用户名: 密码: 验证码:
纳米晶TiO_2多孔薄膜光阳极的掺杂改性及其光电性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与人类的生存和发展休戚相关,利用太阳能一直是人们梦寐以求的愿望。太阳能是一种取之不尽,用之不竭的无污染能源。从二十世纪五十年代开始特别是过去的十年中,世界光伏电池产业保持者50%的速度高速发展。相比于硅太阳能电池,染料敏化纳米晶太阳能电池是最近20年基于纳米技术发展起来的一种新型低成本太阳能电池,该电池被誉为最有应用前景的太阳能电池,特别是对于我们光伏产业的发展比较晚的国家来说,对这种新型电池进行研究和开发显得尤为重要。
     TiO2作为一种无毒、稳定、廉价的宽禁带半导体是到目前为止制备染料敏化太阳电池(DSSC)光阳极性能最为优良的材料之一。DSSC的主要部分是一个TiO2│染料│电解质的三明治结构。本文采用磁控溅射的方法制备了TiO2薄膜,并将其敏化制备成DSSC。用原子力显微镜(AFM)、拉曼(Raman)光谱仪、紫外可见分光光度计和太阳能检测仪分别对TiO2薄膜的表面形貌、晶体结构、光学性质和DSSC的光伏性能进行了检测。研究了溅射功率、氧分压、掺杂等工艺对TiO2薄膜和染料敏化TiO2电极结构及光电性质的影响。
     根据对拉曼光谱、透射光谱和AFM图的分析可知,在一个很小的溅射功率范围内沉积TiO2,Ti靶的溅射处于转变模式下,此时薄膜的沉积速率最大,并且开始形成锐钛矿结构;随着氧分压的增大,薄膜的表面形貌无明显变化,说明在溅射总气压不变时,溅射粒子到达基底的能量变化不大;掺W后,引入了较低导带电位的杂质能级,减小了TiO2的禁带宽度;少量Al的掺入则有助于TiO2薄膜表面形貌的改善并引起吸收边的蓝移。
     通过对TiO2电极吸收光谱的分析可知,TiO2薄膜厚度的增加和Ti3+的减少均有利于染料吸附率的提高。通过对DSSC光伏性能的研究可以得到:TiO2晶体中金红石结构的形成有利于填充因子的增大;随着溅射功率的增大,TiO2薄膜厚度增大和锐钛矿形成均有助于短路电流的提高;而晶格缺陷的改善和铝的掺入也提高了短路光电流;开路电压则与TiO2的导带电位以及暗电流的大小有关,导带电位的降低、暗电流的增大降低了开路电压;光电转换效率由短路电流、开路电压和填充因子共同决定,掺杂Al的功率为5W时制备的样品的光电转换效率最高,为2.47%,而掺钨15W时,由于引入了低导带电位的离子,光电流显著下降,光电转换效率急剧降低。
Energy are related to the human existence and development, so making use of solar energy has been one dream. Solar energy is an inexhaustible and non-polluting energy. From the space applications of solar cells in 1950's to today's solar optoelectronic integreated buildings, especially the past decade, the PV industry in the world keep high growth rate of 50%. Compared to silicon solar cells,dye-sensitized solar cell is a new type of low-cost solar cell based on nano-technology development in the recent 20 years. This kind of solar cell are known as the most promising solar cells.Especially for the country whose development of PV industry are relatively late, this new type of battery research and development is very important。
     As a wide band gap semiconductor with innocuity, stabilizaTiOn and cheapness, TiO2 is one of the best materials for preparing the anodes of DSSC. DSSC is a major part of the TiO2|dye| electrolyte sandwich structure.In this work, DSSCs were fabricted by dye-sensitized TiO2 thin films which had been deposited by dirrect current magnetron sputtering. The surface morphologies, crystal structure, optical characteristics and photoelectric conversion efficiency were characterized by atomic force microscopy (AFM), Raman spectrometer, UV-VIS spectrophotometer and solar detected instrment respectively. The effect of sputtering power, oxygen partial pressure and metal ion doping on photoelectric performance were studied.
     From the analysis of Raman spectra, transimission spectra and AFM images, It is shown that deposiTiOn rate reached the largest maximum while anatase phase started to be formed, at the same time, the target plane was sputtered in transformaTiOn pattern to a small extent of powers. With the increase of oxygen partial power, the surface morphology varied very little, which proved that the energy of sputtered particle had little
     change. With the increasing of the sputtering power and the doping of Al ions, The band gap reduced by doping with W in which exist lower conduTiOn band potential. However, doped with few Al contributed to the improvement of the surface morphologies and the blue shift of absopTiOn edge.
     It is observed in the adsorpTiOn spectra that the adsorpTiOn onto TiO2 increase owing to the thickening of TiO2 thin films as well as the reducing of Ti3+. From the analysis of the photovoltaic performance, we can conclute to that the formaTiOn of rutile phase is beneficial to the raising of filling factor(FF). With the increasing of sputtering powers, the short-circuit current(ISC) increased attributed to the thickening of the TiO2 thin films and the formaTiOn of anatase phase. The improvement of lattice defects and the doping of Al ions also enhanced the ISC. The Open-circuit voltage(VOC) is related to the potential of the conducTiOn band of TiO2, which influences the dark current. Therefore, the Voc decreased owing to the raising of dark current and the reducing of conducTiOn band potential in TiO2. The photoelectric conversion efficiency(η) determined by ISC, VOC and FF together reached the maximum 2.47% when prepared with sputtering power of Al-doped at 5 W, but decreased sharply when the TiO2 electrode had prepared with W-doped power at 15 W for introducing lower potential of conducTiOn band.
引文
[1]Regan B O, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature,1991,353(24):737-740.
    [2]Gratzel M. Photoelectrochemical cells[J]. Nature,2001,414:338-345.
    [3]Hinsch A, Kroon J M, Kern R, et al. Long-term stability of dye-sensitized solar cell[J]. Prog. Photovolt:Res. Appl.,2001,9:425-438.
    [4]Shinde P S, Bhosale C H. Properties of chemical vapour deposited nanocrystalline TiO2 thin films and their use in dye-sensitized solar cells[J]. J. Anal. Appl. Pyrolysis,2008,82(1):83-88.
    [5]Lee K M, Suryanarayanan V, Ho K C. A study on the electron transport properties of TiO2 Electrodes in dye-sensitized solar cells[J]. Sol. Energy Mater. Sol. Cells,2007 (91):1416-1420.
    [6]Wang H, Liu Y, Xu H M, et al. An investigaTiOn on the novel structure of dye-sensitized solar cell with integrated photoanode[J]. Renew. Energy,2009, 34(6):1635-1638.
    [7]Schmidt-Mende L, Gratzel M. TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells[J]. Thin Solid Films,2006,500(1-2): 296-301.
    [8]Pasquier A D, Stewart M, Spitler T, et al. Aqueous coating of efficient flexible TiO2 dye solar cell photoanodes[J]. Sol. Energy Mater. Sol. Cells,2009,93(4): 528-535.
    [9]戴俊,胡林华,刘伟庆,等.纳米TiO2多孔薄膜电极平带电势的研究[J].物理学报,2008,57(8):5310-5315.
    [10]Kim Y, Lim J W, Sung Y E, et al. Photoelectrochemical oxidative polymerizaTiOn of aniline and its applicaTiOn to transparent TiO2 solar cells[J]. J. Photochem. Photobiol. A,2009,204(2-3):110-114.
    [11]Gratzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J]. Photochem Photobio A,2004,164:3.
    [12]Wang Z S, Huang C H, Huang Y Y, et al. A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode[J]. Chem Mater, 2001,13(2):678-682.
    [13]Solbrand A, Lindstrom H, Rensmo H, et al. Dye-based donor/acceptor solar cells[J]. Sol. Energy Mater. Sol. Cells,2000,61(1):63-72.
    [14]Leytner S, Hupp J T. EvaluaTiOn of the energetics of electron trap states at the nanocrystalline titanium dioxide/aqueous soluTiOn interface via time-resolved photoacoustic spectroscopy[J]. Chem. Phys. Lett.,2000,330(3-4):231-236.
    [15]Kang T S, Chun K H, Hong J S, et al. Enhanced stability of photocurrent-voltage curves in Ru(II)-dye-sensitized nanocrystalline TiO2 electrodes with carboxylic acids[J]. Journal of the electrochemical society,2000, 147(8):3049-3053.
    [16]Zhang W F, Tang J W, Ye J H. Structural, photocatalytic and photophysical properties of perovskite MSnO3 (M=Ca, Sr, and Ba) photocatalysts. J. Mater. Res.,2007,22(7):1859-1871.
    [17]Mwabora J M, Ellmer K, Belaidi A, et al. Reactively sputtered TiO2 layers on SnO2:F substrates:A Raman and surface photo voltage study [J]. Thin Solid Films,2008,516(12):3841-3846.
    [18]沈杰,沃松涛,崔晓莉,等.射频磁控溅射制备纳米TiO2薄膜的光电化学行为[J].物理化学学报,2004,20(10):1191-1195.
    [19]Gomez M M, Magnusson E, Olsson E, et al. Nanocrystalline Ti-oxide-based solar cells made by sputter deposiTiOn and dye-sensitizaTiOn:efficiency versus film thickness[J]. Sol. Energy Mater. Sol. Cells,2000,62(3):259-263.
    [20]Gomez M M, Olsson E, et al. High efficiency dye sensitized nanocrystalline solar cells based on sputtered posited TiOxide films[J]. Sol. Energy Mater. Sol. Cells,2000,64(4):385-392.
    [21]Hattori R, Goto H. Carrier leakage blocking effect of high temperature sputtered TiO2 film on dye-sensitized mesoporous photoelectrode[J]. Thin Solid Films,2007,515 (20-21):8045-8049.
    [22]Hossain M F, Biswas S, Takahashi T. The effect of sputter-deposited TiO2 passivating layer on the performance of dye-sensitized solar cells based on sol-gel derived photoelectrode[J]. Thin Solid Films,2008,517 (3):1294-1300.
    [23]Choi H, Stathatos E, Dionysiou D D. Synthesis of nanocrystalline photocatalytic TiO2 thin films and particles using sol-gel method modified with nonionic surfactants [J]. Thin Solid Films,2006,510(1-2):107-114.
    [24]戴松元,孔凡太,胡林华,等.染料敏化纳米薄膜太阳电池实验研究[J].物理学报,2005,54(4):1919-1926.
    [25]曾广赋.染料敏化的TiO2纳米晶多孔膜的性质及其光电转换[J].化学通 报,1999,6:30-34.
    [26]张东社,刘尧,王维波,等.纳晶多孔TiO2薄膜电极的化学处理[J].科学通报,2000,45(9):929-932.
    [27]罗欣莲,蓝鼎,万发荣,等.NPC太阳电池的TiO2薄膜结构的研究[J].功能材料与器件学报,2003,9(4):385-390.
    [28]陈代荣,孟祥建,李博,等.偏钛酸作前驱体水热合成TiO2微粉[J].无机材料学报,1997,12(1):110-114.
    [29]张莉,褚道葆.酸度对偏钛酸水热法合成纳米TiO2的影响[J].安徽师范大学学报,2002,25(1):46-48.
    [30]Bayoumi F M, Ateya B G. FormaTiOn of self-organized titania nano-tubes by dealloying and anodic oxidaTiOn[J]. Electrochem. Commun.,2006,8(1): 38-44.
    [31]Wang Y M, Jia D C, Guo L X, et al. Effect of discharge pulsating on microarc oxidaTiOn coatings formed on Ti6Al4V alloy [J]. Mater. Chem. Phys.,2005,90(1):128-133.
    [32]Kar A, Raja K S, Misra M. ElectrodeposiTiOn of hydroxyapatite onto nanotubular TiO2 for implant applicaTiOns[J]. Surf. Coat. Technol., 2006,201(6):3723-3731.
    [33]Park N-G, van deLagemaat J, Frank A J. Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells[J]. Phys. Chem. B,2000,104(38): 8989-8994.
    [34]Nakade S Saito Y, Kuho W, et al. Influence of TiO2 nanoparticle size on electron diffusion and recombinaTiOn in dye-sensitized TiO2 solar cells [J]. J Phys. Chem. B,2003,107:8607-8611.
    [35]Meng Q B, Takahashi K, Zhang X T, et al. FabricaTiOn of an efficient solid-state dye-sensitized solar cell [J]. Langmuir,2003,19(9):3572-3574.
    [36]Stergiopoulos T, Arabatzis I M, Katsaro G, et al. Binary polyethylene oxide/ titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells[J]. Nano Lett,2002,2:1259.
    [37]Nazeruddin M K, Kay A, Radicio I, et al. Conversion of light to electricity by cis-X2Bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (Ⅱ) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanacrystalline TiO2 electrodes[J]. J. Am. Ceram. Soc.,1993,115:6382.
    [38]Yang S M, Huang Y Y, Huang C H, et al. Enhanced energy conversion efficiency of the Sr2+- modified nanoporous TiO2 electrode sensitized with a ruthenium complex.[J]. Chem. Mater.,2002,14(4):1500-1504.
    [39]杨术明,李富友,黄春晖.染料敏化稀土离子修饰二氧化钛纳米晶电极的光电化学性质[J].中国科学(B),2003,33(1):59-65.
    [40]Ko K H, Lee Y C, Jung Y J. Enhanced efficiency of dye-sensitized solar cells (DSSC) by doping of metal ions[J]. Colloid Interface Sci,2005,283(2): 482-487.
    [41]杨华,袁坚,赵兹君.TiO2半导体薄膜电极的光电转换性能研究[J].硅酸盐通报,2004,23(1):62-66.
    [42]尹剑波,赵晓鹏.稀土改性二氧化钛的电流变行为与介电性能关系[J].功能材料,2001,32(5):514-517.
    [43]Wu S J, Han H W, Tai Q D, et al. Improvement in dye-sensitized solar cells employing TiO2 electrodes coated with Al2O3 by reactive direct current magnetron sputtering [J]. J. Power Sources,2008,182(1):119-123.
    [44]庞山,谢腾峰,张宇,等.TiO2/ZnO薄膜电极中光生电子的传输及其在太阳电池中的应用[J].高等化学学报,2007,28(11):2187-2189.
    [45]Chung J L, Chen J C, Tseng C J. Electrical and optical properties of TiO2-doped ZnO films prepared by radio-frequency magnetron sputtering[J]. J. Phys. Chem. Solids,2008,69(2-3):535-539.
    [46]Kumara G R A, Okuya M, Murakami K, et al. Dye-sensitized solid-state solar cells made from magnesium oxide-coated nanocrystalline titanium dioxide films:enhancement of the efficiency [J]. Chemistry,2004,164:183.
    [47]Kim K E, Jang S R, Park J, et al. Enhancement in the performance of dye-sensitized solar cells containing ZnO-covered TiO2 electrodes prepared by thermal chemical vapor deposiTiOn[J]. Sol. Energy. Mater. Sol. Cells,2007, 91(4):366-370.
    [48]Hoffmann M R, Martin S T, Choi W, et al. Environmental applicaTiOn of semiconductor photocatalysis[J]. Chem. Rev.,1995,95(1):69-96.
    [49]Nazeeruddin M K, Gratzel M. Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4,4'-dicarboxylate) ruthenium(Ⅱ) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-and SCN-) on nanocrystalline titanium dioxide electrodes[J]. J. Am. Chem. Soc.,1993,115(14):6382-6390.
    [50]张莉,王艳芹,杨迈之.Ru(bpy)2(NCS)2染料敏化CdS/Zn2+-Ti02复合半导体纳米多孔膜的光电化学[J].高等学校化学学报,2000,21(7): 1075-1079.
    [51]Cherian S, Wamser C C. AdsorpTiOn and photoactivity of tetra (4-carboxyphenyl) porphyrin (TCPP) on nanoparticulate TiO2[J]. J Phys. Chem. B,2000,104(15):3624-3629.
    [52]Wang Z S, Li F Y, Huang C H. Highly efficient sensitizaTiOn of nanocrystalline TiO2 films with styryl benzothiazolium propylsulfonate[J]. Chem. Commun.,2000, (20):2063-2064.
    [53]Deng H H, Mao H F, Shen Y C, et al. CosensitizaTiOn of a nanostructured TiO2 electrode with tetrasulfonated porphyrins and phthalocyanine[J]. Acta. Chimca. Sinica.,1999,57(11):1199-1205.
    [54]Deng H H, Mao H F, Lu Z H, et al. AggregaTiOn and the photoelectric behavior of tetrasulfonated phthalocyanine adsorbed on a TiO2 microporous electrode[J]. J. Photochem. Photobio. A:Chem,1996,99(1):71-74.
    [55]Kusama H, Arakawa H, Sugihara H, et al. Density funcTiOnal study of imidazole-iodine interacTiOn and its implicaTiOn in dye-sensitized solar cell[J]. Journal of Photochem & Photobio A:Chem,2005,171(2):197-204.
    [56]Mikoshiba S, Murai S, Sumino H, et al. Another role of Lil/tert-butylpyridine in room-temperature molten salt electrolytes containing water for dye-sensitized solar cell[J]. Chem. Lett.,2002,31(11):1156-1157.
    [57]Paulsson H, Kloo L, Hagfeldt A, et al. Electron transport and recombinaTiOn in dye-sensitized solar cells with ionic liquid electrolytes [J]. J. Electroanl. Chem., 2006,586(1):56-61.
    [58]Wang P, Zakeeruddin S M, Moser J E, et al. A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells [J]. J. Phys. Chem. B,2003,107(48):13280-13285.
    [59]Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J]. Nature, 1998,395:583-585.
    [60]Schmidt-Mende L, Zakeeruddin S M, Gratzel M. Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye [J]. Appl. Phys. Lett.,2005,86(1):013504-1-3.
    [61]Kim S S, Nah Y C, Noh Y Y, et al. Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells[J]. Electrochim. Acta,2006,51(18): 3814-3819.
    [62]Wang G Q, Lin R F, Lin Y, et al. A novel high-performance counter electrde for dye-sensitized solar cells[J]. Electrochim. Acta,2005,50(28):5546-5552.
    [63]Kim Y, Yoo B J, Vittal R, et al. Low-temperature oxygen plasma treatment of TiO2 film for enhanced performance of dye-sensitized solar cells[J]. J. Power Sources,2008,175(2):914-919.
    [64]王贺权,沈辉,巴德纯,等.氧流量对直流反应磁控溅射制备TiO2薄膜的光学性质的影响[J].中山大学学报(自然科学版):2005,44(6):36-40.
    [65]Ogawa H, Higuchi T, Nakamura A, et al. Growth of TiO2 thin film by reactive RF magnetron sputtering using oxygen radical [J]. J. Alloy and Compd.,2008, 449(1-2):375-378.
    [66]Shen Y, Yu H, Yao J, et al. InvestigaTiOn on properties of TiO2 thin films deposited at different oxygen pressures[J]. Optics & Laser Technology,2008, 40 (3):550-554.
    [67]Gomez M M, Beermann N, Lu J, et al. Dye-sensitized sputtered titanium oxide films for photovoltaic applicaTiOns:influence of the O2/Ar gas flow raTiO during the deposiTiOn[J]. Sol. Energy Mater. Sol. Cells,2003,76(1):37-56.
    [68]Hossain M F, Biswas S, Takahashi T, et al. InvestigaTiOn of sputter-deposited TiO2 thin film for the fabricaTiOn of dye-sensitized solar cells[J]. Thin Solid Films,2008,516(20):7149-7154.
    [69]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社,1999:56-58.
    [70]薛彩虹.纳米TiO2粉体制备及光催化性能研究[D].兰州:兰州大学,2008.
    [71]Demichelis F, Kaniadakis G, Tagliaferro A, et al. New approach to optical analysis of absorbing thin solid films[J]. Appl.Opt,1987,26(9):1737-1740.
    [72]Pankove J I. Optical Processes in Semiconductors [M]. New York:Courier Dover PublicaTiOns,1975.
    [73]Wang H Q, Shen H, Ba D C, et al. Optical characterizaTiOn of TiO2 thin film on silicon substrate deposited by dc reactive magnetron sputtering [J].金属学 报(英文版),2005,18(3):194-198.
    [74]赵丽特,叶勤,丁瑞钦.射频磁控溅射法制备TiO2薄膜的拉曼光谱[J].材料导报,2006,20(5):89-90.
    [75]Safi I. Recent aspets concerning DC reactive magnetron sputtering of thin films: a review[J]. Surf Coat Tech,2000,127(2-3):203-219.
    [76]Zeman P, Takabayashi S. Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate [J]. Surface and Coatings Technology,2002,153(1):93-99.
    [77]Bersani D, Lottici P P, Ding X Z. Phonon confinement effects in the Raman scattering by TiO2 nanocrystals[J]. Appl. Phys. Lett.,1998,72(1):73-75.
    [78]王建强,辛柏福,于海涛,等.二氧化钛系列光催化剂的拉曼光谱[J].高等学校化学学报.2003,24(7):1237-1240.
    [79]方霞琴,戴松元,王孔嘉,等.小面积染料敏化纳米薄膜太阳电池的优化研究[J].太阳能学报,2006,27(10):973-978.
    [80]Kusama H, Orita H, Sugihara H. DFT investigaTiOn of the TiO2 band shift by nitrogen-containing heterocycle adsorpTiOn and implicaTiOns on dye-sensitized solar cell performance [J]. Sol. Energy Mater. Sol. Cells,2008, 92 (1):84-87.
    [81]施永明,赵高凌,染料敏化纳米薄膜太阳能电池的研究进展,材料科学与工程,2002,20,125.
    [82]H.Hoppe, N.S.Sariciftci, Journal of Materials Research 2004,19,1924.
    [83]D.S.Zhang, T.Yoshida, K.Furuta, H.Minoura, Journal of Photochemistry and Photobiology a-Chemistry 2004,164,159.
    [84]N.Jensen,R.M.Hausner,R.B.Bergmann,J.H.Werner,U.Rau,Vol.10,2002,1.
    [85]N.R.Neals, A.J.Frank, Journal of Materials Chemistry 2007,17,3216.
    [86]S.R.Kurtz, A.A.Allerman, E.D.Jones, J.M.Gee,J.J.Banas, B.E.Hammons, Applied Physics Letters 1999,74,72
    [87]P.Peumans, A.Yakimov, S.R.Forrest, Journal of Applied Physics2003,93,3693.
    [88]F.T.Kong, S.Y.Dai, K.J.Wang,Chinese Journal of Chemistry Reviews 2004,248,1329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700