用户名: 密码: 验证码:
神经系统的非线性动力学分析与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经系统是复杂的非线性系统,本文从非线性角度研究其丰富的特性。
     HH模型采用四阶非线性微分方程组的形式,定量描述了细胞跨膜电压与离子电流的变化过程,并准确反映了实验现象。本文以HHM模型为研究对象,选取漏电导和钠离子通道反电动势作为分岔参数,采用高维方程的代数判据进行多参数分岔分析。证明了当漏电导和钠离子通道反电动势变化时,HHM模型将产生动态Hopf分岔,即细胞膜受刺激后产生连续的动作电位,这符合医学实验中观察到的病变现象。通过对外电场下改进HH模型的多参数分岔分析,证明外电场参数的变化将引发模型的分岔,这可能是电磁辐射致病的原因。
     类似HH模型的高阶非线性系统,具有丰富的物理意义,但很难得到其解析解;并且数值分析十分复杂,渐近方法为解决这一问题提供了一种途径。本文利用Tikhonov渐进系统理论及Zeeman模型的分析方法,研究了改进HH模型的渐近特性,证明了HH模型仍具有可兴奋等复杂特性。
     本文从峰峰时间间隔,研究改进HH模型在极低频外加电场作用下神经元的放电模式。通过数值仿真,出现了神经元的周期n放电、快/慢簇放电、“调幅调制”放电、“多正弦调制”放电、混沌放电等多种放电模式;及一种神经元通往混沌放电的路径——音叉分岔;通过对外电场作用下的HH模型引入不同的时间常数,将其四阶非线性系统按照快慢系统分析,得到在hopf分岔点附近出现的一种特殊峰放电模式——慢峰放电模式,证实这种模式是混沌放电。
     基于功能电刺激的思想,本文使用自适应模糊控制实现对神经元HH模型和FHN模型的混沌同步控制,这种方法综合了自适应控制和模糊控制的优点,实现未知非线性部分和干扰的逼近。仿真结果证实了方法的有效性。
     基于计算机数字控制技术,本文使用离散变论域模糊控制理论实现离散混沌系统的控制。这一方法避免了采用传统的T-S模糊模型需要在线调节全部的后件参数等缺点。本文使用的控制算法通过在线调节伸缩因子一个参数实现连续变换论域,动态调节模糊规则,提高了控制性能,仿真结果实现了Lorenz混沌系统的控制。
     本文对针刺获得的神经系统的电信号利用连续小波变换、离散小波变换、功率谱和非线性动力学等理论对针灸信号进行全面的分析,证明不同手法具有不同的量化特征,为针刺电信息的量化研究进行初步尝试。
The neural system is a complex nonlinear system and its characteristics are studied from a nonlinear theory perspective in this dissertation.
     The Hodgkin-Huxley (HH) model is a four-dimensional differential equation which quantitatively describes the dynamical process of trans-membrane voltage and ionic current that observed in experiments. In this dissertation, the algebra criterion in high-dimensional equations is employed to perform the bifurcation analysis of HHM model in which the leakage conductance and the anti-electromotive of sodium ion channel are chosen to be the bifurcation parameters. The conclusion reveals that the Hopf bifurcation will occur in the HHM model when the leakage conductance and the anti-electromotive sodium ion channel changes. That is, the membrane produces continuous action potentials in response to external stimulation, which is consistent with the pathological phenomena observed in medical experiments. The multi-parameters bifurcation analysis of HHM model exposed to external electrical field shows that the change of parameters of external electrical field will cause the bifurcation of the model, which might be the reason that electromagnetism radiation leads to disease.
     Analytical solution to high-dimensional nonlinear system like Hodgkin-Huxley model is impossible to be obtained, and the numerical analysis is also very complex. The asymptotic methods can solve this problem through describing the fast and slow process of the system in the same time. This dissertation investigates the modified HH model by employing the Tikhonov asymptotic theory and the analysis method of Zeeman model, and proves that important characteristics of HH model such as excitability are still preserved.
     In this dissertation, the firing patterns of HH model exposed to ELF external electric field are studied from the view of ISI (interspikes interval). Various firing patterns such as period-n spiking, fast/slow burst, amplitude modulation firing, multi-sinusoidal firing and chaotic burst are found through numerical simulation. The tuning fork bifurcation, a route to chaos of the neuron, has also been found. By introducing different time constants into the HH model exposed to external electrical field, the four-dimensional nonlinear system is analyzed in terms of fast/slow system. A special firing pattern, slow spiking, is obtained near the Hopf bifurcation point, and it is proved that this firing pattern is chaotic.
     An adaptive fuzzy control method based on functional electric stimulation is employed to realize the synchronization in HH models and FHN models. This control method which combines the advantages of adaptive control and fuzzy control can approach the unknown nonlinear part as well as the disturbances. The results of simulation demonstrate the availability of the design. This new method provides a route to treatment of diseases such as epilepsy.
     In this dissertation, based on the computer digital control technique, a discrete variable universe fuzzy control strategy, which avoids the disadvantage that all the consequent parameters must be tuned on-line in the traditional fuzzy controller based on T-S model, is employed to control the discrete chaos system. This control strategy realizes continuous changes of the universe and dynamical fuzzy rules by on-line tuning a single parameter -- the contraction and expansion factor. Thus the performance of control is improved. The simulation results give the perfect control of Lorenz chaos system.
     Theories such as continuous wavelet transform, discrete wavelet transform, power spectrum and nonlinear dynamics are employed to investigate the electrical signals of neural system recorded in the experiment of acupuncture and it is demonstrated that the signals induced by different acupuncture method have different quantitative characteristics. This attempt gives elementary study on quantifying of the electrical information of acupuncture.
引文
[1]A. L. Hodgkin And A. F. Huxley, A Quantitative Description Of Membrane Current And Its Application To Conduction And Excitation In Nerve, J. Physiol.,1952, 117:500–544
    [2]T. R. Chay, Electrical bursting and intracellular Ca++oscillations in excitable cell models, Biol. Cybern, 1990, 63:15-23
    [3]T. R. Chay, Bursting, spiking, chaos, fractals, and universality in biological rhythms, International Journal of Bifurcation and Chaos, 1995, 5(3): 595-635
    [4]T. R. Chay, Electrical bursting and luminal calcium oscillation in excitable cell models , Biol. Cybern., 1996, 75:419-431
    [5]T. R. Chay, Chaos in a three-variable model of an excitable cell, Physica D, 1985, 16:233-242
    [6]J. Rinzel, One repetitive activity in nerve, Fed Proc., 1978, 37:2793-2802
    [7]J. Rinzel, R. N. Miller, Numerical calculation of stable and unstable solutions to the Hodgkin-Huxley equations, Math. Biosci. 1980, 49:27-59
    [8]J. Rinzel, Discussion: Electrical excitability of cells, theory and experiment: Review of the Hodgkin-Huxley foundation and an update, Bulletin of Mathematical Biology, 1990, 52(1-2): 5-23
    [9]J. Rinzel, B. Ermentrout, Analysis of neural excitability and oscillations. In: C. Koch and I. Segev, eds., Methods of Neural Modeling: From Synapses to Networks, MIT Press, 1989:135– 169
    [10]J. Rinzel, G. Ermentrout, In: C. Koch and I. Segev, eds., Methods in Neuronal Modeling: From Synapses to Networks, MIT Press, Cambridge, MA, 1997, 135–170
    [11]J. Rinzel, Y. S. Lee, On different mechanisms of membrane potential bursting. In: Othmer HG, ed. Nonlinear Oscillations in Biology and Chemistry, Springer, 1986, 19–33
    [12]J. Rinzel, Y. S .Lee, Dissection of a model for neuronal parabolic bursting, Journal of Mathematical Biology, 1987, 25:653-675
    [13]J. Rinzel, W. C. Troy, A one-variable map analysis of bursting in the Belousov-Zhabotinskii reaction Contem, Math. 1983, 17: 411–427
    [14]R. Plonsey, R. C. Barr, Bioelectricity: A quantitative approach. Plenum Press, New York and London, 1988
    [15]D. Noble, A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials, J. Physiol., 160:317–352,1962
    [16]D. Noble The development of mathematical models of the heart, Chaos, Solitons & Fractal, 1995, 5: 321–333
    [17]C. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J. 1981, 35:193–213
    [18]E. M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, The MIT Press, 2005
    [19]古华光, 任维等,实验性神经起步点自发放电的分叉和整数倍节律,生物物理学报, 2001,17(4): 637-644
    [20]R. Fitzhugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophys J., 1961, 1:445–456
    [21]R. Fitzhugh Mathematical Models of Excitation and Propagation in Nerve, In Biological Engineering, H.P. Schwan, Ed. Chap.1. New York: Mcgraw-Hill
    [22]J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE , 1962,50:2061–2070
    [23]E. C. Zeeman, Differential Equations for the Heartbeat and Nerve Impulse, Mathematics Institute, University Of Warwick, Coventry, 1972
    [24]E. C. Zeeman, Catastrophe Theory, Selected Papers 1972-1977, Addison-Wesley, Reading, MA, 1977
    [25]J. Cronin, Mathematical aspects of Hodgkin-Huxley neural theory, Cambridge: Cambridge University Press, 1987
    [26]C. C. Canavier,Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: a computational approach, Journal of Computational Neuroscience,1999,6:49-69
    [27]R. D. Traub, R. K. S Wong, R. Miles and H. Michelson, A model of a CA3 hippocampal neuron incorporating voltage-clamp data on intrinsic conductance, Journal of Neurophysiology,1991, 66: 635-650
    [28]古华光, 任维等,实验性神经起步点的一种新簇放电节律-阵发周期 1 节律,生物物理学报, 2002,18(4): 440-447
    [29]J. Keener, Sneyd, Mathematical Physiology, New York, Springer, 1998
    [30]R.E.Plant, Geometry of the Hodgkin - Huxley model, Computer Programs in Biomedicine, 1976, 6:85-91
    [31]B. Hassard, Bifurcation of Periodic Solutions of the Hodgkin-Huxley Model for the Squid Giant Axon, J. Theor. Biol. ,1978, 71:401-420
    [32]B. Hassard, N. Kazarinoff, Y-H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge Univ Press,Cambridge, 1981, pp.310
    [33]W. C. Troy, The bifurcation of periodic solutions in the Hodgkin-Huxley equations, Quart. Appl. Math., 1978, 36: 73–83
    [34]W. C. Troy, Oscillation phenomena in the Hodgkin-Huxley equations, Proc. Roy. Soc. Edinburgh, 1985, 74A:299-310
    [35]Y. A. Bedrov, G. N. Akoev, O. E. Dick, Partition of the Hodgkin-Huxley type model parameter space in to the region of qualitatively different solutions, Biol. Cybern.,1992, 66:413-418
    [36]Y. A. Bedrov, G. N. Akoev, O. E. Dick, on the relationship between the number of negative slope regions in the voltage-current curve of the Hodgkin-Huxley model and its parameter values, Biol. Cybern., 1995, 73:149-154
    [37]Y. A. Bedrov, O. E. Dick, A. D. Nozdrachev, G. N. Akoev, Method for constructing the boundary of the bursting oscillations region in the neuron model, Biol. Cybern., 2000, 82: 493-497
    [38]J. Guckenheimer, I. S. Labouriau, Bifurcation of the Hodgkin and Huxley equations: a new twist. Bulletin of Mathematical Biology, 1993, 55: 937-952
    [39]H. Fukai, S. Doi, T. Nomura and S. Sato, Hopf Bifurcations In Multiple Parameter Space of The Hodgkin-Huxley Equations, I. Global Organization Of Bistable Periodic Solutions, Biol. Cybern. , 2000, 82:215~222
    [40]H. Fukai, T. Nomura, S. Doi, S. Sato, Hopf Bifurcations in Multiple-Parameter Space of The Hodgkin-Huxley Equations, II. Singularity Theoretic Approach and Highly Degenerate Bifurcations, Bio.l Cybern. , 2000, 82(3):223-9
    [41]T. R. Chay, J. Rinzel, Bursting, beating and chaos in an excitable membrane model, Biophys. J. , 1985, 47: 357-366
    [42]J. C. Alexander and D-Y. Cai, On the dynamics of bursting systems, Journal of Mathematical Biology, 1991, 29(5): 405-423
    [43]C. C. Canavier, D. A. Baxter, J. W. Clark and J. H. Byrne, Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity, Journal of Neurophysiology, 1993, 69:2252-2257
    [44]E. Av-Ron, The role of a transient potassium current in a bursting neuron model, Journal of Mathematical Biology, 1994, 33:71-87
    [45]M.E. Rush and J. Rinzel, The potassium a-current, low firing rates and rebound excitation in hodgkin-huxley models, Bulletin of Mathematical Biology, 1995, 57(6): 899-929
    [46]N. Schweighofer, K. Doya, and M. Kawato, Electrophysiological properties of the inferior olive neurons: a compartmental model, Journal of Neurophysiology, 1999 82:804-817
    [47]任维,古华光,杨明浩,李莉,刘志强, 神经放电的动力学规律和神经信息编码的关系,第七届全国非线性动力学学术会议和第九届全国非线性振动学术会议论文集,2004:367-373
    [48]K. Aihara G. Matsumoto, Y. Ikegaya, Periodic and Non-periodic response of a periodically forced Hodgkin-Huxley oscillator, J. Theor. Bio.l, 1984, 109: 249-269
    [49]K. Aihara G. Matsumoto, M. Ichikawa, An alternating periodic-chaotic sequence observed in neural oscillators, Phys. Lett. A, 1985, 111(5):435-438
    [50]K. Aihara, G. Matsumoto and M. Ichikawa, An alternating periodic-chaotic sequence observed in neural oscillators, Physics Letters., 1985, 111:251~255
    [51]G. B. Ermentrout, Reduction of conductance-based models with slow synapses to neural nets, Neural Comput., 1994, 6: 679–695
    [52]G. B. Ermentrout, M. Pascal, B. Gutkin, the Effects of Spike Frequency Adaptation and Negative Feedback on the Synchronization of Neural Oscillators, Neural Comput., 2001, 13(6): 1285–1310
    [53]G. B. Ermentrout, Type I membranes, phase resetting curves, and synchrony, Neural Comp., 1996, 8: 979–1001
    [54]Fechner G. , Elements of Psychophysics, Vol. 1, 1966
    [55]E. D. Adrian, Y. Zotterman, The Impulse produced by sensory nerve-endings, Part 2. The responses of a single end-organ, J. Physiol.(Lond),1926, 61:151-171
    [56]E. R. Kandel, J. H. Schwartz and T. M. Jessell, Principles of neural science, 4th edition,chapter 21, McGraw-Hill Companies, Inc. 2000
    [57]T. N. Wiesel, The postnatal development of the visual cortex and the influence of environment, Nature, 1982, 299:583-591
    [58]谢益宽等,外周神经损伤引起痛觉过敏的神经生理学机制, 中国科学 B 辑, 1989,8:844-851
    [59]H. Hayashi, S. Ishzuka, M. Ohta, K. Hirakawa, Chaotic behavior in the onchidium giant neuron, Phys. Lett. A, 1982, 88(8-9):435-438
    [60]H. Hayashi, S. Ishzuka, K. Hirakawa, Transition to chaos via intermittency in the onchidium pacemaker neuron, Phys. Lett. A, 1983, 98(8-9): 474-476
    [61]Y. S. Fan, T. R. Chay, Crisis transitions in excitable cell models, Chaos, Solitons & Fractals, 1993, 3: 603-615
    [62]Y. S. Fan, A.V. Holden, Bifurcation, bursting, chaos and crisis in the Rose-Hindmarsh model for neuronal activity, Chaos, Solitons & Fractal, 1993, 3:439-449
    [63]Y. S. Fan, T. R. Chay, Generation of periodic and chaotic bursting in an excitable cell model, Biol. Cybern., 1994, 71:417-431
    [64]A. Holden and W. Winlow, Neuronal Activity as the Behavior of a Differential System, IEEE, Trans SMC, 1983; 13: 711-719
    [65]A. V. Holden, Y. S. Fan, From simple to simple bursting oscillatory behavior via chaos in the Rose-Hindmarsh model for neuronal activity, Chaos, Solitons & Fractal, 1992, 2: 221-236
    [66]A. V. Holden, Y. S. Fan, From simple to complex oscillatory behaviour via intermittent chaos in the Rose-Hindmarsh model for neuronal activity, Chaos, Solitons & Fractals, 1992, 2: 349-369
    [67]E. M. Izhikevich, Neural excitabillity, spiking and bursting, International Journal of Bifurcation and Chaos, 2000, 10(6): 1171-1266
    [68]M. T. Huber, J. C. Krieg, M. Dewald, K. Voigt, H. A. Braun, stochastic encoding in sensory neurons: impulse patterns of mammalian cold receptors, Chaos, solitons and Fractals, 2000, 11:1895-1903
    [69]徐健学,基于非线性动力学概念神经编码,第七届全国非线性动力学学术会议和第九届全国非线性振动学术会议论文集, 2004:6-12
    [70]H. L. Read, R. M. Siegel, The origins of aperiodicities in sensory neuron entrainmen, Neuronscience, 1996, 75(1): 301—304
    [71]Zhuoqin Yang, Qishao Lu, The genesis of period-adding bursting without bursting-chaos in the Chay mode, Chaos, Solitions and Fractals, 2006, 27: 952-958
    [72]R. Bertram, M. J. Butte, T. Kiemel and A. Sherman, Topological and phenomenological classification of bursting oscillations, Bulletin of Mathematical Biology, 1995, 57:413–439
    [73]G. de Vries, Multiple bifurcations in a polynomial model of bursting oscillations, J. Nonlinear Sci., 1998, 8:281–316
    [74]F. C. Hoppensteadt and E. M. Izhikevich, Weakly Connected Neural Networks,NewYork: Springer-Verlag, 1997
    [75]彭建华,刘延柱, 脑科学中若干非线性动力学问题,力学进展,2003,33(3):325-332
    [76]N. Kopell, Coupled oscillators and locomotion by fish. In Othmer H. G. (Ed.) Nonlinear Oscillations in Biology and Chemistry, Lecture Notes in Biomathematics, New York: Springer-Verlag, 1986
    [77]G. B. Ermentrout, and N. Kopell, Learning of phase lags in coupled neural oscillators, Neural Computation, 1994, 6:225–241
    [78]Jiang Wang, Yanqiu Che, Xiangyan Fei and Li Li, Multi-parameter Hopf-bifurcation in Hodgkin–Huxley model exposed to ELF external electric field, Chaos, Solitons & Fractals, 2005, 26(4):1221-1229
    [79]J. Wang, K. M. Tsang and H. Zhang, Hopf bifurcation in the Hodgkin-Huxley model exposed to ELF electric field, Chaos, Solitions & Fractals, 2004, 20(4):759-764
    [80]M. Golubitsky, K. Josic and T. J. Kaper, An unfolding theory approach to bursting in fast-slow systems. In: Global Analysis of Dynamical Systems: Festschrift Dedicated to Floris Takens on the Occasion of his 60th Birthday. (H. W. Broer B. Krauskopf, and G. Vegter, eds.) Institute of Physics, 277–308, 2001
    [81]R. H. Adrian, W. K. Chandler, A. L. Hodgkin, Voltage clamp experiments in striated muscle fibers, J. Physiol. (London), 1970, 208:607–644
    [82]B. S. Gutkin, G. B. Ermentrout, Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics, Neural Comput. 1998, 10:1047–1065
    [83]Jiang Wang, Jianming Geng, and Xiangyang Fei, Two-parameters Hopf bifurcation in the Hodgkin-Huxley model, Chaos, Solitons & Fractals, 2005, 23(3):973-980
    [84]J. L. Hindmarsh, R.M. Rose, A model of neuronal bursting using three coupled first order differential equations, Proc. R. Soc. London B, 1984, 221: 87–102
    [85]S. Kim, H. Kook, S.G. Lee, M.H. Park, Synchronization and clustering in a network of three globally coupled neural oscillators, International Journal of Bifurcation and Chaos, 1998,8 (4) :731–739
    [86]S. Kim, S.G. Lee, H. Kook, J.H. Shin, Phase dynamics of two and three coupled Hodgkin–Huxley neurons under DC currents, in: J.H. Oh, C. Kwon, S. Cho (Eds.), Neural Networks: The Statistical Mechanics Perspective, World Scientific, Singapore, 1995, pp. 141–155
    [87]K. Tsumoto, T. Yoshinaga, K. Aihara, H. Kawakami, Bifurcations in synaptically coupled Hodgkin–Huxley neurons with a periodic a-function train, International Journal of Bifurcation and Chaos, 2001, 11 (4):1053–1064
    [88]T. Yoshinaga, Y. Sano, H. Kawakami, A method to calculate bifurcations in synaptically coupled Hodgkin–Huxley equations, International Journal of Bifurcation and Chaos, 1999, 9 (7):1451–1458
    [89]张骅, Hodgkin – Huxley 模型的分岔分析,天津大学硕士学位论文,2003
    [90]车艳秋,Hodgkin-Huxley 模型的分岔与混沌分析,天津大学硕士学位论文,2005
    [91]E. W. Lorenz, Deterministic non-periodic flow, J. Atomos Sci., 1963, 20: 130~141
    [92]L. Glass and Mackey Mc. From clocks to chaos: The rhythm of life,Princeton University Press, Princeton, NJ, 1988
    [93]段玉斌,神经起步点放电峰峰间期的非线性动力学,第四军医大学博士论文,2002
    [94]刘秉正,彭建华,非线性动力学,北京:高等教育出版社,2004
    [95]陆启韶,分岔与奇异性,上海科技教育出版社,1992
    [96]G. S. Cymbalyuk, Q. Gaudry, M. A. Masino, R. L. Calabrese, A model of asegmental oscillator in the leech heartbeat neuronalnetwork, J. Neuroscience, 2002, 22: 10580
    [97]G. Cymbalyuk, A. Shilnikov, Coexistence of Tonic Spiking Oscillations in a Leech Neuron Model, Journal of Computational Neuroscience, 2005, 18:255–263
    [98]S. Doi, J. Inoue, S. Sato, C. E. Smith, Bifurcation analysis of neuronal excitability and oscillations. In: Poznanski R, ed. Modeling in the Neurosciences: From Ionic Channels to Neural Networks, Chapter 16, Harwood Academic Publishers, 1999: 443–473
    [99]S. Doi, J. Inoue and S. Kumagai, Chaotic spiking in the hodgkin-huxley nerve model with slow inactivation of the sodium current, Journal of Integrative Neuroscience, 2004, 3(2):207–225
    [100]B. Doiron, C. R. Laing, Longtin A, L. Maler, Ghostbursting: A novel neuronal burst mechanism, Journal of Integrative Neuroscience, 2002, 12: 5-25
    [101]L. A. Fradkov and Robin J. Evans, Control of chaos: Methods and applications in engineering, Annual Reviews in Control, 2005, 29(1):33-56
    [102]F. Fr?hlich and S. Jezernik, Feedback control of Hodgkin–Huxley nerve cell dynamics, Control Engineering Practice, 2005, 13(9):1195-1206
    [103]W. Govaerts and B. Sautois, The Onset and Extinction of Neural Spiking: A Numerical Bifurcation Approach, Journal of Computational Neuroscience, 2005, 18(3):265 – 274
    [104]J. Guckenheimer, S. Gueron, R. Harris-Warric Mapping, the Dynamics of a Bursting Neuron, Phil. Trans. R. Soc. Lond. B. ,1993, 341:345~359
    [105]J. Guckenhermer and R. A. Oliva, Chaos in the Hodgkin-Huxley Model, SIAM J. Applied Dynamical Systems, 2002, 1(1):105~114
    [106]J. Guckenheimer, R. Harris-Warrick, J. Peck, A. Willms, Bifurcation, bursting, and spike frequency adaptation, Journal of Computational Neuroscience, 1997, 4: 257–277.
    [107]Jiang Wang, Hua Zhang and Yan-qiu Che, Analysis of Hopf bifurcation caused by leakage conductance gl in the Hodgkin–Huxley model in muscles, Chaos, Solitons & Fractals, 2006, 27(2): 427-436
    [108]P. F. Rowat, R. C. Elson, State-dependent effects of Na channel noise on meuronal burst generation, Journal of Computational Neuroscience, 2004,16: 87–112
    [109]A. L. Shilnikov, N. F. Rulkov, Origin of chaos in a two dimensional map modelling spiking-bursting neural activity, International Journal of Bifurcation and Chaos, 2003, 13(11): 3325–3340
    [110]A. L. Shilnikov, N. F. Rulkov, Subthreshold oscillations in amapbased neuron model, Physics Letters A, 2004, 328: 177–184
    [111]郝柏林,从抛物线谈起——混沌动力学引论,上海科技教育出版社,1992
    [112]R. Hinch , A note on the asymptotic reduction of the Hodgkin-Huxley equations for nerve impulses, Bulletin of Mathematical Biology, 2005, 67(5): 947 – 955
    [113]Philippe Faure and Henri Korn, Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation, Comptes Rendus de l’Académie des Sciences - Series III - Sciences de la Vie, 2001, 324(9):773-793
    [114]T. Kotnik, and D. Miklavcic, Second-order model of membrane electric field induced by alternating external electric fields, IEEE Transactions on Biomedical Engineering, 2000, 47(8):1074~1081
    [115]K.Tsumotoa, H. Kitajimab, T. Yoshinagac, K. and H. Kawakami, Bifurcations in Morris–Lecar neuron model, Neurocomputing, 2006, 69:293–316
    [116]J. Moehlis, Canards for a reduction of the Hodgkin-Huxley equations, Journal of Mathematical Biology, 2006, 52(2): 141 – 153
    [117]P. R. Shorten and D. J. N. Wall, A Hodgkin–Huxley Model Exhibiting Bursting Oscillations, Bulletin of Mathematical Biology, 2000, 62(4): 695-715
    [118]C.J. Stam, Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field, Clinical Neurophysiology, 2005, 116:2266–2301
    [119]M. A. Stuchly, and T. W. Dawson, Interaction of low-frequency electric and magnetic fields with the human body, Proceedings of the IEEE, 2000, 88(5):643-664
    [120]H. Suzuki, K. Aihara, J. Murakami et al, Analysis of neural spike trains with interspike interval reconstruction, Biol Cybern, 2000, 82:305-311
    [121]R. Suckley and V. N. Biktashev, the asymptotic structure of the Hodgkin-huxley equations, International Journal of Bifurcation and Chaos, 2003, 13(12): 3805-3825
    [122]R. Suckley, The Asymptotic Structure of Excitable Systems of Equations, University of Liverpool, July 2004
    [123]A. N. Tikhonov, Systems of differential equations, containing small parameters at the derivatives, Mat. Sbornik, 1952, 31(3):575–586
    [124]H. C. Tuckwell and F. Y.M. Wan, Time to first spike in stochastic Hodgkin–Huxley systems, Physica A: Statistical and Theoretical Physics, 2005, 351(2-4): 427-438
    [125]J. Wang, B. Deng and K. M. Tsang, Chaotic synchronization of neurons coupled with gap junction under external electrical stimulation, Chaos, Solitons & Fractals, 2004, 22(2):469-476
    [126]Jiang Wang, Jing Wang and Huiyan Li, Nonlinear PI control of chaotic systems using singular perturbation theory, Chaos, Solitons & Fractals, 2005,25(5):1057-1068
    [127]Jiang Wang, Guo-Dong Qiao and Bin Deng, H∞ Variable universe adaptive fuzzy control for chaotic system , Chaos, Solitons & Fractals, 2005, 24(4):1075-1086
    [128]Jiang Wang, Guo-Dong Qiao and Bin Deng Observer-based robust adaptive variable universe fuzzy control for chaotic system, Chaos, Solitons & Fractals, 2005, 23(3): 1013-1032
    [129]Jiang Wang, Bin Deng and Xiangyang Fei, Chaotic synchronization of two coupled neurons via nonlinear control in external electrical stimulation, Chaos, Solitons & Fractals, 2006, 27(5):1272-1278
    [130]Jiang Wang, Jing Wang and Huiyan Li, Nonlinear PI Control of a Class of Nonlinear Singularly Perturbed System, IEE Proceedings Control Theory & Applications, 2005, 152(5):560- 566
    [131]Jiang Wang, Liangquan Chen and Xianyang Fei, Analysis and control of the bifurcation of Hodgkin–Huxley model, Chaos, Solitons & Fractals,2007, 31(1):247-256
    [132]耿建明,HHM模型的多参数Hopf分岔分析,天津大学硕士学位论文,2005
    [133]汪云九,神经信息学—神经系统的理论和模型,高等教育出版社,2006
    [134]郭爱克,计算神经科学,上海科技教育出版社,2000
    [135]陈良泉,Hodgkin-Huxley 模型的分岔分析与控制, 天津大学硕士学位论文,2006
    [136]邓斌,外电场作用下神经纤维的混沌与同步. 天津大学硕士学位论文,2004
    [137]高普云,非线性动力学-分叉、混沌与孤立子,国防科技大学出版社,2005
    [138]李继彬,冯贝叶, 稳定性、分支与混沌,云南科技出版社,1995
    [139]乔国栋,非线性系统的鲁棒自适应变论域模糊控制,天津大学硕士学位论文,2005
    [140]T. Y. Li and J. A. Yorke, Period three implies chaos, Am. Math. Mothly,1975, 82:985~992
    [141]A. T. Winfree, Sudden cardiac death: a problem in topology, Sci. Am. 1983, 248: 144~161
    [142]A. L. Goldberger, Chaos and fractals in physiology and medical. Laurel, MD; EMBS/Sigma Xi workshop on the Biomedical implications of Chaos Theory, Laurel, MD, October, 1988,8
    [143]A. L. Goldberger, L. J. Findley, M. R. Blackburn, A. J. Mandell, Nonlinear dynamics in heart failure: implications of long-wavelength cardiopulmonary oscillations, Am Heart Journ. 1984, 107(3): 612~615
    [144]A. L. Goldberger, B. J. West, Fractals in physiology and medicine, Yale J Biol Med., 1987, 60: 421~435
    [145]D. Ruelle and F. Takens, On the nature of turbulence, Commun. Math. Phys., 1971, 20: 167~192; 23: 343~344
    [146]A. L. Goldberger, D. R. Rigney, Defending against sudden dearth: Fractal mechanisms of cardiac stability, Proc 9th IEEE/EMBS Conf, 1987, 1: 313~314
    [147]M. R. Guevara, L. Glass, A. Shrier, Phase locking, period-doubling bifurcation, and irregular dynamics in periodically stimulated cardiac cell, Science, 1981, 214: 1350~1353
    [148]X. J. Wang, Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle, Physica D, 1993, 62: 263–274
    [149]X. J. Wang, J. Rinzel, Oscillatory and bursting properties of neurons, In: Arbib MA, eds., The Handbook of Brain Theory and Neural Networks, MIT Press, 1995, pp. 686–691
    [150]M. Wechselberger, Existence and bifurcation of canards in R3 in the case of a folded node, SIAM J. Appl. Dynam. Sys. , 2005, 4: 101–139
    [151]Yue-Ju Xue and Shi-Yuan Yang, Synchronization of generalized Henon map by using adaptive fuzzy controller, Chaos, Solitons & Fractals,2003,17(4):717-722
    [152]M. H. Yang, H. G. Gu, Li L et al. Characteristics of period adding bifurcation without chaos in experimental neural pacemaker, Neuroreport, 2003, 14
    [153]Babloyantz A, et al., Is the normal heart a periodic oscillator? Biol. Cybern. ,1988, 58: 203~211
    [154]P. Y. Muller, et al. Fractal Dimension on ECG, IEEE/EMBS Pro.,1992: 977~978
    [155]J P. Zbilut et al, Bifurcations and intrinsic chaotic and 1/f dynamics in an isolated perfused rat heart , Biol .Cybern. , 1989, 61: 371~378
    [156]G. Medvedev, Reduction of a model of an excitable cell to a one-dimensional map, Physica D, 2005,202:37–59
    [157]J. Rinzel, A formal classification of bursting mechanisms in excitable systems, In: E. Teramoto, M. Yamaguti, eds. Mathematical Topics in Population Biology, Morphogenesis, and Neurosciences, vol. 71 of Lecture Notes in Biomathematics, Berlin: Springer-Verlag, 1987
    [158]古华光,任维等,神经自发放电的确定性和随机性整数倍节律的比较,生物物理学报, 2003, 19(3):272-278
    [159]李莉,古华光等,神经起步点自发放电节律及节律转化的分岔规律,生物物理学报, 2003, 19(4), 448-454
    [160]谢益宽等,神经损伤区新生离子通道与异常电活动的关系, 中国科学 B 辑, 1991,8:1289-1294
    [161]A. L. Goldberge, IEEE Med Biol Eng. ,1992, 11: 47~52
    [162]B. Omer, Spectral Analysis Of Simulated Qrs Complex Using A Model Of TheHeart's Ventricles With A Fractal Conduction System, IEEE/EMBS Proc.1992: 973~974
    [163]A C K Soong, et al., Evidence of chaotic dynamics underlying the human alpha-rhythm electroencephalogram, Biol Cybern., 1989, 62: 55~62
    [164]董向辉,戴汝为,从系统科学和系统复杂性的角度看中医理论,系统仿真学报, 2002,14(11):1458-1463
    [165]J. Roscchke, et. al. ,The dimensionality of human’s electroencephalogram during sleep, Biol Cybern., 1991, 64: 307~313
    [166]D. Gallez, et al. Predictability of human EEG: a dynamical approach. Biol Cybern. ,1991, 64: 381~391
    [167]L.Pezard, et al., Nonlinear Forecasting And Correlation Dimension Of Brain Dynamics:A Multichannel Study Nonlinear Forecasting And Correlation Dimension Of Brain Dynamics : A Multichannel Study, IEEE/EMBS Proc. ,1992: 979~998
    [168]孙力,针刺电信息传递与量化系统研究, 天津大学硕士学位论文,2005
    [169]王立新,自适应模糊系统与控制, 国防工业出版社,1995
    [170]王立新,模糊系统与模糊控制, 清华大学出版社,2003
    [171]S. Baigent, J. Stark and A. Warner, Modeling the effect of gap junction nonlinearites in systems of coupled cells, J. Theor. Biol. ,1997, 186: 223~239
    [172]P. Varona, J. J. Torres, H. D. I. Abarbanel, M. I. Rabinovich, R. C. Elson. Dynamics of two electrically coupled chaotic neurons: Experimental obserbations and model anylysis, Biol. Cybern., 2001, 84: 91~101
    [173]H. Kitajima and H. Kaw akam, Bifurcation and chaos observed in coupled BVP neurons with external impulsive forces, IEEE. 2000: 2048~2053
    [174]H. Kitajima and H. Kawakam, Bifurcation in coupled BVP neurons with external impulsive forces, IEEE. 2001: 285~288
    [175]Static and extremely low-frequency (ELF) electric and magnetic fields, 2002, www.monographs.iarc.fr/htdocs/monographs/vol80/80.html
    [176]Weak electric fields may disrupt cell membranes Stanford University News Service, 1994, www.stanford.edu/dept/news/pr/94/940201Arc4464.html
    [177]M. Bikson, M. Inoue, H. Akiyama, J. K. Deans, J.E. Fox, Miyakawa H. and Jefferys G. R. , Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. ,J. Physiol, 2004, 557(1):175~190
    [178]R.W.P. King, The low-frequency electric fields induced in a spherical cell including its nucleus, Progress in electromagnetics research, 2002, 36:61~79
    [179]E. Ott, C. Grebogi & J. Yorke, Controlling chaos, Physics Review Letters, 1990, 64(11), 1196–1199
    [180]A. Hubler, Adaptive control of chaotic systems, Helvetica Physica Acta, 1989.62(2-3):343-346
    [181]W. L. Ditto, S. N. Rauseo and M. L. Spano, Experimental control of chaos, Phys. Rev. Lett. ,1990, 65:3211–3214
    [182]B. R. Andrievsky, A. L. Fradkov, Control of chaos, I. Methods, Automation and Remote Control, 2003, 64(5), 673–713
    [183]F. T. Arecchi, S. Boccaletti, M.Ciofini, R. Meucci & C. Grebogi, The control of chaos: Theoretical schemes and experimental realizations, International Journal of Bifurcation & Chaos, 1998, 8, 1643–1655
    [184]S. Boccaletti, C. Grebogi, Y. C. Lai, H. Mancini, & D. Maza, The control of chaos: Theory and applications, Physics Reports, 2000:329, 103–197
    [185]S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, & C. S. Zhou, The synchronization of chaotic systems, Physics Reports, 2002: 366:1–101
    [186]G. Chen, (Ed.) Controlling chaos and bifurcations in engineering systems, Boca Raton, USA: CRC Press,1999
    [187]G. Chen, & X. Dong, (A). From chaos to order: Perspectives, methodologies and applications, Singapore: World Scientific,1998
    [188]Fradkov, A. L., & Pogromsky, A. Yu, Introduction to control of oscillations and chaos, Singapore: World Scientific, 1998
    [189]O. Calvo, & J. H. E. Cartwright, Fuzzy control of chaos, International Journal of Bifurcation & Chaos, 1998, 8:1743–1747
    [190]O. Castillo, & P. Melin, Automated mathematical modelling, simulation and behavior identification of robotic dynamic systems using a new fuzzy-fractal-genetic approach, Robotics and Autonomous Systems, 1999, 28: 19–30
    [191]L. Chen, & G. R. Chen, Fuzzy modeling, prediction, and control of uncertain chaotic systems based on time series, IEEE Transactions on Circuits Systems I, 2004,7: 1527–1531
    [192]L. Chen, G. R. Chen, & Y.W. Lee, Fuzzy modeling and adaptive control of uncertain chaotic systems, Information Sciences, 1999 121, 27–37
    [193]I. F. Chung, C. J.Lin, & C. T. F Lin, A GA-based fuzzy adaptive learning control network, Fuzzy Sets and Systems, 2000, 112: 65–84
    [194]S. Townley, A. Ilchmann, M. G.Weiss, W. Mcclements, A. C. Ruiz, D. H. Owens, & D. Pratzel-Wolters, Existence and learning of oscillations in recurrent neural networks, IEEE Transactions on Neural Networks, 2000, 11: 205–214
    [195]Y. Song and J. Grizzle, Adaptive output-feedback control of a class of discrete-time nonlinear system, in Proc. Amer. Control Conf., San Francisco, CA, June 1993, pp.1359-1365
    [196]A. Madani, S. Monaco, and D. Normand-Cyroy, Adaptive control of discrete-time dynamics in parametric strict-feedback form, in Proc. 35th Conf. Decision Control, Kobe, Japan, Dec.1996,pp.2659-2665
    [197]F. C. Chen and H.K. Khalil, Adaptive control of nonlinear system using neural network, Int. J. Control, 1996; 55(6):1299-1317
    [198]F. C. Chen and H.K. Khalil, Adaptive control of nonlinear discrete-time systems using neural networks, IEEE Trans. Automat. Contr. , 1995, 40: 791-801
    [199]S. Jagannathan, Adaptive fuzzy logic control of feedback linearizable discrete-time dynamical systems under persistence of excitation, Automatica, 1998; 34(11):1295-1310
    [200]T .A. Johansen, Fuzzy model based control: stability, robustness, and performance issues, IEEE Trans. Fuzzy Syst., 1994; 2: 221-234
    [201]J.T. Spooner, R. Ordonez, and K. M. Passino, Indirect adaptive fuzzy control far a class of discrete-time systems, in Proc, Amer, Control Conf., Albuquerque, NM, June 4-5, 1997, pp. 3311-3315
    [202]H. X. Li, variable universe fuzzy control on quadruple invert pendulum, Science in China, Ser. E., 1999,32(1): 65-75
    [203]L.K ozarev et al. General Approach for Chaotic Synchronization with Application to Communication, Phys.Rev.Lett.1995, 74(25):5028-5031
    [204]W. Lin and C. Byrnes, H ∞control of discrete time nonlinear systems, IEEE Trans. Automat.Contr., 1996, 41:494-510

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700