15, No.8, pp: 1263-1276.
    [32] J. Lim, P. Q. Wang, B. E. Jones, et al. Strain and temperature sensors using mutimode optical fiber Bragg grating and correlation signal processing[C], IEEE Instrumentation and Measurement Technology Conference, 2001, pp: 1463-1466.
    [33] M. Toru, D. V. Tzvetanka, N. Tsutomu, et al. Bragg grating in multimode and few mode optical fibers[J], J. Lightwave Technology, 2000, Vol.18, No.2, pp: 230-235.
    [34] W. W. Morey, G. Meltz, J. D. Love, et al. Mode-coupling characteristics of UV-written Bragg grating in depressed cladding fiber[J], Electron Lett, 1994, Vol.30, No.9, pp: 730-732.
    [35] J. S. Robert, Y. Tsutomu, U. Eric. High pressure and temperature sensing for the oil industry using fiber Bragg gratings written onto side hole single mode fiber[C], Proc. SPIE, 1999, Vol.3475, pp: 42-44.
    [36]胡永明,杨华勇.边孔光纤光栅特性研究[J].光电子激光, 2005, Vol.16, No.11, pp: 1278-1281.
    [37] B. J. Eggleton, P. S. Westbrook, R. S. Windeler. Grating resonances in air-silica micro structured optical fibers[J], Opt. Lett., 1999, Vol.24, pp: 1460-1462.
    [38] A. A. Abramov, B. J. Eggleton,J. A. Rogers, et al. Electrically tunable efficient broad-band fiber filter[J], IEEE Photon. Technol. Lett. 1999, Vol.11, pp: 445-447.
    [39] N. Groothoff, J. Canning, E. Buckley, et al. Bragg gratings in air-silica structured fibers[J], Opt. Lett., 2003, Vol.28, pp: 233-235.
    [40] Y. N. Zhu, P. Shum, H. J. Chong. Strong resonance and a highly compact long period fiber grating in a large-mode-area photonic crystal fiber[J], Opt. Express, 2003, Vol.11, pp: 1900-1905.
    [41] B. S. Kawasaki, et al. Narrow-band Bragg reflectors in optical fibers[J], Optic Lett., 1978, Vol. 3, pp: 66-68.
    [42] Y. J. Rao, K. Kalli, G. Brady, et al. Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection[J], ElectronLett., 1995, Vol.31, pp: 1009-1010.
    [43] Y. J. Rao, D. Uttamchandani, B. Culshaw, P. Steer and J. Briancon. Spread-spectrum technique for passive multiplexing of reflective frequency-out fibre optic sensors exhibiting identical characteristics[J], Opt. Commun., 1993, Vol.96, pp: 214-217.
    [44] Y. J. Rao. Review Article: In-Fibre Bragg Grating Sensors[J], Measurement Science & Technology, 1997, Vol.8, pp. 355-375.
    [45] C. R. Giles. Lightwave applications of fiber Bragg gratings[J], Journal of Lightwave Technology, 1997, Vol.15, pp: 1391-1404.
    [46]饶云江,王义平,朱涛.光纤光栅原理及应用[M],北京,科学出版社. 2006.
    [47] D. K. Lam and B. K. Garside. Characteristics of single-mode optical fiber filters[J], Appl. Opt., 1981, Vol.20, No.3, pp: 440-445.
    [48] D. Gloge. Weakly guiding fibers[J], Appl. Opt., 1971, Vol.10, No.10, pp: 2252-2258.
    [49] K. S. Chiang. Perturbation analysis of finitely clad optical waveguides and couplers[J], Opt & Quatum Electron., 1990, Vol.22, pp: 239-257.
    [50] T. Erdogan. Cladding-mode resonances in short- and long-period fiber grating filters[J], Opt. Soc. Am. A., 1997, Vol.14, No.8, pp: 1760-1773.
    [51] K. A. Winick. Effective-index method and coupled-mode theory for almost periodic waveguide gratings: A comparison[J], Applied Optics, 1992, Vol.31, pp: 757-764.
    [52] M. Yamada and K. Sakuda. Analysis of almost-periodic distributed feedback slab waveguide via a fundamental matrix approach[J], Applied Optics, 1987, Vol.26, pp: 3474-3478.
    [53] L. A. Weller-Brophy and D. G. Hall. Analysis of waveguide gratings: Application of Rouard’s method[J], Journal of the Optical Society of America A, 1985, Vo.2, pp: 864-871.
    [54] J. L. Frolik and A E Yagle. An asymmetric discrete-time approach for the design and analysis of periodic waveguide gratings[J], IEEE Journal of Lightwave Technology, 1995, Vol.13, pp: 175-185.
    [55] L. Poladian. Graphical and WKB analysis of nonuniform Bragg gratings[J], Physical Reviews E, 1993, Vol.48, pp: 4758-4767
    [56] T. Hirono and Y. Yoshikuni. A Hamiltonian formulation for coupled wave equations[J], IEEE Journal of Quantum Electronics, 1974, Vol.QE-8, pp: 1751-1755.
    [57] L. Poladian. Variational technique for nonuniform gratings and distributed feedback lasers[J], Journal of the Optical Society of America A, 1974, Vol.11, pp: 1846-1853.
    [58] G. Meltz, W. W. Morey and W. H. Glenn. Formation of Bragg grating in optical fibers by a transverse holographic method[J], Optic Lett., 1989, Vol.14, pp: 823-825.
    [59] K. O. Hill, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UVexposure thorough a phase mask[J], Applied Physics Letters. 1993, Vol.62, pp: 1035-1037.
    [60] D. Z. Anderson, et al. Production of in-fiber gratings using a diffractive optical element[J], Electron. Letters, 1993, Vol.29, pp: 566-568.
    [61] B. Malo, et al. Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques[J], Electron. Letters. 1993, Vol.29, pp: 1668-1669.
    [62] M. Bernier, D. Faucher, R. Vallée, et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm[J], Optics Letters, 2007, Vol.32, No.5, pp: 454-456.
    [63] S. Mihailov and M. Gower. Recording of efficient high-order Bragg reflectors in optical fibers by mask image projection and single pulse exposure with an excimer laser[J], Electron. Letters, 1994, Vol.30, pp: 707-708.
    [64] D. P. Hand, and J. Russell. Photoinduced refractive-index changes in germanosilicate fibers[J], Optics Letters, 1990, Vol.15, pp: 102-104.
    [65] A. E. Attard. Fermi level shift in Bi12SiO20 vis photon-induced trap level occupation[J], Journal of Applied Physics, 1992, Vol.71, pp: 933-937.
    [66] M. G. Sceats, G. R. Atkins and S. B. Poole. Photo-induced index changes in optical fibers[J], Annual Reviews in Material Science, 1993, Vol.23, pp: 381-440.
    [67] M. Douay, W. X. Xie, T. Taunay, et al. Dendification involved in the UV-based photosensitivity of silica glasses and optical fibers[J], J. Lightwave Technol., 1997, Vol.15, No.8, pp: 1329-1342.
    [68] D. M. Bird. Narrow band semiconductor laser using fiber grating, Electron. Lett., 1991, Vol.27, No.13, pp: 1115-1116.
    [69] J. Chow, et al. Multi-wavelength generation in an erbium-doped fiber laser using in-fiber comb filters[J], IEEE Photonics Technology Letters, 1996, Vol.8, No.1, pp: 60-62.
    [70] P. K. Cheo, V. G. Mutalik and G. A. Ball. Mode-locking of in-line coupled-cavity fiber lasers using intra-core Bragg gratings[J], IEEE Photonics Technology Letters, 1995, Vol.7, pp: 980-982.
    [71] R. R. Kashyap Wyatt and R. J. Campbell. Wideband gain flattened erbium fiber amplifier using a photosensitive fiber balzed grating[J], Electronics Letters, 1993, Vol.29, pp:154-156.
    [72] J. F. Massicott, et al. 1480nm pumped erbium doped fiber amplifier with all optical automatic gain control[J], Electronics Letters, 1994, Vol.30, pp: 962-963.
    [73] J. A. R. Williams, I. Bennion and N. J. Doran. The design of in-fibre-Bragg grating systems for cubic and quadratic dispersion compensation[J], Opt. Commun., 1995, Vol.116, No.1-3, pp: 62-66.
    [74] R. Romero, O. Fraz?o. Linear tunable dispersion compensation device using selective stretching in chirped fiber Bragg grating[J], Microwave and Optical Technology Letters, 2007, Vol.49, No.3, pp:720-722.
    [75] X. Shu, E. Turitsyna, and I. Bennion. Broadband fiber Bragg grating with channelized dispersion[J], Opt. Express, 2007, Vol.15, No.17, pp: 10733-10738.
    [76] R. Kashyap, P. F. Mckee and D. Armes. UV written reflection grating structures in photosensitive optical fibers using phase-shifted phase masks[J], Electronics Letters, 1994, Vol. 30, pp: 1977-1978.
    [77] Li Xia, Ping Shum, Teehiang Cheng. The design and fabrication of multitransmission-band optical FBG filter with ultranarrow wavelength spacing[J], Microwave and Optical Technology Letters, 2007, Vol.49, No.5, pp: 1122-1125.
    [78] V Mizrahi et al. Four channel fiber grating demultiplexer[J], Electronics Letters, 1994,Vol.30, pp: 780-781.
    [79] W. H. Loh, F. Q. Zhou, J. J. Pan. Novel designs for sampled grating-based multiplexers-demultiplexers[J], Opt. Lett., 1999, Vol.24, No.21, pp: 1457-1459.
    [80] M. Ichioka, J. Ichikawa, Y. Kinpara, T. Sakai, H. Oguri, and K. Kubodera. Athermal Wavelength Lockers using Fiber Bragg Gratings[J], IEEE Photonics Technol. Lett., 2002, Vol.8, pp: 250-255.
    [81] A. Seeds. Optical technologies for phased array antennas[J], IEICE Trans. Electron., Vol.E76-C.
    [82] J. F. Huang and C. C. Yang. Reductions of Multiple-Access Interference in Fiber-Grating-Based Optical CDMA Network[J], IEEE Transactions on Communications, 2002, Vol.50, No.10, pp: 1680-1687.
    [83] Y. J. Rao and D. A. Jackson. A ptototype multiplexing system for use with a large number of fibre-optic-based extrinsic Fabry-Perot sensors exploiting low coherence interrogation[J], Proc. SPIE. 1995,Vol.2507, pp: 90-98.
    [84] M. G. Xu, H. Geiger, J. P. Dakim. Fibre grating pressure sensor with enhanced sensitivity using a glass-bubble housing[J], Electron. Lett., 1996, Vol.32, pp: 128-129.
    [85] M. J. Gander, W. N. Macpherson, R. McBride et al. Bend measurement using Bragg gratings in multicore fibre[J], Electronics Lett., 2000, Vol.36, No.2, pp: 120-121.
    [86] W. G. Zhang, X. Y. Dong, D. J. Feng et al. Linear fiber-grating-type sensing tuned by applying torsion stress[J], Electronics Lett., 2000, Vol.36, No.20. pp: 1686-1688.
    [87]詹亚歌,菜海文,向世清等.高分辨率光纤光栅温度传感器的研究[J],中国激光,2005,Vol.32, No.1, pp: 83-86.
    [88] J. A. BucaroDardy, E. F. Carome. Fiber-optic hydrophone[J], Acoust. Soc. Am., 1977, Vol.62, pp: 1302-1304.
    [89] A. D. Kersey and M. J. Marrone. Fibre Bragg high-magnetic-field probe[C], Proc. 10th Inter. Conf. On Optical Fibre Sensor, 1997, pp: 53-56.
    [90]杨石泉,蒙红云,董新永等.一种简单的光纤光栅电调谐法[J],光子学报, 2002, Vol.31, No.7, pp: 907-910.
    [91] V. V. Spirin, M. G. Shlyagin, S. V. Mieridonov, and I. Marquez. Temperature-insensitive strain measurement using differential double Bragg grating technique[J], Optics and Laser Technol., 2001, Vol.33, pp: 43-46.
    [92] J. Yang, Y. Zhao, B. J. Peng, W. Xu. Temperature-compensted high pressure FBG sensor with a bulk-modulus and self-demodulation method. Sensors and Actuators[J], 2005, Vol.118, No.2, pp: 254-258.
    [93] X. K. Zeng, and Y. J. Rao. Simultaneous static strain, temperature and vibration measurement using an intergrated FBG/EFPI sensor[J], Chinese Physics Lett., 2001, Vol.18, No.12, pp: 1617-1619.
    [94] X. K. Zeng, and Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu. Transverse load, static strain, temperature and vibration measurement using a cascaded FBG/EFPI/LPFG sensor system[J], The 15th Optical Fibre Sensors Conference, Technical Digest, 2002, pp:199-202.
    [95] D. A. Jackson, A. B. L. Ribeiro, L. Reekie and J. L. Archambault. Simple multiplexing scheme for a fibre-optic grating sensor network[J], Opt. Lett., 1993, Vol.18, pp:1192-1194.
    [96] Y. J. Rao, D. Uttamchandani, B. Culshaw, P. Steer and J. Briancon. Spread-spectrum technique for passive multiplexing of reflective frequency-out fibre optic sensors exhibiting identical characteristics[J], Opt. Commun., 1993, Vol.96, pp: 214-217.
    [97] Y. J. Rao, K. Kalli, G. Brady, et al. Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection[J], Electron Lett., 1995, Vol.31, pp: 1009-1010.
    [98] M. A. Davis, D. G. Bellemore and A. D. Kersey. Structure strain mapping using a wavelength/time division addressed fibre Bragg grating array[C], Proc. 2nd Euro. Conf. on Smart Structures and Materials, Glasgow, U.K. 1994,pp: 342-345.
    [99] H. J. Patrick, C. G. Askins, R. W. McElanon et al. Amplitude mask patterned on an excimer laser mirror for high intensity writing of long-period fiber gratings[J], Electron. Lett., 1997, Vol.33, No.13, pp: 1167-1168.
    [100] S.Y. Liu, H. Y. Tam and M. S. Demokan. Low-cost microlens array for long period fiber grating fabrication[J], Electron. Lett., 1999, Vol.35, No.1, pp:79-81.
    [101] S. Y. Liu, H. Y. Tam, and M. S. Demokan. Low-cost microlens array for long-period grating fabrication[J], Electronics Lett., 1999, Vol.35, No.1, pp: 79-81
    [102]黎敏,廖延彪,赖淑蓉,陈荣声.一种新型的光纤光栅制作方法[J],激光杂志, 2001, Vol.22, No.1, pp: 24-25
    [103] Qingling Wang, Arif Hidayat, Pierre Niay, and Marc Douay. Influence of blanket postexposure on the thermal stability of the spectral characteristics of gratings written in a telecommunication fiber using light at 193nm[J], J. of Lightwave Techno., 2000, Vol. 18, No. 8, pp: 1078-1083
    [104] Kevin P. Chen, Peter R.Herman, and Jie Zhang. Fabrciation of strong long-period gratings in hydrogen-free fibers with 157-nm F2-laser radiation[J], Optics Lett, 2001, Vol.26, No.11, pp: 771-773
    [105]艾江,叶爱伦,刘宇乔.一种新的长周期光纤光栅制作方法[J],光学学报, 1999, Vol.19, No.5, pp: 709-712
    [106] Yuki Kondo, Kentaro Nouchi, and Tsuneo Mitsuyu, Masaru Watanabe, Peter G. Kazansky, Kazuyuki Hirao. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses[J], Opt. Lett., 1999, Vol.24, No.10, pp: 646-648.
    [107] C.Y. Lin, and L. A. Wang. Loss-tunable long period fibre grating made from etched corrugation structure[J], Electonics Lett., 1999, Vol.35, No.21, pp: 1872-1873
    [108] Y. P. Wang, L. Xiao, D. N. Wang, and W. Jin. Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity[J], Opt. Lett. 2006, Vol.31, No.23, pp: 3414-3416.
    [109] Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng. Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber[J], Appl. Phys. Lett., 2006, Vol.89, No.1, pp: 151105-151108.
    [110] Makoto Fujimaki and Yoshimichi Ohki, John L. Brebner and Sjoerd Roorda. Fabrication of long-period optical fiber gratings by use of ion implantation[J], Opt. Lett., 2000, Vol.25, No.2, pp: 88-89.
    [111] S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw. Tunable mechanically induced long-period fiber gratings[J], Optics Lett., 2000, Vol. 25, No.10, pp: 710-712
    [112] J. W. Ham, J. H. Lee, J. Y. Cho, H. S. Jang, and K. S. Lee. A birefringence compensation method for mechanically induced long-period fiber gratings in optical communication and sensing systems[C], OFS’2002, pp:565-568
    [113] Joon Yong Cho, and Kyung Shik Lee. A birefringence compensation method for mechanically induced long-period fiber gratings[J], Optics Communication, 2002, Vol.213,pp: 281-284.
    [114] Yun-Jiang Rao, Yi-Ping Wang, Zeng-Ling Ran, Tao Zhu. Novel Fiber-Optic Sensors Based on Long-Period Fiber Gratings Written by High-Frequency CO2 Laser Pulses[J], J. of Lightwave Technology, 2003 Vol. 21, No.5, pp: 1320-1325
    [115] Y.J. Rao, T. Zhu, Z.L. Ran, Y.P. Wang, J. Jiang, A.Z. Hu. Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication[J], Optics Communications, 2004, Vol. 229, No.1, pp:209-221
    [116] T. Zhu, Y. J. Rao, J. L. Wang, Y. Song. A Highly Sensitive Fiber-Optic Refractive Index Sensor Based on An Edge-Written Long-Period Fiber Grating[J], IEEE Photonics Technology Letters, 2007, 2007, Vol.19, No.24, pp: 1946-1948.
    [117] T. Zhu, Y. J. Rao, J. L. Wang, Y. Song. Strain Sensor without temperature compensation based on A LPFG with Strongly Rotary Refractive Index modulation[J], Electronics Letters, 2007, Vol.43, No.21, pp: 1132-1133.
    [118] Seungtae Oh, Kyung Rok Lee, Un-Chul Paek, and Youngjoo Chung, Fabrication of helical long-period fiber gratings by use of a CO2 laser, Opt. Lett., 2004, Vol.29, No.13, pp:1464-1466.
    [119] Woojin Shin, Bong-Ahn Yu, Young-Chul Noh, Jongmin Lee, and Do-Kyeong Ko. Bandwidth-tunable band-rejection filter based on helicoidal fiber grating pair of opposite helicities[J], Opt. Lett., 2007, Vol.32, No.10, pp: 1214-1216.
    [120] Victor I. Kopp, Victor M. Churikov, Jonathan Singer, Norman Chao, Daniel Neugroschl, Azriel Z. Genack. Chiral Fiber Gratings[J], Science, 2004, Vol.305, No.2, pp:74-75
    [121] César Jáuregui and JoséMiguel López-Higuera. Virtual long-period gratings[J], Opt. Lett. 2005, Vol.30, No.1, pp: 14-16.
    [122] Oleg V. Ivanov. Fabrication of long-period fiber gratings by twisting a standard single-mode fiber[J], Opt. Lett., 2005, Vol.30, No.24, pp: 3290-3292
    [123] Y. G. Han, H. S. Park, W. T. Han, B. H. Lee, U.C. Paek, and Y. Chung. Temperature stability and mechanical strength of long-period fiber gratings fabricated with CO2 laser[C], OFC2000, TuB3, pp: 26-28
    [124] Y. Park, K. Oh, U. C. Pack, D. Y. Kim, and Charles R. Kurkjian. Residual stress in a doubly clad fiber with depressed inner cladding (DIC) [J], J. of Lightwave Technol., 1999, Vol.17, No.10, pp: 1823-1834
    [125] K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao. Writing waveguides in glass with a femtosecond laser[J], Opt. Lett., 1996, Vol. 21, pp: 1729-1731
    [126] N. F. Borrelli, C. M. Smith, and D. C. Allan, Excimer-laser-induced densification in binarysilica gallse[J], Opt. Lett., 1999, Vol. 24, No. 20, pp: 1401-1403
    [127] V. I. Karpov, M. V. Grekov, E. M. Dianov, K. M. Golant, S. A. Vasiliev. O. I. Medvedkov, R. R. Khrapko. Mode-field converters and long-period gratings fabricated by thermo-diffusion in nitrogen-doped silica-core fibers[J], OFC’98 Technical Digest, ThG4, pp: b279-280
    [128] S. G. Kosinski, and A. M. Vengsarkar. Splicer-based long-period fiber gratings[J], OFC’98 Technical Digest, ThG3, pp: 278-279
    [129] G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le roux, and P. St. J. Russell. Miniature all-fiber devices based on CO2 laser microstructuing of tapered fibers[J], Opt. Lett., 2001, Vol. 26, No. 15, pp: 1137-1139
    [130] T. W. MacDougall, S. Pilevar, C. W. Haggans, M. A. Jackson. Generalized expression for the growth of long period fiber gratings[J], IEEE Photon. Technol. Lett., 1998, Vol.10, No.10, pp: 1449-1451.
    [131] D. B. Stegall, T. Erdogan. Leaky cladding mode propagation in long-period fiber grating devices[J], IEEE Photon. Technol. Lett., 1999, Vol.11, No.3, pp: 343-345.
    [132] G. W. Chern and L. A. Wang, Transfer-matrix method based on perturbation expansion for periodic and quasi-periodic binary long-period gratings[J], J. Opt. Soc. Am. A, 1999, Vol.16, pp: 2675–2689.
    [133] G.W. Chern, L.A. Wang, and Chunn-Yenn Lin. Transfer-matrix approach based on modal analysis for modeling corrugated long-period fiber gratings[J], Applied Optics, 2001, Vol. 40, No. 25, pp: 4476-4486.
    [134] Florence Yuen Ming Chan and Kin Seng Chiang. Transfer-matrix method for the analysis of two parallel dissimilar nonuniform long-period fiber gratings[J], J. of Lightwave Technol., 2006, Vol.24, No.2, pp: 1008-1018.
    [135] E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord. Transmission Characteristics of Long-Period Fiber Gratings Having Arbitrary Azimuthal/Radial Refractive Index Variations[J], J. Lightwave Technol. , 2003, Vol.21, No.1, pp: 218-227
    [136] A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, and P. J. Lemaire. Long-period fiber-grating-based gain equalizers[J], Opt. Lett., 1996, Vol.21, pp: 336-338.
    [137] I. Sohn, J. Kim, N. Lee, H. Kwon, and J. Song. Tunable gain-flattening filter using long-period fiber grating based on periodic core deformation[C], in Design, Fabrication, and Characterization of Photonic Devices II. 2001, Proc. of SPIE 4594, pp: 110-117.
    [138] Flatow Kirk, Hou Hongtao Sorin Wayne. Overview of dynamic gain-flattening technologies[J], Lightwave, 2002,Vol.19, No.3, pp: 160-169
    [139] Yun Seok Hyun, Lee Bong Wan, Kim Hyang Kyun, Kim Byoung Yoon. Dynamicerbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters[J], IEEE Photonics Technology Letters, 1999,Vo.11, No.10, pp: 1229-1231
    [140] X. M. Zhang, A. Q. Liu, C. Lu. D. Y. Tang, F. Wang, Z. S. Liu. A MEMS variable optical attenuator (VOA) for DWDM applications[C], Proceedings of SPIE - The International Society for Optical Engineering, 2002, Vol.4655, pp: 485-495
    [141] T. C. Wu, W. Hsu. The design and fabrication of a movable O-shape micro-clamper[C], Proceedings of SPIE - The International Society for Optical Engineering, 2001,Vo.4592, pp: 497-502
    [142] Jun Kye Bae, Sang Hyuck Kim, Jun Hee Kim, Jinho Bae, Sang Bae Lee, Je-Myung Jeong. Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters[J], IEEE Photonics Technology Letters, 2003, Vol.15, No.3, pp: 407-409
    [143] Rao Yun-Jiang, Zhu Tao, Ran Zeng-Lin, Jiang Jian. An all-fibre dynamic gain equalizer based on a novel long-period fibre grating written by high-frequency CO2 laser pulses[J], Chinese Physics Letter., 2002, Vol.19, No.12, pp: 1822-1824.
    [144] Yi-Ping Wang, Yun-Jiang Rao, Zeng-Ling Ran, Tao Zhu, Ai-Zi Hu. A Novel Tunable Gain Equalizers Based on a Long-Period Fiber Grating Written by High-Frequency CO2 Laser Pulses[J], IEEE Photonics Technology Letters, 2003, Vol. 15, No. 2, pp: 251-253.
    [145] T. Zhu, Y. J. Rao, and J. L. Wang. All Fiber Dynamic Gain Equalizer Based on a Twisted Long Period Grating Written by High Frequency CO2 Laser Pulses[J], Applied Optics, 2007, Vol.46, No.3, pp: 375-378.
    [146] N. Ni, C.C. Chan, K.M. Tan, S.C. Tjin, X.Y. Dong. Broad-band EDFA gain flattening by using an embedded long-period fiber grating filter[J], Optics Communications, 2007, Vol.271, pp: 377–381.
    [147] Yun-Jiang Rao, Zeng-Ling Ran, Tao Zhu, Xiang-Kai Zeng, Ban-Mei Yu, Yi-ping Wang. Low noise Er-doped fibre amplifiers using novel CO2-induced long period fibre gatings[J], Asia-Pacific Optical and Wireless Communications 2001, Proc. SPIE, 2001,Vol.4594, pp: 78-85
    [148] Siddharth Ramachandran, Samir Ghalmi, Zhiyong Wang, and Man Yan, Band-selection filters with concatenated long-period gratings in few-mode fibers[J], Optics Letters, 2002, Vol.27, No.19, pp: 1678-1680.
    [149]何瑾琳,孙小菡,张明德,逢焕刚.相移长周期光纤光栅的光谱特性及其在光分插复用器中的应用[J],光学学报, 2000, Vol.20, No.8, pp: 1106-1111.
    [150] W. T. Chen, and L. A. Wang. Laser-to-fiber coupling scheme by utilizing a lensed fiber integrated with a long-period fiber grating[J], IEEE Photon. Tech. Lett., Vol.12, No.5, pp:501-503
    [151] W. T. Chen, and L. A. Wang. Optical coupling between single-mode fibres by utilising long-period fibre gratings[J], Electron. Lett., 1999, Vol.35, No.5, pp: 421-423.
    [152] Yinian Zhu, Ping Shum, Chao Lu, Beatrys M. Lacquet, Pieter L. Swart, Stephanus J. Spammer. Highly compact and tunable optical ADD–DROP multiplexer in dense WDM network systems[J], J. of Optical Networking, 2003, Vol.2, No.10, pp: 370-378.
    [153] Kin Seng Chiang, Yunqi Liu, Mei Nar Ng and Shenping Li. Coupling between two parallel long-period fibre gratings[J], Electronics Letters, 2000, Vol.36 No.16, pp: 1408-1409.
    [154] Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang. Widely tunable long-period waveguide grating couplers[J], Optics Express, Vol. 14, No.26, pp: 12644-12654.
    [155] Y. Liu, K. S. Chiang, and Q. Liu. Symmetric 3×3 optical coupler using three parallel long-period fiber gratings[J], Optics Express, 2007, Vol. 15, No.10, pp: 6494-6499.
    [156] N. Hong Ky, H. G. Limberger, R. P. Salathé, and F. Cochet. Efficient broadband intracore grating LP01–LP02 mode converters for chromatic-dispersion compensation[J], Opt. Lett. 1998, Vol.23, No.6, pp: 445-447.
    [157] Siddharth Ramachandran, Zhiyong Wang, and Man Yan. Bandwidth control of long-period grating-based mode converters in few-mode fibers[J], Optics Letters, 2002, Vol.27, No.9, pp: 698-700.
    [158] X. J. Gu. Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber grating[J], Opt. Lett., 1998, Vol.23, No.7, pp: 509-510.
    [159] C. D. Su, and L. A. Wang. Multiwavelength fiber source by using long period fiber gratings in superfluorescent fiber source[J], Electron. Lett., 1999, Vol.35, No.11, pp: 927-929.
    [160] B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar. All-optical switching in long-period fiber gratings[J], Opt. Lett., 1997, Vol.22, No.12, pp: 883-885.
    [161] Ming Yan, Shouyu Luo, Li Zhan, Zhiming Zhang, Yuxing Xia. Triple-wavelength switchable Erbium-doped fiber laser with cascaded asymmetric exposure long-period fiber gratings[J], Optics Express, 2007, Vol.15, No.7, pp: 3685-3691.
    [162] Mini Das, and Thyagarajan. Dispersion compensation in transmission using uniform long period fiber gratings[J], Optics Communications, 2001, Vol.190, pp: 159–163.
    [163] Sun-Jong Kim, Tae-Jung Eom, Byeong Ha Lee, and Chang-Soo Park. Optical temporal encoding/decoding of short pulses using cascaded long-period fiber gratings[J], Optics Express, 2003, Vol.11, No.23, pp: 3034-3040.
    [164] Mykola Kulishov, JoséAza?a. Long-period fiber gratings as ultrafast optical differentiators[J], Optics Letters, 2005, Vol.30 No.20, pp: 2700-2702.
    [165] Radan Slavík, Yongwoo Park, Mykola Kulishov, Roberto Morandotti, and JoséAza?a. Ultrafast all-optical differentiators[J], Optics Express,2006,Vol.14, No.22, pp: 10699-10707.
    [166] Sarfraz Khaliq, StephenW James and Ralph P Tatam, Enhanced sensitivity fibre optic long period grating temperature sensor[J], Meas. Sci. Technol., 2002, Vol.13, pp: 792–795.
    [167] Georges Humbert and Abdelrafik Malki. Temperature characterization of long-period fiber gratings fabricated with electric arc discharge[J], APOC’2001, Proceedings of SPIE Vol. 4579, 2001, pp: 176-181.
    [168] Y. J. Rao, J. Y. Li, T. Zhu. High Temperature Characteristics of Long-Period Fiber Gratings Written By High-Frequency CO2 Laser Pulses[J], ICO20, 0415-180, Changchun, China, 2005
    [169] D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler. Very-high-temperature stable CO2-laser-induced long-period fibre gratings[J], Electron. Lett., 1999, Vol.35, No.9, pp: 740-742.
    [170] Khay Ming Tan, Chia Meng Tay, Swee Chuan Tjin, Chi Chiu Chana, Harianto Rahardjo. High relative humidity measurements using gelatin coated long-period grating sensors[J], Sensors and Actuators B, 2005, Vol.110, pp: 335–341.
    [171] LiweiWang, Yang Liu, Min Zhang, Dongsheng Tu, Xianhui Mao, and Yanbiao Liao. A relative humidity sensor using a hydrogel-coated long period grating[J], Meas. Sci. Technol., 2007, Vol.18, pp: 3131–3134.
    [172] H. J. Patrick, C. C. Chang, and S. T. Vohra. Long period fibre gratings for structural bend sensing[J], Electron. Lett., 1998, Vol.34, No.18, pp: 1773~1775.
    [173] G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish and E. N. Glytsis. Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings[J], Electron. Lett., 2000, Vol.36, No.16, pp: 1354-1355.
    [174] C. C. Ye, S. W. James, and R. P. Tatam. Simultaneous temperature and bend sensing with long-period fiber gratings[J], Optics Letters, 2000, Vol. 25, No.14, pp: 1007-1009.
    [175] Y.P. Wang, Y.J. Rao, Z.L. Ran, T. Zhu, and X.K. Zeng. Bend-insensitive long-period fiber grating sensors[J], Optics and Lasers in Engineering, 2004, Vol. 41, No.1, pp: 233-239.
    [176] L. A. Wang, C. Y. Lin, G. W. Chern. Torsion sensor made of corrugated long period fiber grating[C], in 14th International conference on optical fiber sensors, 2000, Proc. of SPIE, 4185, pp: 640-643.
    [177] T. J. Ahn, B. H. Kim, B. H. Lee. Y. Chung, U. C. Pack and W. T. Han. Torsion sensing characteristics of optical fiber with a long-period grating pair[C], APOC’2001, Proc. ofSPIE 4579, pp: 154-161.
    [178] Y. P. Wang and Y. J. Rao. Long-period fiber grating torsion sensor measuring twist rate and determining twist direction simultaneously[J], Electronics Letters, 2004, Vol.40, No.3, pp:164-165.
    [179]朱涛,饶云江,莫秋菊.基于超长周期光纤光栅的高灵敏度扭曲传感器[J],物理学报, 2006, Vol.55, No.1, pp: 249-253.
    [180] Y. Liu, L. Zhang and I. Bennion. Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre[J], Electronics Letters, 1999, Vol.35, No.8, pp: 662-663.
    [181] Rao Yunjing, Wang Yiping, Zhu Tao, Ran Zenglin, Zeng Xiangkai. Simultaneous measurement of transverse load and temperature using a single long-period fiber grating element[J], Chinese Physics Letters, 2003,Vol. 20, No.1, pp: 72-75
    [182] T. Zhu, Y. J. Rao, J. L. Wang and M. Liu. Transverse-Load Characteristics of Twisted Long-Period Fiber Gratings written by high-frequency CO2 laser pulses[J], Electronics Letters, 2006, Vol.42, No.8, pp: 451-452
    [183]朱涛,饶云江,王久玲,王若昆.基于包层旋转折变型光纤光栅的动态增益均衡器[J],物理学报, 2006, Vo1.55,No.9, pp: 4720-4724.
    [184] Y. Ishii, K. Shima, S. Okude, K. Himeno, K. Nishide, and A. Wada. Precise determination of local birefringence of optical fibers by long-period fiber grating analysis[C], OFC2002, ThGG53, pp: 686-689
    [185] V. Bhatia, M. K. Burford, N. Zabaronick, K. A. Murphy, and R. O. Claus. Strain and refractive index sensors using temperature-insensitive long-period grating[C], Tech. Dig. OFS-11, 1996, PD Fr 3-1
    [186] S. Luo, Y. Liu, A. Sucheta, M. Evans, and R. Van. Tassell. Applications of LPG fiber optical sensors for relative humidity and chemical warfare agents monitoring[C], in Advanced Sensor Systems and Applications, 2002, Proc. of SPIE 4920, pp: 193-204.
    [187] X. Chen, K. Zhou, L. Zhang, and I. Bennion. Optical chemsensors utilizing long-period fiber gratings UV-inscribed in d-fiber with enhanced sensitivity through cladding etching[J], IEEE Photonics Technology Letters, 2004, Vol.16, No.5, pp: 1352-1354.
    [188] Andrea Cusano, Agostino Iadicicco, Pierluigi Pilla, Luigi Contessa, Stefania Campopiano, and Antonello Cutolo, Michele Giordano. Cladding mode reorganization in high-refractiveindex-coated long-period gratings: effects on the refractive-index sensitivity[J], Optics Letters, 2005, Vol.30, No.19, pp: 2536-2538.
    [189] Zhengtian Gu and Yanping Xu, Kan Gao. Optical fiber long-period grating with solgelcoating for gas sensor[J], Optics Letters, 2006, Vol.31, No.16, pp: 2405-2407.
    [190] Jesus M. Corres, Ignacio del Villar, Ignacio R. Matias, and Francisco J. Arregui. Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly[J], 2007, Optics Letters, 2007, Vol.32, No.1, pp: 29-31.
    [191] S. Pilevar, M. P. Delisa, Z. Zhang, C. C. Davis, W. E. Bentley, and J. S. Sirkis. Evanecent wave antibody-antigen biosensor based on long period fiber Bragg grating[C], The 14th OFS, 2000, Th2-3, pp: 314-317.
    [192] Lars Rindorf and Jesper B. Jensen, Martin Dufva, Lars Hagsholm Pedersen and Poul Erik H?iby, Ole Bang. Photonic crystal fiber long-period gratings for biochemical sensing[J], Optics Express, 2006, Vol.14, No.18, pp: 8224-8231.
    [193] H. J. Patrick, G. M. Williams, A. D. Kersey, et al. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination[J], IEEE Photo. Tech. Lett., 1996, Vol.8, No.9, pp: 1223-1225.
    [194] Kyung Jun Han, Yong Wook Lee, Jaejoong Kwon, Sookyoung Roh, Jaehoon Jung, and Byoungho Lee. Simultaneous Measurement of Strain and Temperature Incorporating a Long-Period Fiber Grating Inscribed on a Polarization-Maintaining Fiber[J], IEEE Photo. Tech. Lett., 2004, Vol.16, No.9, pp: 2114-2116.
    [195] Chia-Min Lin, Yi-Chi Liu, Wen-Fung Liu, Ming-Yue Fu, Hao-Jan Sheng, Sheau-Shong Bor, and Chuen-Lin Tien. High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating[J], IEEE Sensors Journal, 2006, Vol.6, No.3, pp: 691-696.
    [196] B.A.L. Gwandu, X. Shu, T.D.P. Allsop, W. Zhang, L. Zhang, and I. Bennion. Simultaneous refractive index and temperature measurement using cascaded long-period grating in double-cladding fibre[J], Electronics Letters, 2002, Vol.38, No.14, pp: 695-696.
    [197] Xiang-Kai Zeng, Yun-Jiang Rao, Yi-Ping Wang, Zeng-Ling Ran, and Tao Zhu. Transverse load, static strain, temperature and vibration measurement using a cascaded FBG/EFPI/LPFG sensor system[J], The 15th Optical Fibre Sensors Conference, Technical Digest, 2002, pp: 199-202.
    [198] M. Yokota, H. Oka, and T. Yoshino. Mechanically induced long period fiber grating and its application for distributed sensing[J], OFS’2002, pp: 135-138.
    [199] Yun-Jiang Rao, Zeng-Ling Ran, Xian Liao, and Hong-You Deng. Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain[J], Optics Express, 2007, Vol.15, No.22, pp: 14936-14941.
    [200] T. Erdogan. Cladding-mode resonances in short- and long-period fiber grating filters: errata[J], J. Opt. Soc. Am. A, 2000, Vol. 17, No. 11, pp: 2113.
    [201]吴重庆.光波导理论[M],清华大学出版社, 2000,第三章.
    [202]孔梅.长周期光纤光栅的理论和应用研究[D],浙江大学博士学位论文, 1999,第二章.
    [203] D. S. Starodubov, V. Grubsky, J. Feinberg, B. Kobrin, and S. Juma. Bragg grating fabrication in germanosilicate fibers by use of near-UV light: A new pathway for refractive index changes[J], Opt. Lett., 1997, Vol.22, pp: 1086-1088.
    [204] Y. J. Rao, T. Zhu. A Novel Flat-band Long Period Grating with Special Index Apodization Induced by High Frequency CO2 Laser Pulses[C], OFC/NFOEC2006, OWI51, USA, Anaheim.
    [205] I. Dei Villar, I. R. Matias, F. J. Arregui, and P. Lalanne. Optimization of sensitivity in long period fiber gratings with overlay deposition[J], Opt. Express, 2005, Vol.13, No.1, pp:56-69
    [206] A. Yariv. Optical Electronics[M], New York: Saunders, 1991, pp: 520.
    [207] A. S. Householder. The Numerical Treatment of a Single Nonlinear Equation[M], New York: McGraw-Hill, 1970.
    [208] Hyung Suk Ryu,Yongwoo Park, Seong Tae Oh, Youngjoo Chung, and Dug Young Kim. Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating[J], Optics Letters, 2003, Vol.28, No.3, pp: pp: 155-157.
    [209] Gaspar Rego, Oleg V. Ivanov, and P.V.S. Marques. Demonstration of coupling to symmetric and antisymmetric cladding modes in arc-induced long-period fiber gratings[J], Optics Express, 2006, Vol.14, No.21, pp: 9594-9599.
    [210] Radan Slavik. Coupling to circularly asymmetric modes via long-period gratings made in a standard straight fiber[J], Optics Communications, 2007, Vol.275,No.1, pp: 90-93.
    [211] J. B. Jdkins, J. R. Pedrazzani, D. J. DiGiovanni, and A. M. Vengsarkar. Temperature-insensitive long-period fiber gratings[C], in Tech. Dig. Conf. Opt. Fiber Commun., 1996, San Jose, CA, pp: 331-334.
    [212] K. Shima, K. Himeno, T. Sakai, S. Okude, A. Wada, and R. Yamauchi. A novel temperature-insensitive long-period fiber grating using a boron-codoped-germanosilicate core fiber[C], the Tech. Dig. Conf. Opt. Fiber Commun., 1997, Dallas, TX, pp: 347-348.
    [213] S. M. Melle, K. Liu, and R. M. Measures, Practical fiber-optic Bragg grating strain gauge system,Appl. Opt., 1993, Vol.32, pp: 3601-3609.
    [214] O. V. Ivanov. Propagation and coupling of hybrid modes in twisted fibers[J], JOSA, 2005, Vol.22, No.4, pp: 716-723.
    [215]舒学文.光纤光栅及其在光子信息技术中的应用[D],华中科技大学博士学位论文, 2000.
    [216] Y. J. Rao, Y. P. Wang, Z. L. Ran, T. Zhu, and B.M. Yu. Characteristics of novel long–period fiber gratings written by focused high-frequency CO2 laser pulses[C], Asia-Pacific Optical and Wireless Communications 2001, Proc. SPIE, 2001, 4581, pp: 327-333.
    [217]饶云江.长周期光纤光栅制造方法及装置[P],发明专利, ZL00132037.8.
    [218]朱涛.基于新型长周期光纤光栅的静/动态增益均衡器实验研究[D],硕士学位论文, 2003,重庆大学.
    [219] T. S. Izumitani. Optical Glass[M], American Institute of Physics, New York, 1986, Chaps. 1
    [220] M.Born and E. Wolf. Principles of Optics[M], Macmillan, New York, 1964, pp: 704.
    [221] U. C. Paek and R. B. Runk. Physical behavior of the neck-down region during furnace drawing of silica fibres[J], J. Appl. Phys, 1978, Vol.49, pp: 4417-4422
    [222] U. C. Paek and C. R. Kurkjian. Calculation of cooling rate and induced stresses in drawing of optical fibers[J], J. Am. Ceram. Soc., 1975, Vol.58, pp: 330-334.
    [223] A. Oyabe, H. Takahashi, M. Kosuge, R. Setaka, and T. Morikawa. in National Conference Record, Semiconductor Devices and Materials[C], Institute of Electro., Information and Communication Engineers, Tokyo, 1985. pp: 1-201.
    [224] W. Primak and D. Post. Photoelastic constants of vitreous silica and its elastic coefficient of refractive index[J], J. Appl. Phys. 1959, Vol.30, pp: 779-788.
    [225] Chang-Seok Kim, Younggeun Han, Byeong Ha Lee, Won-Taek Han,Un-Chul Paek, Youngjoo Chung. Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress[J], Optics Communications, 2000, Vol.185,pp: 337-342.
    [226] K. Tajima, Y. Miyajima. Conference on Optical Fiber Communication[C], 1997 Technical Digest, paper TuB5, 1997.
    [227] S. Miller, A. Chynoweth. Optical Fiber Communications[M], Academic Press, New York, 1979, pp: 189.
    [228] Y. Hibino, F. Hanawa, and M. Horiguchi. Drawing-induced residual stress effects on optical characteristics in pure-silicacore single-mode fibers[J], J. Appl. Phys., 1989, Vol.65, pp:30-34.
    [229] D.D. Davis, T.K. Gaylord, E.N. Glytsis and S. C. Mettler. CO2 laser-induced long-period fibre gratings: spectral characteristics cladding modes and polarization independence[J], Elextron. Lett., 1998, Vol.34, No.14, pp: 1416-1417.
    [230] Katsumi Morishita, Shi Feng Yuan, and Yoshihiro Miyake. Refractive-Index Changes and Long-Period Fiber Gratings Made by Rapid Solidification[C] , http://ieeexplore.ieee.org/iel5/7929/21857/01015811.pdf?arnumber=1015811 .
    [231] T. Zhu, Y. J. Rao, Y. Song, C.H. Shi. High-sensitivity temperature-independent strain sensorbased on a long-period fiber grating with a CO2-laser engraved rotary structure[C], OFS-19,Western Australia, Perth, (oral, accepted).
    [232] P. Wang, D. N. Wang, and W. Jin. CO2 laser-grooved long period fiber grating temperature sensor system based on intensity modulation[J], Applied Optics, 2006, Vol. 45, No.31, pp: 7966-7970.
    [233] M. Z. Ozisik (Translator: Yu Changming). Heat Conduction[M], Beijing, 1983, pp: 88-148.
    [234] Y. Park, T.–J. Ahn, Y.H. Kim, W.–T. Han, U. C. Paek, and D. Y. Kim. Measurement of stresses in optical fiber and preform[J], Appl. Opt., 2002, Vol.41, pp: 21-36.
    [235] T. Abe, Y. Mitsunaga, and H. Koga. Photoelastic computer tomography: a novel measurement method for axial residual stress profile in optical fibers[J], J. Opt. Soc. Am., 1986, Vol.3, pp: 133.
    [236] Puro and K. E. Kell. Complete determination of stress in fiber preforms of arbitrary cross section[J], J. Lightwave Technol., 1992, Vol.10, pp: 1010-1014.
    [237] K. Okamoto, Fundamentals of Optical Waveguides[M], Academic, New York, 2000, Ch3
    [238] E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. I. Medvedkov, and V. N. Protopopov. In-fiber Mach–Zehnder interferometer based on a pair of long-period gratings[C], in Proceedings of 22nd European Conference on Optical Communication Interuniversity Microelectronics Center, Ghent, Belgium, 1996, paper MoB.3.6.
    [239] B. H. Lee and J. Nishii. Dependence of fringe spacing on the grating separation in a long-period fiber grating pair[J], Appl. Opt. 1999, Vol.38, pp: 3450-3459.
    [240] T.-J. Ahn, B. H. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W-.T. Han. Measurement of refractive-index change upon UV irradiation of optical fiber using a LPG pair[C], in Technical Digest of 5th Optoelectronics and Communications Conference Institute of Electronics, Information and Communication Engineers, Tokyo, 2000, paper 12P-45.
    [241] Bok Hyeon Kim, Tae-Jung Ahn, Dug Young Kim, Byeong Ha Lee, Youngjoo Chung, Un-Chul Paek, and Won-Taek Han. Effect of CO2 laser irradiation on the refractive-index change in optical fibers[J], Applied Optics, 2002, Vol.41, No.19, pp.
    [242] Xuewen Shu, Lin Zhang, and Ian Bennion. Sensitivity characteristics of long-period fiber gratings[J], J. of Lightwave Technology, 2002, Vol. 20, No. 2, pp: 255-266.
    [243] Xuewen Shu, Lin Zhang, and Ian Bennion. Sensitivity characteristics near the dispersion turning points of long-period fiber gratings in B/Ge codoped fiber[J], Opt. Lett., Vol. 26, No. 22, pp: 1755-1758.
    [244] Xuewen Shu, T. Allsop, B. Gwandu, Lin Zhang, and I. Bennion. Room-temperature operation of widely tunable loss filter. Electronics Lett., 2001, Vol. 37, No. 4, pp: 216-218.
    [245] Xuewen Shu, Tom Allsop, Bashir Gwandu, Lin Zhang, and Ian Bennion. High-temperature sensitivity of long-period gratings in B-Ge codoped fiber[J], IEEE Photonics Technology Lett., Vol. 13, No. 8, pp: 818-820.
    [246] Xuewen Shu, Lin Zhang, and Ian Bennion. Fabrication and characterization of ultra-long-period fiber gratings[J], Optics Communications, 2002, Vol.203, pp: 277-281.
    [247] Y.J. Rao, T. Zhu, Z.L. Ran, Y.P. Wang, J. Jiang, A.Z. Hu. Novel long-period fibre gratings written by high-frequency CO2 laser pulses and applications in optical fibre communication[J], Optics Communications, 2004, Vol. 229, No.1, pp:209-221.
    [248] K. S. Lee, and T. Erdogan. Transmissive tilted gratings for LP01-to-LP11 mode coupling[J], IEEE. Photonics Technol. Lett., 1999, Vol. 11, No. 10, pp: 1286-1288.
    [249] R. B. Walker, S. J. Mihailov, P. Lu, D. Grobnic. Shaping the radiation field of tilted fiber Bragg gratings[J], J. Opt. Soc. Am. B 22, 962–974 (2005).
    [250]姚启均.光学教程[M],高等教育出版社, 1993.
    [251] K. S. Chiang, M. N. Ng, Y. Liu, and S. Li. Evanescent-field coupling between two parallel long-period fiber gratings[C], in Proc. IEEE Lasers Electro-Op. Soc. Conf., Puerto Rico, 2000, pp: 836-837.
    [252] V. Grubsky, D. S. Starodubov, and J. Feinberg. Wavelength-selective coupler and add-drop multiplexer using long-period fiber gratings[C], in Tech. Dig. Opt. Fiber Commun. Conf., 2000, Vol. 4, pp: 28-30.
    [253] K. S. Chiang, F. Y. M. Chan, and M. N. Ng. Analysis of two parallel long-period fiber gratings[J], J. Lightwave Technol. 2004, Vol.22, pp: 1358-1366.
    [254] Y. Liu and K. S. Chiang. Broadband optical coupler based on evanescent-field coupling between three parallel long-period fiber gratings[J], IEEE Photon. Technol. Lett., 2006, Vol.18, pp: 229-231.
    [255] Y. Liu, K. S. Chiang, and Q. Liu. Symmetric 3×3 optical coupler using three parallel long-period fiber gratings[J], Opt. Express, 2007, Vol.15, pp:6494-6499.
    [256] K. S. Chiang, Y. Liu, M. N. Ng, and X. Dong. Analysis of etched long-period fibre grating and its response to external refractive index[J], Electron. Lett., 2000, Vol.36, pp: 966-967.
    [257] Yunqi Liu, Kin Seng Chiang, Yun Jiang Rao, Zeng Ling Ran, and Tao Zhu. Light coupling between two parallel CO2-laser written long-period fiber gratings[J], Optics Express, 2007, Vol. 15, No.26, pp: 17645-17651.
    [258] K. Maru, K. Tanaka, T. Chiba, H. Nonen, and H. Uetsuka. Dynamic Gain Equalizer Using Proposed Adjustment Procedure for Thermooptic Phase Shifters Under the Influence of Thermal Crosstalk[J], J. Lightwave Technol. 2004, Vol.22, pp: 1523.
    [259] K. Suzuki, T.Kitoh, S. Suzuki, Y. Inoue, Y. Hibino, T. Shibata, A. Mori, M. Shimizu. PLC-based dynamic gain equaliser consisting of integrated Mach-Zehnder interferometers with C- and L-band equalising range[J], Electronics Letters, 2002, Vol.38, pp: 1030-1031.
    [260] M. Barge, D. Battarel, and J. L. d. B. d. l. Tocnaye. A Polymer-Dispersed Liquid Crystal-Based Dynamic Gain Equalizer[J], J. Lightwave Technol., 2005, Vol.23, pp: 2531.
    [261] R. Feced, C. Alegria, M. N. Zervas, R. I. Laming. Acoustooptic attenuation filters based on tapered optical fibers[J], IEEE Journal of Selected Topics in Quantum Electronics, 1999, Vol.5, pp: 1278-1288.
    [262]王义平,陈建平,李新碗等.快速可调谐电光聚合物波导光栅[J],物理学报, 2005, Vol.54, pp: 4728.
    [263]王义平,饶云江,冉曾令,朱涛.高频CO2激光脉冲写入的长周期光纤光栅传感器的特性研究[J],物理学报, 2003, Vol. 52, No. 6 , pp: 1432-1437.
    [264] H. Dobb, K. Kalli, D. J. Webb. Temperature-insensitive long period grating sensors in photonic crystal fibre[J], Electron. Lett., 2004, Vol.40, pp: 657-658.
    [265] Y. P. Wang and Y. J. Rao. Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously[J], Electronics Letters, 2004, Vol.40, No.3, pp: 164-166.
    [266]朱涛,饶云江,莫秋菊,周昌学,王久玲.温度应变扭曲三参数同时测量低成本传感系统[J],光子学报, 2006, Vol.35,No.5, pp: 656-658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700