用户名: 密码: 验证码:
锰氧化物纳米材料及基于铜、钴的有机—无机杂化材料的合成、表征与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪是材料化学的时代,新材料的诞生会带动相关产业和技术的迅速发展,甚至会催生新的产业和技术领域。材料科学现已发展成为一门跨学科的综合性学科。作为材料科学发展的先导,纳米材料的设计合成,是材料得到进一步研究并推广应用的基础。探索发展纳米材料设计与合成的新途径、新方法,实现对纳米材料的尺寸大小、粒径分布,以及形貌和表面修饰的控制仍然是纳米材料研究的一个热点领域。此外,在新兴领域如纳米技术及生物工程中,不断需要具有不同物理和化学性能的新材料。有机-无机杂化材料将有机物种和无机物种在分子水平上有机的结合,提供了用化学方法同时改变材料的组成和结构的可能性,使材料既具有有机物的特质又具有无机物的性能,是一种非常具有潜力的多功能材料,是化学家和材料学家关心的课题之一。
     本课题组长期以来在液-液体系与萃取化学、无机材料化学两个方向进行深入研究,在溶液体系中溶液结构、结构与相间传质,以及功能材料的制备方面积累了丰富的经验。本论文在课题组前人工作的基础上,研究寻找新的液相合成体系,控制合成具有特殊形貌的无机纳米材料,为纳米材料的制备、组装、裁剪提供了一条新思路。此外,通过离子交换反应在层状无机材料中引入有机配体从而将无机组分的磁性和有机部分自身的特性,包括发光特性,手性等结合起来,制备出了新颖的有机-无机杂化材料。对于扩充功能材料的液相合成,开发使无机材料和有机材料的功能互补、协同优化的有机-无机复合材料的制备方法研究,为有目的地设计和合成具有特定组成、结构和功能的新型有机-无机杂化材料提供实验基础和理论依据。
     论文主要工作是利用水热法、前驱体法等多种方法成功地控制合成了各种形貌的无机纳米材料;同时也探索了利用离子交换反应制备有机-无机杂化材料。具体内容如下:
     1.无机纳米材料的制备、表征及机理研究。
     (a)在非离子型表面活性剂聚乙烯基吡咯烷酮(PVP K30)作用下,利用简单的合成原料,在温和可行的水热条件下,成功地制得了空心结构的单晶MnO_2纳米管,并分析了表面活性剂在合成纳米管状结构中所起的作用,提出了纳米管状结构的形成机理,认为MnO_2纳米管的形成遵循一个:成核-溶解-各向异性生长-再结晶的生长机理。该研究工作扩大了目前所能获得的纳米管种类并提供了一个不同的,基本的路线去制备其他材料的单晶纳米管。
     (b)我们以与制备MnO_2纳米管状结构相同的原料,调整反应条件,研究了不同反应物配比在不同反应时间下的水热性质,成功合成了γ-MnOOH多足枝状纳米晶,并结合TEM,XRD,SAED,HRTEM等表征手段分析了γ-MnOOH的生成过程,并对包覆剂聚乙烯基吡咯烷酮对多足枝状纳米晶的生长的影响进行了深入研究;然后进一步用合成的γ-MnOOH作为前驱体,经400℃烧结处理制得β-MnO_2多足枝状纳米晶,丰富了我们的锰的氧化物制备体系。
     (c)通过一个简单的化学方法成功合成了一种新颖的碟型γ-二氧化锰纳米六方片状结构,该方法以硝酸锰为锰源,氯酸钠作为氧化剂,无需添加任何表面活性剂或有机模板,该种纳米六方片边缘长度约250 nm,厚度只有几十个纳米;使用了TEM,XRD,SEM等技术手段对产品进行了表征,并通过跟踪产品在不同反应阶段的结晶情况和形貌,提出了该种新颖纳米六方片可能的形成机理;另外,使用了超导量子干涉仪磁强计对产品的磁性做了简单的测试和讨论;本研究提供了一种崭新的,简易的合成二维γ-二氧化锰纳米六方片的路线从而扩大了可供选择使用的MnO_2范围。
     2.有机-无机杂化材料的制备与特性研究。
     (a)通过一种简单、快速的方法以乙醇和水为混合溶剂合成了层间距为1.282 nm的层状水合三羟基醋酸合钴化合物:Co_2(OH)_3(CH_3COO)·H_2O,结合元素和热重分析,得出该种薄层的片状聚集体的化学计量式为Co_2(OH)_(3.3)(CH_3COO)_(0.7)·2H_2O;其无水结构也可很容易地得到,只需在120℃进行适当加热一小时;由于层状水合三羟基醋酸合钴化合物所呈现的磁性特性使得其在离子交换反应领域具有重要的地位,同时也使得该种简单有效的合成方法对于有机-无机杂化材料的制备具有重要的意义。
     (b)通过离子交换反应将手性有机配体分别嫁接到层状羟基醋酸铜和羟基醋酸钴中,此外,还运用了粉末衍射、红外、紫外光谱、扫描电镜以及磁性测量等各种技术手段对产品进行了表征,对这些杂化材料的结构进行了研究并在此基础上对嫁接了有机手性citronellic acid的无机层的磁性行为进行了讨论。
The 21st century is the era of chemical materials.The new materials will lead to the rapid development of technology and the related industries,and even lead to new industries and technical fields.Materials science has become an interdisciplinary comprehensive discipline.As a forerunner of the materials science development,the design and synthesis of nano-materials are the foundation of the application and the further development of materials.It is still a hot research field for materials that how to develop new methods to design and synthesis of nano-materials and how to realization the control of nano-particles size,distribution,morphology and surface modification.In addition,in emerging fields such as nano-technology and bio-engineering of the continuing need to have different physical and chemical properties of new materials.Organic-inorganic hybrid materials combining the properties of the inorganic and organic species at the molecular level,which provide a possibility,to change the composition and structure of the materials by chemical methods at the same time.It is one of the subjects of concern for chemists and materials scientists and has many potential applications as important multifunctional materials.
     Our group researched in liquid-liquid system,extraction chemistry,and inorganic chemical materials for a long time and has accumulated a rich of experience in the solution structure of liquid-liquid system,solution structure and interphases transfer,as well as the preparation of functional materials.On the basis of previous work of our group,this thesis try to find a new liquid synthetic system to control synthesize of a special morphology of inorganic nano-materials and provides a new way to the preparation,assembly, modification of nano-materials;In addition,we had prepared a novel organicinorganic hybrid materials through ion exchange reaction that insert organic ligands in the layered inorganic materials and combining the magnetism of the inorganic part with the physical properties of inserted molecules,such as chiralitv and/or luminescence properties,which provide a experimental and theoretical basis for the liquid-phase synthesis of functional materials,the development of the inorganic materials and organic materials complementary functions,the design and synthesis of a specific composition,structure and functions of the new Organic-inorganic hybrid materials.The main results summarized are list as follows.
     1.Synthesis,Characterization and mechanism research of inorganic nano-materials
     (a)Single-crystalβ-MnO_2 nanotubes with diameters in the range 200-500 nm and lengths up to several micrometers were successfully prepared by a simple hydrothermal method through oxidizing MnSO_4 with NaClO_3 in the presence of poly(vinyl pyrrolidone)(PVP).Based on a series of experimental analysis and discussions,the formation mechanism of these nanostructures was discussed briefly and found that the formation process ofβ-MnO_2 nanotubes follow a nucleation-dissolution-anisotropic growth-recrystallization mechanism.The present study has enlarged the family of nanotubes available, and offers a possible new,general route to one-dimensional single-crystalline nanotubes of other materials.
     (b)A convenient hydrothermal processing followed by a post-heat treatment route is proposed to synthesize well-dispersed branchedβ-MnO_2 multipods from branchedγ-MnOOH precursor.The key steps in our approach are as follows:By controlling the reactants concentration and reaction time,the monoclinic phase of MnOOH with novel branched multipods nanostructures was synthesized via the hydrothermal reaction of MnSO_4·H_2O and NaClO_3 at 160℃for 200 minutes;Then,the as-prepared branchedγ-MnOOH multipods were heated in air atmosphere at 400℃for 2 h,the branchedβ-MnO_2 nanostructures could be successfully obtained and without changing the precursory morphologies.These new structures presented here enrich the nanoscale community with new basic materials and offers a new approach for increasing structural complexity and enabling greater potential applications. Furthermore.the briefly discuss about their formation mechanisms provide insight into the formation processing of other transition metal oxide multipods (c)γ-manganese dioxides with novel saucer-shaped hexagonal nanoplatelets structure have been successfully synthesized via a simple chemical route using manganese nitrate as the manganese source and sodium chlorate as oxidant reagent without the addition of any surfactants or organic templates.The hexgonal nanoplatelets have edge lengths about of 250 nm with the thickness only several tens of nanometers and characterized using a variety of technical measurement methods.A possible formation mechanism of this novel morphology of nanoplates was proposed by tracking the crystallization and morphology of the products at different reaction stages.The magnetic properties of the products were investigated by a Quantum Design SQUID (superconducting quantum interference device)magnetometer and exhibit a paramagnetic behavior.The present study has offers a possible new,simple route for bulk synthesis of two-dimensionalγ-MnO_2 nanoplatelets and enlarged the family of MnO_2 available.
     2.The Preparation and Characterization of Organic-Inorganic Hybrid Materials.
     (a)Layered hydroxide metal acetates Co_2(OH)_3(CH_3COO)·H_2O with an interlayer spacing of 12.82(?)has been synthesized conveniently and rapidly as aggregates of thin crumpled sheets by a new method main routes conducted in ethanol-aqueous mixed solvents media.From the elemental analysis,in combination with the results obtained from thermal gravimetric measurements, the stoichiometry of the product was found to be Co_2(OH)_(3.3) (CH_3COO)_(0.7)·2H_2O.The anhydrous form also can be easily obtained by moderate heating at 120℃only for one hour.The layered hydroxide cobalt acetates showing very interesting magnetic properties and its applications in the fields of anionic exchange reactions as good candidates made such an effective and facile approach very exciting for the preparation of hybrid organic-inorganic compounds.
     (b)We report the preparation,structure and physical properties of a series of multilayer multifunctional materials transition metal(Ⅱ)hydroxycitronellicates. These are prepared by anion-exchange reactions,starting from transition metal hydroxy-acetate layers M(Ⅱ)_2(OH)_3(OAc)·H_2O(M=Cu,Co). The acetate ion is substituted for citronellic acid,which was one of several chiral 2- or 3-methyl branched acids.Similar exchange reactions are carried out with recemic,R and S chiral 2- or 3-methyl branched citronellic acids.The compounds,of general formulation M_2(OH)_((4-x))(C_(10)H_(17)O_2)X·zH_2O,exhibit a layered structure with a step-like variation of the basal spacing,according to inorganic metal hydroxy-acetate parity.Powder X-ray diffraction,IR spectroscopy,scanning electron microscope,as well as magnetic measurements etc.variety of techniques have been used in the characterization of the as-prepared samples.This study provides new insight on the multifunctional materials based on the grafting of optically active chiral organic ligants into inorganic magnetic layers.
引文
1.张立德,牟季美,纳米材料和纳米结构[M],科学出版社,2002,P1-50.
    2.王世敏,许祖勋,傅晶编著,纳米材料制备技术[M],化学工业出版社,2002,P1.
    3.P.Ball,L.Garwin,Science at the Atomic Scale[J],Nature,1992,355,761-766.
    4.D.L.Feldhein,C.D.Keating,Self-assembly of Single Electron Transistors and Related Devices[J],Chem.Soc.Rev,1998,27,1-13.
    5.李泉,曾广斌,席时权,纳米粒子[J],化学通报,1995,6,29-34.
    6.L.Yiping,G.C.Hadjipanayis,C.M.Sorensen,K.J.Klabunde,Magnetic Properties of Fine Cobalt Particles Prepared by Metal Atom Reduction[J],J.Appl.Phys,1990,67,4502-4504.
    7.张立德,纳米材料[M],化学工业出版社,2000,P6-41.
    8.K.J.Klabunde,J.Stark,O.Koper,C.Mohs,D.G.Park,S.Decker,Y.Jiang,I.Lagadic,D.Zhang,Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry[J],J.Phys.Chem,1996,100,12142-12153.
    9.L.E.Brus,Electronic Wave Functions in Semiconductor Clusters:Experimental and Theory[J],J.Phys.Chem.1986,90,2555-2560.
    10.A.Henglein,Precursor can be Successfully Used in a Variety of Co-ordinating[J],Chem.Rev,1989,89,1861-1873.
    11.S.Linderoth,S.Morup,Chemically Prepared Amorphous Fe-B Particles:Influence of pH on the Composition[J],J.Appl.Phys,1990,67,4472-4474.
    12.傅英,须文兰,陆卫,半导体量子电子和光电子器件[J],物理学进展,2001,21.255-277.
    13.D.D.Awschalsom,M.A.Mccord,G.Grinstein,Observation of macroscopic spin phenomena in nanometer-scale magnets[J],Phys.Rev.Lett,1990,65,783-786.
    14.W.H.Meikeljohn,C.R Bean,New Magnetic Anisotropy[J],Phys.Rev,1957, 105,904-913.
    15. S. Gangopadhyay, G. C. Hadjipanayis, B. Dale, C. M. Sorensen. K. J. Klabunde, V. Papaefthymiou, A. Kostikas, Magnetic Properties of Ultrafine Iron Particles [J], Phys. Rev. B, 1992,45, 9778-9787.
    16. A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten, and G. Thomas, Giant Magnetoresistance in Heterogeneous Cu-Co Alloys [J], Phys. Rev. Lett, 1992, 68, 3745-3748.
    17. John Q. Xiao, J. Samuel Jiang, C. L. Chien, Giant Magnetoresistance in Nonmultilayer Magnetic Systems [J], Phys. Rev. Lett, 1992, 68, 3749-3752.
    18. Dersch R, Steinhart M, Boudriot U, et al., Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics [J], Polym. Adv. Technol., 2005,16,276-282.
    19. Alexiou C, Arnold W, Klein RJ, et al., Locoregional Cancer Treatment with Magnetic Drug Targeting [J], Cancer Res., 2000, 60, 6641-6648.
    20. Pankhurst Q A, Connolly J, Jones S K, et al., Applications of magnetic nanoparticles in biomedicine [J], J. Phys. D, 2003, 36,167-181.
    21. Sukhorukov GB, Rogach A L, Zebli B, et al., Nanoengineered Polymer Capsules: Tools for Detection, Controlled Delivery, and Site-Specific Manipulation [J], Small, 2005, 1(2), 194-200.
    22. Xie H Y, Zuo C, Liu Y, et al., Cell-Targeting Multifunctional Nanospheres with both Fluorescence and Magnetism [J], Small, 2005,1(5), 506-509.
    23. J. Karch, R. Birringer, H. Gleiter, Ceramics ductile at low temperature [J], Nature, 1987,330,556-558.
    24. R. W. Siegel, S. Ramasamy, H. Hahn, et al., Synthesis, characterization, and properties of nanophase TiO2 [J], J, Mater. Res, 1988, 3,1367-1372.
    25. F. Wakai, H. Kato, Superplasticity of TZP/Al2O3 Composite [J], Adv. Ceram. Mater, 1988,3, 71-76.
    26. H. Hahn, R. S. Aberback, Low-Temperature Creep of Nanocrystalline Titanium (Ⅳ)Oxide[J],J.Am.Ceram.Soc.1991,74,2918-2921.
    27.吴璧耀,张超灿,章文贡等编著,有机-无机杂化材料及其应用,化学工业出版社[M],2005,P1-37。
    28.李旭华,袁荞龙,王得宁.杂化材料的制备、性能及应用.功能高分子学报[J],2000,13(2),211-218。
    29.吴崇洁,王世敏,赵雷等.溶胶-凝胶法制备无机-有机聚合物杂化材料的进展[J],胶体与聚合物,2003,21(1),39-42。
    30.Franville A C,Zambon D,Mahiou R,et al.Synthesis and optical features of an europium organic-inorganic silicate hybrid[J],J.Alloys and Compounds,1998,275-277,831-834.
    31.Levy D,Avnir D.Effects of the changes in the properties of silica cage along the gel/xerogel transition on the photochromic behavior of trapped spiropyrans[J],J.Phys.Chem.1988,92,4734-4738.
    32.Ahmad Z,Mark J E,Biomimetic materials:recent developments in organic-inorganic hybrids[J],Materials Science and Engineering:C,1998,6,183-196.
    33.Nobuyuki F,Masatoshi Y,Yoshihara K.Characterization of polysiloxane-block-polyimides with silicate group in the polysiloxane segments [J],Polymer,1999,40,1853-1862.
    34.何天白,胡汉杰编.海外高分子科学的新进展[M],化学工业出版社,1997.
    35.L.-Y.Jiang,C.-M.Leu,K.-H.Wei.Layered Silicates/Fluorinated Polyimide Nanocomposites for Advanced Dielectric Materials.Applications[J],Advanced Materials,2002,14,426-429.
    36.Eduardo Ruiz-Hitzky,Conducting Polymers Intercalated in Layered Solids[J],Advanced Materials,1993,5,334-340.
    37.Manfred T.Reetz,Albin Zonta,Jōrg Simpelkamp.Efficient Heterogeneous Biocatalysts by Entrapment of Lipases in Hydrophobic Sol-Gel Materials[J],Angew Chem Int Ed Engl,1995,34,301-303.
    38.Stacey A.Yamanaka,Bruce Durra,Joan S.Valentine,et al.,Nicotinamide Adenine Dinucleotide Phosphate Fluorescence and Absorption Monitoring of Enzymic Activity in Silicate Sol-Gels for Chemical Sensing Applications[J],J Am Chem Soc,1995,117,9095-9096.
    39.段波,赵兴中等,李星国,超微粉制备技术的现状与展望[J],材料工程,1994,6,5-8。
    40.尾崎义治,贺集诚一郎著,赵修建,张联盟译,纳米微粒导论[M],武汉工业大学出版社,1991,D121.
    41.孙志刚,胡黎明,气相法合成纳米颗粒的制备技术进展[J],化工进展.1997,2.21-24.
    42.H.Gleiter,Nanocrystalline Materials[J],Progress in Mater.Sci.,1989,33,223-315.
    43.C.Bedoya,G.G.Condorelli,G.Anastasi,A.Baeri,F.Scerra,I.L.Fragala,MOCVD of Bismuth Oxides:Transport Properties and Deposition Mechanisms of the Bi(C_6H_5)_3 Precursor[J],Chem.Mater,2004,16,3176-3183.
    44.Jonas Sundqvist,Mikael Ottosson,Anders Harsta,CVD of Epitaxial SnO_2 Films by the SnI_4/O_2 Precursor Combination[J],Chem.Vap.Deposition,2004,10,77-82.
    45.R Rajaram,Y.C.Goswami,S.Rajagopalan,V.K.Gupta,Optical and Structural Properties of SnO_2 Films Grown by a Low-cost CVD Technique[J],Mater.Lett,2002,54,158-163.
    46.Y.Liu,E.Koep,M.L.Liu,A Highly Sensitive and Fast-Responding SnO_2 Sensor Fabricated by Combustion Chemical Vapor Deposition[J],Chem.Mater,2005,17,3997-4000.
    47.Z.W.Pan,Z.R.Dai,Z.L.Wang,Nanobelts of Semiconducting Oxides[J],Science,2001,291,1947-1949.
    48.W.Chang,G.Skandan,S.C.Danforth and B.H.KearH.Hahn,Chemical Vapor Processing and Applications for Nanostructured Ceramic Powders and Whiskers [J].Nanostruct.Mater.1994.4,507-520.
    49.A.Singhal,G.Skandan,A.Wang,N.Glumac.B.H.Kear and R.D.Hunt,On Nanoparticle Aggregation during Vapor Phase Synthesis[J],Nanostruct.Mater,1999,4,545-552.
    50.W.Chang,G.Skandan,H.Hahn,S.C.Danforth and B.H.Kear,Chemical Vapor Condensation of Nanostructured Ceramic Powders[J],Nanostruct.Mater,1994,4,345-351.
    51.F.J.Berry,P.Wynn,J.Z.Jiang,S.MφRUE Formation of Perovskite-related Structures CaMO_3(M = Sn,Ti)by Mechanical Milling[J],J.Mater.Sci,2001,36,3637 - 3640.
    52.O.K.Tan,W.Cao,Y.Hu,W.Zhu,Nano-structured Oxide Semiconductor Materials for Gas-sensing Applications[J],Cera.Int,2004,30,1127-1133
    53.黄钧声,任山,纳米铜粉研制进展[J],材料科学与工程,200l,19,76-79.
    54.Luciana S.Guinesi,Clóvis A.Ribeiro,Marisa S.Crespi,Ana M.Veronezi,Tin(Ⅱ)-EDTA Complex:Kinetic of Thermal Decomposition by Non-isothermal Procedures[J],Thermochim.Acta,2004,414,35-42.
    55.Y.C.Zhang,X.Wu,X.Y.Hu,R.Guo,Low-temperature Synthesis of Nanocrystalline ZnO by Thermal Decomposition of a Green Single-source,Inorganic Precursor in Air[J],J.Cryst.Growth,2005,280,250-254.
    56.W.Z.Wang,Y.J.Zhan,G.H.Wang,One-step,Solid-state Reaction to the Synthesis of Copper Oxide Nanorods in the Presence of a Suitable Surfactant[J],Chem.Commun,2001,727-728.
    57.Upendra A.Joshia,Soo Hyun Chungb,Jae Sung Leea,Low-temperature,Solvent-free Solid-state Synthesis of Single-crystalline Titanium Nitride Nanorods with Different Aspect Ratios[J],J.Solid State Chem,2005,178.755-760.
    58.Q.W.Li,G.A.Luo,J.Li,X.Xia,Preparation of Ultrafine MnO_2 Powders by the Solid State Method Reaction of KMnO_4 with Mn(Ⅱ)Salts at Room Temperature [J],J.Mater.Process.Technol,2003,137,25-29.
    59.W.T.Yao,S.H.Yu,Y.Zhou.J.Jiang,Q.S.Wu.L.Zhang,J.Jiang,Formation of Uniform CuO Nanorods by Spontaneous Aggregation:Selective Synthesis of CuO,Cu_2O,and Cu Nanoparticles by a Solid-Liquid Phase Arc Discharge Process[J],J.Phys.Chem.B 2005,109,14011-14016.
    60.徐如人,庞文琴主编,无机合成与制备化学[M],高等教育出版社,2001,527-537.
    61.Z.Gui,R.Fan,W.Q.Mo,X.H.Chen,L.Yang,Y.Hu,Synthesis and Characterization of Reduced Transition Metal Oxides and Nanophase Metals with Hydrazine in Aqueous Solution[J],Mater.Res.Bull,2003,38,169-176.
    62.F.J.Perez-Alonso,M.Lopez Granados,M.Ojeda,R Terreros,S.Rojas,T.Herranz,J.L.G.Fierro,M.Gracia,J.R.Gancedo,Chemical Structures of Coprecipitated Fe-Ce Mixed Oxides[J],Chem.Mater,2005,17,2329-2339.
    63.Manfred T.Reetz,Wolfgang Helbig,Size-Selective Synthesis of Nanostructured Transition Metal Clusters[J],J.Am.Chem.Soc.1994,116,7401-7402.
    64.D.Tsamouras,E.Dalas,S.Sakkopoulos,P.G.Koutsoukos,Physicochemical Characteristics of Mixed Copper-Cadmium Sulfides Prepared by Coprecipitation [J],Langmuir,1999,15,8018-8024.
    65.Y.G.Zhang,S.Y.Wang,Y.T.Qian,Z.D.Zhang,Complexing-reagent Assisted Synthesis of Hollow CuO Microspheres[J],Solid-State Sci.,2006,8,4.52-466.
    66.C.H.Fan,X.Y.Song,Z.L.Yin,H.Y.Yu,S.X.Sun,Preparation of SnO_2 Hollow Nanospheres by a Solvothermal Method[J],J Mater Sci,2006,41,5696-5698.
    67.Y.Wang,X.Jiang,Y.Xia,A Solution-Phase,Precursor Route to Polycrystalline SnO_2 Nanowires That Can Be Used for Gas Sensing under Ambient Conditions [J],J.Am.Chem.Soc,2003,125,16176-16177.
    68.X.C.Jiang,Y.L.Wang,T.Herricks,Y.N.Xia,Ethylene Glycol-mediated Synthesis of Metal Oxide Nanowires[J],J.Mater.Chem,2004,695-7,33.
    69.Victor F.Puntes,Kannan M.Krishnan,A.Paul Alivisatos,Colloidal Nanocrystal Shape and Size Control:The Case of Cobalt[J],Science.2001.291.2115-2117.
    70.S.Sun,H.Zeng,Size-Controlled Synthesis of Magnetite Nanoparticles[J],J.Am.Chem.Soc,2002,124,8204-8205.
    71.李雪梅,基于萃取化学和溶剂热技术的纳米材料制备[D],山东大学博士学位论文,2003,11.
    72.Janos H.Fendler,Atomic and Molecular Clusters in Membrane Mimetic Chemistry[J],Chem.Rev,1987,87,877-899.
    73.麦振洪,赵永男,微乳液技术制备纳米材料[J],物理,2001,30,106-110.
    74.石全珍,纳米微粒的微乳液制备方法[J],信阳师范学院学报(自然科学版).2000.13,474-478.
    75.William S.Sheldrick,Michael Wachhold,Solventothermal Synthesis of Solid-State Chalcogenidometalates[J],Angew.Chem.Int.Ed,1997,36,206-224.
    76.J.Li,Z.Chen.R.J.Wang,D.M.Proserpio,Low Temperature Route Towards New Materials:Solvothermal Synthesis of Metal Chalcogenides in Ethylenediamine[J],Coord.Chem.Rev,1999.190-192,707-735.
    77.Z.Miao,D.Xu.J.Ouyang,G.Guo,X.Zhao,Y.Tang,Electrochemically Induced Sol-Gel Preparation of Single-Crystalline TiO_2 Nanowires[J],Nano.Lett,2002,2,717-720.
    78.A.Gurlo,N.Barsan.U.Weimar,M.Ivanovskaya,A.Taurino,P.Siciliano,Polyctystalline Well-Shaped Blocks of Indium Oxide Obtained by the Sol-Gel Method and Their Gas-Sensing Properties[J],Chem.Mater,2003,15,4377-4383.
    79.Il-seok Kim,Prashant N.Kumta,Hydrazide Sol-gel Synthesis of Nanostructured Titanium Nitride:Precursor Chemistry and Phase Evolution[J],J.Mater.Chem.,2003,13,2028-2035.
    80.Y.Lu.Y.Yin,B.T.Mayers,Y.Xia,Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol-Gel Approach[J],Nano lett,2002,2,183-186.
    81. Yee-Shin Chang. Yen-Hwei Chang, In-Gann Chen. Guo-Ju Chen. Yin-Lai Chai. Synthesis and Characterization of Zinc Titanate Nano-crystal Powders by Sol-gel Technique [J]. J. Cryst. Growth, 2002, 243. 319-326.
    82. Christopher O. Oriakhi and Michael M. Lerner, Poly(pyrrole) and poly(thiophene)/claynanocomposites via latex-colloid interaction [J]. Materials Research Bulletin. 1995 , 30, 723-729.
    83. Lucia Carlucci. Gianfranco Ciani. Davide M. et al., 1-, 2-, and 3-Dimensional Polymeric Frames in the Coordination Chemistry of AgBF4 with Pyrazine. The First Example of Three Interpenetrating 3-Dimensional Triconnected Nets [J]. J Am Chem Soc, 1995, 117. 4562-4569.
    84. Emmanuel P. Giannelis. Polymer Layered Silicate Nanocomposites [J]. Advanced Materials, 1996, 8.29-35.
    85. Richard A. Vaia, Hope Ishii. Emmanuel P. Giannelis, Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates [J], Chem. Mater., 1993. 5,1694-1696.
    86. Richard A. Vaia. S. Vasudevan, Wlodzimierz Krawiec, et al.. New polymer electrolyte nanocomposites: Melt intercalation of poly (ethylene oxide) in mica-type silicates [J]. Advanced Materials. 1995. 7, 154-156.
    87. Carlucci L , Ciani G Proserpio D M. et al.. New polymeric networks from the self-assembly of silver(I) salts and the flexible ligand 1.3-bis(4-pyridyl)propane (bpp). A systematic investigation of the effects of the counterions and a survey of the coordination polymers based on bpp [J], CrystEngComm, 2002, 4, 121-129.
    88. Eddaoudi M , Moler D B . Li H, et al. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks [J], Acc. Chem. Res., 2001. 34. 319-330.
    89. Ansell. M. A.: Zeppenfeld, A. C; Yoshimoto, K., et al.. Self-Assembled Cobalt-Diisocyanobenzene Multilayer Thin Films [J]. Chem. Mater.. 1996, 8, 591-594.
    90. Hong. M.; Zhao, Y: Su. W. A et al., Nanometer-Sized Metallosupramolecular Cube with O_h Symmetry [J]. J. Am. Chem. Soc., 2000. 122, 4819-4820.
    91. Maochun Hong, Yingjun Zhao, Weiping Su, et al., A Silver(I) Coordination Polymer Chain Containing Nanosized Tubes with Anionic and Solvent Molecule Guests [J], Angew. Chem. Int. Ed., 2000, 39. 2468-2470.
    92. Hong M C, Zhao Y J, Su W P, et al.. Synthesis and characterization of two copper cyanide complexes with hexagonal Cu_6 units [J], J. Chem. Soc, Dalton Trans., 2000, 1685-1686.
    93. Su W P, Cao R. Hong M C, et al., Assembly based on μ_4-bridging thiolate: a new type of polymeric silver(I) complex having a one dimensional chain structure [J], Chem.Commun., 1998, 1389-1390.
    94. Hong, M.; Su, W.; Cao. R. et al., Controlled Assembly Based on Multibridging Thiolate Ligands: New Polymeric Silver(I) Complexes with One-Dimensional Chain and Three-Dimensional Network Structures [J], Inorg.Chem., 1999, 38, 600-602.
    95. X. Chen, Z. T. Yu, J. S. Chen, et al., In situ hydrothermal preparation of CdS/polymer composite particles with cadmium-containing polymer latexes [J], Materials letters, 2004, 58, 384-386.
    96. Paul V. Braun and Samuel I. Stupp, CdS mineralization of hexagonal, lamellar, and cubic lyotropic liquid crystals [J], Materials Research Bulletin, 1999, 34, 463-469.
    97. Y. Wang and N. Herron, Photoconductivity of CdS nanocluster-doped polymers [J], Chemical Physics Letters, 1992. 200,71-75.
    98. JJ. Watkins and T.J. McCarthy, Chemistry in supercritical fluid-swollen polymers: direct synthesis of metal/polymer nanocomposites [J], Polym. Mater. Sci. Eng., 1995,73,158-159.
    1. Yang R., Guo L., Synthesis of the Nanotublar Cubic Fluorite CeO_2 [J], Chinese Journal of Inorganic Chemistry. 2004, 20, 152-158.
    2. Duan X.F.. Huang Y., Wang J.F., et al., Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J], Nature, 2001, 409, 66-69.
    3. Philip Kim, Charles M. Lieber. Nanotube Nanotweezers [J], Science, 1999, 286, 2148-2150.
    4. David H. Cobden, Molecular electronicsNanowires begin to shine [J], Nature, 2001,409,32-33.
    5. Philip G. Collins, A. Zettl, et al., Nanotube Nanodevice [J], Science, 1997, 279, 100-102.
    6. Jiangtao Hu, Min Ouyang, Peidong Yang, et al., Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires [J], Nature, 1999,399,48-51.
    7. Yu Huang, Xiangfeng Duan, Yi Cui, et al., Logic Gates and Computation from Assembled Nanowire Building Blocks [J], Science, 2001, 294, 1313-1317.
    8. Iijima, S. Helical microtubules of graphitic carbon [J], Nature 1991, 354, 56-58.
    9. Gotthard Seifert, Thomas Frauenheim, On the Stability of Non Carbon Nanotubes [J], Journal of Korean Physics Society, 2000, 37, 89-92.
    10. Seifert G., Terrones H., Terrones M., et al., On the electronic structure of WS_2 nanotubes [J], Solid State Communications. 2000,114, 245-248.
    11. Seifert G., Kohler T., Tenne R., Stability of Metal Chalcogenide Nanotubes [J], J. Phys. Chem. B, 2002, 106, 2497-2501.
    12. Remskar, M. Inorganic Nanotubes [J], Adv. Mater. 2004, 16, 1497-1504.
    13. Hu, J.; Odom, T. W.; Lieber, C. M. Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes [J], Acc. Chem. Res. 1999, 32, 435-445.
    14. Patzke, G. R.; Krumeich. F.; Nesper, R. Oxidic Nanotubes and Nanorods - Anisotropic Modules for a Future Nanotechnology [J], Angew. Chem. Int. Ed. 2002.41,2446-2461.
    15. Tenne, R. Inorganic Nanotubes and Fullerene-Like Materials [J], Chem. Eur. J. 2002, 8. 5296-5304.
    16. Rao, C. N. R.; Nath, M. Inorganic nanotubes [J], Dalton Trans. 2003, 1. 1-24.
    17. Chopra, N. G.; Luyken, R. J.; Cherrey, K. et al., Boron Nitride Nanotubes [J], Science 1995. 269, 966-967.
    18. R. Tenne. L. Margulis, M. Genut, G. Hodes, Polyhedral and cylindrical structures of tungsten disulphide [J], Nature, 1992, 360, 444-446.
    19. Feldman, Y.; Wasserman, E.; Srolovitz, D. J.; Tenne, R. High-Rate, Gas-Phase Growth of MoS_2 Nested Inorganic Fullerenes and Nanotubes [J], Science, 1995, 267. 222-225.
    
    20. Nath, M.; Rao. C. N. R. New Metal Disulfide Nanotubes [J]. J. Am. Chem. Soc. 2001,123.4841-4842.
    21. Nath, M.; Rao, C. N. R. Nanotubes of Group 4 Metal Disulfides [J], Angew. Chem. Int.Ed. 2002, 41, 3451-3454.
    22. Brorson, M.; Hansen, T. W.; Jacobsen, C. J. H. Rhenium(IV) Sulfide Nanotubes [J], J. Am. Chem. Soc. 2002, 124. 11582-11583.
    23. Y. Q. Zhu, W. K. Hsu, H. Terrones, et al., Morphology, structure and growth of WS_2 nanotubes [J], J. Mater. Chem., 2000. 10, 2570-2577.
    24. Feldman, Y.; Wasserman, E.; Srolovitz, D. J. et al.. High-Rate, Gas-Phase Growth of M0S2 Nested Inorganic Fullerenes and Nanotubes [J], Science, 1995, 267, 222-225.
    
    25. D. H. Galvan, R. Rangel. E. Adem, PRODUCTION AND CHARACTERIZATION OF MoSe_2 NANOTUBES BY ELECTRON IRRADIATION [J], Fullerenes, Nanotubes and Carbon Nanostructures, 2002, 10. 127-135.
    26. M Nath, C N R Rao. MoSe_2 and WSe_2 nanotubes and related structures [J], ChemCommun, 2001,21 ,2236-2237.
    27. Zhu, Y. Q.; Hsu, W. K.; Kroto, H. W.; Walton, D. R. M. An Alternative Route to NbS2 Nanotubes [J], J. Phys. Chem. B.. 2002,106, 7623-7626.
    28. Lu, Q.; Gao, F.; Zhao, D., One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes, and Nanovesicles by a Simple Organic Amine-Assisted Hydrothermal Process [J], Nano Lett. 2002, 2. 725-728.
    29. C. N. R. Rao, A. Govindaraj, et al, Surfactant-assisted synthesis of semiconductor nanotubes and nanowires [J], Appl. Phys. Lett. 2001, 78, 1853-1855.
    30. Hoyer, P. Formation of a Titanium Dioxide Nanotube Array [J], Langmuir 1996, 12,1411-1413.
    31. Wu, J.; Liu, S.; Wu, C; Chen, K.; Chen. L. Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes [J], Appl. Phys. Lett. 2002, 81, 1312-1314.
    32. Nakamura, H.; Matsui, Y. Silica Gel Nanotubes Obtained by the Sol-Gel Method [J], J. Am. Chem. Soc. 1995, 117, 2651-2652.
    33. M. Yada, M. Mihara, S. Mouri, et al., Rare Earth (Er, Tm, Yb, Lu) Oxide Nanotubes Templated by Dodecylsulfate Assemblies [J], Adv. Mater. 2002, 14, 309-313.
    34. Fang, Y. P.; Xu, A. W.; You, L. P.; et al., Hydrothermal Synthesis of Rare Earth (Tb, Y) Hydroxide and Oxide Nanotubes [J], Adv. Funct. Mater. 2003, 13, 955-960.
    35. Xu, A. W.; Fang, Y. P.; You, L. P.; et al., A Simple Method to Synthesize Dy(OH)_3 and Dy_2O_3 Nanotubes [J], J. Am. Chem. Soc. 2003, 125, 1494-1495.
    36. Singh, A. K.; Kumar, V.; Briere, T. M.; Kawazoe, Y. Cluster Assembled Metal Encapsulated Thin Nanotubes of Silicon [J], Nano Lett., 2002, 2, 1243-1248.
    37. Z. L. Wang, R. P. Gao, J. L. Gole, et al., Silica Nanotubes and Nanofiber Arrays [J], Adv. Mater., 2000, 12, 1938-1940.
    38. Xiao. Z. L.; Han. C. Y.; Welp, U. et al., Fabrication of Alumina Nanotubes and Nanowires by Etching Porous Alumina Membranes [J]. Nano Lett., 2002. 2. 1293-1297.
    39. Bao, J.; Xu. D.; Zhou, Q. et al., An Array of Concentric Composite Nanostructure of Metal Nanowires Encapsulated in Zirconia Nanotubes: Preparation. Characterization, and Magnetic Properties [J], Chem. Mater., 2002. 14, 4709-4713.
    40. Y. Q. Wang, G. Q. Hu. X. F. Duan, et al., Microstructure and formation mechanism of titanium dioxide nanotubes [J],Chem. Phys. Lett., 2002, 365, 427-431.
    41. G.T. Chandrappa. N. Steunou, S. Cassaignon, et al., Vanadium Oxide: From Gels to Nanotubes [J], J. Sol-Gel. Sci. Technol., 2003, 26, 593-596.
    42. Yubao Li and Yoshio Bando, Quasi-aligned MoO_3 nanotubes grown on Ta substrate[J], Chem. Phys. Lett., 2002, 364. 484-488.
    43. Shi, X.; Han, S.; Sanedrin, R. J., et al., Formation of Cobalt Oxide Nanotubes: Effect of Intermolecular Hydrogen Bonding between Co(III) Complex Precursors Incorporated onto Colloidal Templates [J], Nano Lett., 2002, 2, 289-293.
    44. Dai, Z. R.; Gole, J. L.; Stout, J. D. et al., Tin Oxide Nanowires, Nanoribbons, and Nanotubes [J], J. Phys. Chem. B., 2002, 106, 1274-1279.
    45. Hutleen, J. C.; Jirage, K. B.; Martin, C. R.; Introducing Chemical Transport Selectivity into Gold Nanotubule Membranes [J], J. Am. Chem. Soc. 1998, 120, 6603-6604.
    46. G. Tourillon, L. Pontonnier, J. P. Levy, and V. Langlais, V. Electrochemically Synthesized Co and Fe Nanowires and Nanotubes [J], Electrochem. Solid-State Lett. 2000.3.20-23.
    47. Han. C. C.; Bai. M. Y.; Lee, J. T. A New and Easy Method for Making Ni and Cu Microtubules and Their Regularly Assembled Structures [J], Chem. Mater. 2001, 13,4260-4268.
    48. Li, X.; Li, Y.; Li, S. et al., Single Crystalline Trigonal Selenium Nanotubes and Nanowires Synthesized by Sonochemical Process [J], Cryst. Growth Des. 2005. 5, 911-916.
    49. Li, Y.; Wang, J.; Deng, Z. et al., Bismuth Nanotubes: A Rational Low-Temperature Synthetic Route [J], J. Am. Chem. Soc. 2001, 123, 9904-9905.
    50. Jeong Won Kang, Jae Jeong Seo and Ho Jung Hwang. Structures of ultrathin copper nanotubes [J], J. Phys.: Condens. Matter, 2002,14, 8997-9005.
    51. Y Oshima, H K oizumi, et al., Evidence of a single-wall platinum nanotube [J], Phys. Rev. B, 2002, 65, 121401-121404.
    52. B Mayers, Y N Xia, Formation of Tellurium Nanotubes Through Concentration Depletion at the Surfaces of Seeds [J], Adv. Mater., 2002, 14, 279-282.
    53. D Golberg, P Dorozhkin, et al., 'Semiconducting B-C-N nanotubes with few layers [Chemical Physics Letters 359 (2002) 220-228]' [J], Chem. Phys.Lett., 2002,362,353-353.
    54. V Y Prinz, V A Seleznev, et al. Institute of Physics Conference Series. 2000, 166, 199.
    55. V. N. Tondare, C. Balasubramanian, S. V. Shende, et al., Field emission from open ended aluminum nitride nanotubes [J], Appl. Phys. Lett., 2002. 80, 4813-4815.
    56. Kalpana Awasthi, A. K. Singh, and O. N. Srivastava, Synthesis and Characterization of Lanthanum Carbide Nanotubes [J], J. Nanosci. Nanotechnol., 2002,2,67-71.
    57. Hernandez, B. A.; Chang, K.-S.; Fisher, E. R., et al., Sol-Gel Template Synthesis and Characterization of BaTiO3 and PbTiO3 Nanotubes [J], Chem. Mater., 2002, 14,480-482.
    58. Choi, J.; Musfeldt, J. L.; Wang, Y. J., et al., Optical Investigation of Na_2V_3O_7 Nanotubes [J], Chem. Mater., 2002,14, 924-930.
    
    59. Hsu, W. K.; Zhu, Y. Q.; Boothroyd, C. B., et al, Mixed-Phase W_xMo_yC_zS_2 Nanotubes[J],Chem.Mater.,2000,12,3541-3546.
    60.Dobley,A.;Ngala,K.;Yang,S.,et al..Manganese Vanadium Oxide Nanotubes:Synthesis,Characterization,and Electrochemistry[J],Chem.Mater.,2001.13.4382-4386.
    61.Y.Rosenfeld Hacohen,R.Popovitz-Biro,E.Grunbaum,et al..Vapor-Liquid-Solid(VLS)Growth of NiCl_2 Nanotubes via Reactive Gas Laser Ablation[J],Adv.Mater.,2002,14,1075-1078.
    62.Y.H.Kim.K.J.Chang,and S.G.Louie,Electronic structure of radially deformed BN and BC_3 nanotubes[J],Phys.Rev.B,2001,63.205408-205413.
    63.Niederberger,M.;Muhr,H.-J.;Krumeich,F.,et al.,Low-Cost Synthesis of Vanadium Oxide Nanotubes via Two Novel Non-Alkoxide Routes[J],Chem.Mater.,2000,12,1995-2000.
    64.O.Stephan,P.M.Ajayan,C.Colliex,et al.,Doping Graphitic and Carbon Nanotube Structures with Boron and Nitrogen[J],Science,1994.266.1683-1685.
    65.高永刚等,碳纳米管的力学行为[J],机械强度,200l,23,402-412.
    66.Yin,Z.;Sakamoto,Y.;Yu,J.;Sun,S.et al.,Microemulsion-Based Synthesis of Titanium Phosphate Nanotubes via Amine Extraction System[J],J.Am.Chem.Soc.2004,126,8882-8883.
    67.Fan,W.L.;Sun,S.X.;You,L.P.et al.,Solvothermal synthesis of Mg(OH)_2nanotubes using Mg_(10)(OH)_(18)Cl_2·5H_2O nanowires as precursors[J],J.Mater.Chem.2003,13,3062-3065.
    68.Huang,H.M.;Mao,S.;Feick,H.et al.,Room-Temperature Ultraviolet Nanowire Nanolasers[J],Science 2001,292,1897-1899.
    69.Armstrong,A.R.;Bruce,P.G.Synthesis of layered LiMnO_2 as an electrode for rechargeable lithium batteries[J],Nature 1996,381,499-500.
    70.Ammundsen,B.;Paulsen,J.Novel Lithium-Ion Cathode Materials Based on Layered Manganese Oxides[J],Adv.Mater.2001,13,943-956.
    71. A. M. Cao, J. S. Hu, H. P. Liang, et al., Self-Assembled Vanadium Pentoxide (V_2O_5) Hollow Microspheres from Nanorods and Their Application in Lithium-Ion Batteries [J], Angew. Chem. Int. Ed. 2005,44,4391-4395.
    72. Y. Shimakawa, Y. Kubo, T. Manako, Giant magnetoresistance in Ti_2Mn_2O_7 with the pyrochlore structure [J], Nature, 1996, 379, 53-55.
    73. S. Mori, C. H. Chen, S. W. Cheong, Pairing of charge-ordered stripes in (La, Ca)MnO_3 [J], Nature, 1998, 392, 473-476.
    74. A. Robert Armstrong, Peter G. Bruce, Synthesis of layered LiMnO_2 as an electrode for rechargeable lithium batteries [J], Nature, 1996, 38. 499-500.
    75. Hiroyuki Itoh, Shinichi Nagano, Tatsuo Urata, et al., Liquid phase Fischer-Tropsch synthesis on manganese-promoted ultrafme particles of iron used as a catalyst [J], Appl.Catal., 1991, 77, 37-43.
    76. F. Kapteijn, L. Singoredjo. A. Andreini, et al., Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia [J], Applied Catalysis B, 1994, 3, 173-189.
    77. Kazuhide M., Chao-Nan X., Masaharu H., A New Potential-Type Humidity Sensor Using EMD-Based Manganese Oxides as a Solid Electrolyte [J], J. Electrochem. Soc., 1994, 141, L35-L36.
    78. Wu, C.; Xie, Y.; Wang, D. et al., Selected-Control Hydrothermal Synthesis of γ-MnO_2 3D Nanostructures [J], J. Phys. Chem. B 2003, 107, 13583-13587.
    79. Wang, X.; Li, Y. Rational synthesis of α-MnO_2 single-crystal nanorods [J], Chem. Commun. 2002, 7, 764-765.
    80. Wang, X.; Li, Y. Selected-Control Hydrothermal Synthesis of α- and β-MnO_2 Single Crystal Nanowires [J], J. Am. Chem. Soc. 2002, 124, 2880-2881.
    81. Yuan, Z.Y.; Zhang, Z. L.; Du, G. H.; Ren, T.Z.; Su, B. L. A simple method to synthesise single-crystalline manganese oxide nanowires [J], Chem. Phys. Lett. 2003,378,349-353.
    82. F. A. AL-Sagheer and M. I. Zaki, Surface properties of sol-gel synthesized δ-MnO_2 as assessed by N_2 sorptometry. electron microscopy, and X-ray photoelectron spectroscopy [J]. Colloids Surf. A, 2000.173,193-204.
    83. Li, Z. Q.; Ding. Y.: Xiong, Y. J. et al., One-step solution-based catalytic route to fabricate novel α-MnO_2 hierarchical structures on a large scale [J], Chem. Commun. 2005. 7. 918-920.
    84. Ma, R.; Bando, Y.; Sasaki, T. Directly Rolling Nanosheets into Nanotubes [J]. J. Phys. Chem. B 2004. 108.2115-2119.
    85. Wang, X.; Li. Y. D. Rational Synthetic Strategy. From Layered Structure to MnO_2 Nanotubes [J], Chemistry Letters 2004, 33, 48-49.
    86. Wu, M. S.; Lee, J. T.: Wang, Y. Y. et al., Field Emission from Manganese Oxide Nanotubes Synthesized by Cyclic Voltammetric Electrodeposition [J], J. Phys. Chem. B 2004,108.16331-16333.
    87. Y. Xia, P. Yang, Y. Sun, et al., One-Dimensional Nanostructures: Synthesis, Characterization, and Applications [J], Adv. Mater. 2003, 15, 353-389.
    88. Sun, Y.; Xia, Y. Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process [J], Adv. Mater. 2002, 14, 833-837.
    89. Sun. Y.; Yin, Y.; Mayers, B. T. et al., Uniform Silver Nanowires Synthesis by Reducing AgNO_3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone) [J], Chem. Mater. 2002, 14, 4736-4745.
    90. Peng X. G., Manna L., Yang W.D., et al., Shape control of CdSe nanocrystals [J]. Nature, 2000, 404, 59-61.
    91. Peng, X. Mechanisms for the Shape-Control and Shape-Evolution of Colloidal Semiconductor Nanocrystals [J], Adv. Mater. 2003, 15, 459-463.
    92. Lee, S. M.; Cho, S. N.; Cheon, J. Anisotropic Shape Control of Colloidal Inorganic Nanocrystals [J], Adv. Mater. 2003, 15, 441-444.
    93. Guo. L.; Liu. C.; Wang, R. et al., Large-Scale Synthesis of Uniform Nanotubes of a Nickel Complex by a Solution Chemical Route [J], J. Am. Chem. Soc. 2004, 126,4530-4531.
    94. Ye, C.; Meng, G.; Jiang, Z. et al., Rational Growth of Bi_2S_3 Nanotubes from Quasi-two-dimensional Precursors [J], J. Am. Chem. Soc. 2002. 124. 15180-15181.
    95. Mayers, B.; Xia, Y. N. Formation of Tellurium Nanotubes Through Concentration Depletion at the Surfaces of Seeds [J]. Adv. Mater. 2002, 14, 279-282.
    96. Mo, M. S.; Zeng, J. H.; Liu, X. M. et al., Controlled Hydrothermal Synthesis of Thin Single-Crystal Tellurium Nanobelts and Nanotubes [J], Adv. Mater. 2002, 14, 1658-1662.
    97. Chen, J.; Herricks, T.; Geissler, M.; Xia, Y. Single-Crystal Nanowires of Platinum Can Be Synthesized by Controlling the Reaction Rate of a Polyol Process [J], J. Am. Chem. Soc. 2004, 126, 10854-10855.
    98. Chen, S.; Kimura, K. Synthesis of Thiolate-Stabilized Platinum Nanoparticles in Protolytic Solvents as Isolable Colloids [J], J. Phys. Chem. B 2001. 105, 5397-5403.
    99. Krueger, G. C.; Miller, C. W. A Study in the Mechanics of Crystal Growth from a Supersaturated Solution [J], J. Chem. Phys. 1953, 21, 2018-2023.
    100.Tang, Q.; Liu, Z. P.; Li, S. et al., Y. T. Synthesis of yttrium hydroxide and oxide nanotubes [J], J. Cryst. Growth. 2003,259,208-214.
    101.Lu, J.; Xie, Y.; Xu, F.; Zhu, L. Y. Study of the dissolution behavior of selenium and tellurium in different solvents—a novel route to Se, Te tubular bulk single crystals [J], J. Mater. Chem. 2002,12, 2755-2761.
    102.Chen, M.; Xie, Y.; Lu, J. et al., Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique [J], J. Mater. Chem. 2002, 12, 748-753.
    103.Xi, G.; Peng, Y.; Yu, W.; Qian, Y. Synthesis, Characterization, and Growth Mechanism of Tellurium Nanotubes [J], Cryst. Growth Des. 2005, 5, 325-328.
    1.张立德,牟季美,纳米材料和纳米结构[M],科学出版社,2002,P1-50.
    2.孟弘.纳米材料制备研究进展[J].矿产保护与利用,2003,4,14-18.
    3.P.Ball,L.Garwin,Science at the Atomic Scale[J],Nature,1992,355,761-766.
    4.D.L.Feldhein,C.D.Keating,Self-assembly of Single Electron Transistors and Related Devices[J],Chem.Soc.Rev,1998,27,1-13.
    5.李泉,曾广斌,席时权,纳米粒子[J],化学通报,1995,6,29-34.
    6.L.Yiping,G.C.Hadjipanayis,C.M.Sorensen,et al.,Magnetic Properties of Fine Cobalt Particles Prepared by Metal Atom Reduction[J],J.Appl.Phys,1990,67,4502-4504.
    7.张立德,纳米材料[M],化学工业出版社,2000,6-41.
    8.K.J.Klabunde,J.Stark,O.Koper,C.Mohs,et al.,Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry[J],J.Phys.Chem,1996,100,12142-12153.
    9.L.E.Brus,Electronic Wave Functions in Semiconductor Clusters:Experimental and Theory[J],J.Phys.Chem.1986,90,2555-2560.
    10.A.Henglein,Precursor can be Successfully Used in a Variety of Co-ordinating[J],Chem.Rev,1989,89,1861-1873.
    11.S.Linderoth,S.Morup,Chemically Prepared Amorphous Fe-B Particles:Influence of pH on the Composition[J],J.Appl.Phys,1990,67,4472-4474.
    12.傅英,须文兰,陆卫,半导体量子电子和光电子器件[J],物理学进展.2001,21.255-277.
    13.D.D.Awschalsom,M.A.Mccord,G.Grinstein,Observation of macroscopic spin phenomena in nanometer-scale magnets[J],Phys.Rev.Lett,1990,65,783-786.
    14.Jill K.Sakata,Andrew D.Dwoskin,John L.Vigorita,et al.,Film Formation of Ag Nanoparticles at the Organic-Aqueous Liquid Interface[J],J.Phys.Chem.B,2005,109,138-141.
    t5.Namchuk,M.N.;McCarter,J.D.;Becalski,A.,et al.,The Role of Sugar Substituents in Glycoside Hydrolysis [J]. J. Am. Chem. Soc., 2000. 122. 1270-1277.
    16. Peng. Z. A.; Peng, X. Mechanisms of the Shape Evolution of CdSe Nanocrystals [J]. J. Am. Chem. Soc., 2001, 123, 1389-1395.
    17. Temer S. Ahmadi, Zhong L. Wang, Travis C. Green, et al., Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles [J], Science. 1996, 272. 1924-1925.
    18. Charles P. Gibson and Kathy J. PutzerSynthesis and Characterization of Anisometric Cobalt Nanoclusters [J], Science. 1995, 267, 1338-1340.
    19. Wang, D.; Lieber. C. M. Inorganic materials: Nanocrystals branch out [J]. Nature Mater. 2003, 2, 355-356.
    20. Milliron, D. J.; Hughes, S. M.; Cui, Y. et al., Colloidal nanocrystal heterostructures with linear and branched topology [J], Nature 2004, 430, 190-195.
    21. Manna, L.; Milliron. D. J.; Meisel, A. et al., Controlled growth of tetrapod-branched inorganic nanocrystals [J], Nature Mater. 2003, 2, 382-385.
    22. Liu, H. T.; Alivisatos, A. P. Preparation of Asymmetric Nanostructures through Site Selective Modification of Tetrapods [J], Nano Lett. 2004, 4, 2397-2401.
    23. Chen, S. H.; Wang, Z. L.; Ballato, J. et al., Monopod, Bipod, Tripod, and Tetrapod Gold Nanocrystals [J], J. Am. Chem. Soc. 2003, 125, 16186-16187.
    24. Teng, X.; Yang, H. Synthesis of Platinum Multipods: An Induced Anisotropic Growth [J], Nano Lett. 2005, 5, 885-891.
    25. Jiang, C; Zhang, W.; Zou, G. et al., Precursor-Induced Hydrothermal Synthesis of Flowerlike Cupped-End Microrod Bundles of ZnO [J], J. Phys. Chem. B. 2005, 109,1361-1363.
    26. Jun, J. W.; Casula, M. F.; Sim, J. H. et al., Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO_2 Nanocrystals [J], J. Am. Chem. Soc. 2003, 125, 15981-15985.
    27. Lee, S. M.; Jun, Y. W.; Cho, S. N.; Cheon, J. Single-Crystalline Star-Shaped Nanocrystals and Their Evolution: Programming the Geometry of Nano-Building Blocks [J]. J. Am. Chem. Soc. 2002, 124. 11244-11245.
    28. Jun. Y. W.; Jung, Y. Y.; Cheon, J. Architectural Control of Magnetic Semiconductor Nanocrystals [J], J. Am. Chem. Soc. 2002, 124, 615-619.
    29. L. Zhu, H. Xiao, X. Liu, et al., Template-free synthesis and characterization of novel 3D urchin-like α-Fe_2O_3 superstructures [J], J. Mater. Chem, 2006, 16, 1794-1797.
    30. Yong Wang, Qingshan Zhu and Huigang Zhang Fabrication and magnetic properties of hierarchical porous hollow nickel microspheres [J], J. Mater. Chem, 2006, 16,1212-1214.
    31. Wu, C.; Xie, Y.; Wang, D. et al, Selected-Control Hydrothermal Synthesis of γ-MnO_2 3D Nanostructures [J], J. Phys. Chem. B 2003,107, 13583-13587.
    32. Yuan, J.; Li, W.-N.; Gomez, S.; Suib, S. L.Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures [J], J. Am.Chem.Soc., 2005,127, 14184-14185.
    33. Wang, L. Z.; Sakai, N.; Ebina, Y. et al., Inorganic Multilayer Films of Manganese Oxide Nanosheets and Aluminum Polyoxocations: Fabrication, Structure, and Electrochemical Behavior [J], Chem. Mater. 2005,17,1352-1357.
    34. Ding, Y. S.; Shen, X. F.; Sithambaram, S. et al., Synthesis and Catalytic Activity of Cryptomelane-Type Manganese Dioxide Nanomaterials Produced by a Novel Solvent-Free Method [J], Chem. Mater. 2005, 17, 5382-5389.
    35. Huang H. M, Mao S, Feick H, et al. Room-Temperature Ultraviolet Nanowire Nanolasers [J]. Science, 2001, 292,1897-1899.
    36. Armstrong A. R, Bruce P G. Synthesis of layered LiMnO_2 as an electrode for rechargeable lithium batteries [J]. Nature, 1996, 381, 499-500.
    37. Ammundsen B, Paulsen, J. Novel Lithium-Ion Cathode Materials Based on Layered Manganese Oxides [J]. Adv. Mater, 2001, 13, 943-956.
    38. Bach S, Henry M, Baffler N, et al. Sol-gel synthesis of manganese oxides [J]. J. Solid State Chem, 1990, 88, 325-333.
    39. Wang, X.; Li, Y. Rational synthesis of α-MnO_2 single-crystal nanorods [J], Chem. Commun. 2002, 7, 764-765.
    40.Wang,X.;Li,Y.Selected-Control Hydrothermal Synthesis of α- and β-MnO_2Single Crystal Nanowires[J].J.Am.Chem.Soc.2002,124.2880-2881.
    41.Zheng.D.;Sun.S.;Fan,W.et al.,One-Step Preparation of Single-Crystalline β-MnO_2 Nanotubes[J],J.Phys.Chem.B.2005.109.16439-16443.
    42.Yuan,J.;Li,W.-N.:Gomez,S.;Suib,S.L.Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures[J],J.Am.Chem.S oc.,2005,127,14184-14185.
    43.Yuan Z.Y,Zhang Z.L..Du G.H.,et al..A simple method to synthesise single-crystalline manganese oxide nanowires[J].,Chem.Phys.Lett.,2003.378.349-353.
    44.F.A.AL-Sagheer and M.I.Zaki,Surface properties of sol-gel synthesized δ-MnO_2 as assessed by N_2 sorptometry,electron microscopy,and X-ray photoelectron spectroscopy[J].Colloids Surf.A,2000,173,193-204.
    45.Shen X.F.Ding Y S..Hanson J.C..et al.In situ Synthesis of Mixed-Valent Manganese Oxide Nanocrystals:An In situ Synchrotron X -ray Diffraction Study [J].J.Am.Chem.Soc.,2006.128,4570-4571.
    46.Ding Y S.,Shen X.F Gomez S.,et al.Hydrothermal Growth of Manganese Dioxide into Three-Dimensional Hierarchical Nanoarchitectures[J].Adv.Funct.Mater.,2006,16,549-555.
    47.J.Yuan,K.Laubernds,J.Villegas,et al.Spontaneous Formation of Inorganic Paper-Like Materials[J].Adv.Mater,2004,16,1729-1732.
    48.Cheng F.Y,Zhao J.Z,Song W.et al.Facile Controlled Synthesis of MnO_2Nanostructures of Novel Shapes and Their Application in Batteries[J].Inorg.Chem.,2006,45.2038-2044.
    49.赵丽丽,王榕树.纳米γ-MnO_2薄膜制备及其催化性能研究[J].无机材料学报,2004,19,376-378.
    50.Li.Z.Q.;Ding,Y.;Xiong,Y.J.et al.,One-step solution-based catalytic route to fabricate novel α-MnO_2 hierarchical structures on a large scale[J],Chem.Commun.2005,7,918-920.
    51.Ding,Y.S.;Shen,X.F.;Gomez,S.et al.,Hydrothermal Growth of Manganese Dioxide into Three-Dimensional Hierarchical Nanoarchitectures[J],Adv.Funct.Mater.2006,16.549-555.
    52.Toupin,M.;Brousse,T.;Belanger,D.Charge Storage Mechanism of MnO_2Electrode Used in Aqueous Electrochemical Capacitor[J],Chem.Mater.2004.16.3184-3190.
    53.X.Wang,L.Gao,H.Zheng,et al.,Fabrication and electrochemical properties of α-Fe_2O_3 nanoparticles[J],J.Cryst.Growth 2004.269,489-492.
    54.Y.Zhang,T.Qiao and X.Hu,Preparation of Mn_3O_4 nanocrystallites by low-temperature solvothermal treatment of γ-MnOOH nanowires[J].J.Solid.State.Chem.2004.177,4093-4097.
    55.Xi G.,Peng Y,Zhu Y.Preparation of β-MnO_2 nanorods through a γ-MnOOH precursor route[J].Mater.Res.Bull.,2004.39,1641-1648.
    56.Sun X.,Ma C..Wang Y.Preparation and characterization of MnOOH and β-MnO_2 whiskers[J].Inorg.Chem.Commun.,2002.5.747-750.
    57.Y.Zhang,Y.Liu,F.Guo.et al..Single-crystal growth of MnOOH and beta-MnO_2microrods at lower temperatures[J].Solid State Commun.,2005,134,523-527
    58.Y.C.Zhang,T.Qiao,X.Y.Hu,Simple hydrothermal preparation of γ-MnOOH nanowires and their low-temperature thermal conversion to β-MnO_2 nanowires [J].J.Cryst.Growth.2005,280,652-657.
    59.董喜燕,张兴堂,程纲,化学学报[J],2004,62,2441-2143.
    60.Z.H Yang,Y.C.Zhang,W X.Zhang,et al.,Nanorods of manganese oxides:Synthesis,characterization and catalytic application[J],J.Solid state Chem.,2006,179,679-684.
    61.W.X.Zhang,Z.H.Yang,Y Liu,et al..Controlled synthesis of Mn_3O_4nanocrystallites and MnOOH nanorods bv a solvothermal method[J].J.Cryst.Growth,2004,263,394-399.
    62.Benjamin Folch,Joulia Larionova,Yannick Guari,et al.,Synthesis of MnOOH nanorods by cluster growth route from[Mn_(12)O_(12)(RCOO)_(16)(H_2O)_n](R=CH_3,C_2H_5).Rational conversion of MnOOH into Mn_3O_4 or MnO_2 Nanorods[J].J.Solid State Chem.,2005,78,2368-2375.
    63. M. Ocana, Uniform particles of manganese compounds obtained by forced hydrolysis of manganese(II) acetate [J]. Colloid Polym.Sci.. 2000, 278. 443-449.
    64. Zhang W.X., Liu Y, Yang Z.H., et al. Synthesis and characterization of nanostructured Li_2MnO_3 from nanostructured MnOOH precursors [J]. Solid State Commun., 2004. 131, 441-445.
    65. M. Okada, Y. Lee and M.Yoshio, Cycle characterizations of LiM_xMn_(2-x)O_4 (M=Co. Ni) materials for lithium secondary battery at wide voltage region [J]. J.Power.Sources.2000, 90,196-200.
    66. Y S. Lee, C. S. Yoon, Y K. Sun, et al. Structural Characterization of Mn-Based Materials Using y-MnOOH Source [J]. Electrochemical and Solid State Letter. 2002, 5,A1-A4.
    67. Pramod K. Sharma and M. S. Whittingham, The role of tetraethyl ammonium hydroxide on the phase determination and electrical properties of y-MnOOH synthesized by hydrothermal [J]. Mater.Leters.2001, 48, 319-323.
    68. Jun, Y. W.; Lee. J. H.; Choi. J. S.; Cheon, J. Symmetry-Controlled Colloidal Nanocrvstals: Nonhydrolytic Chemical Synthesis and Shape Determining Parameters [J]. J. Phys. Chem. B. 2005,109, 14795-14806.
    69. Zhang, W.; Xu, L.; Tang, K. et al. Solvothermal Synthesis of NiS 3D Nanostructures [J]. Eur. J. Inorg. Chem. 2005, 4, 653-656.
    70. Puntes, V. F.; Krishnan, K.M.; Alivisatos, A. P., Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt [J]. Science 2001, 291, 2115-2117.
    71. Jun, Y. W.; Lee, S. M.; Kang. N. J. Cheon, J.. Controlled Synthesis of Multi-armed CdS Nanorod Architectures Using Monosurfactant System [J]. J. Am. Chem. Soc. 2001. 123, 5150-5151.
    72. Chu. H.; Li, X.; Chen, G. et al. Shape-Controlled Synthesis of CdS Nanocrvstals in Mixed Solvents [J]. Cryst. Growth Des. 2005. 5, 1801-1806.
    1.Iijima,S.Helical microtubules of graphitic carbon[J],Nature 1991,354,56-58.
    2.Pai,R.A.;Humayun,R.;Schulberg,M.T.et al.,Mesoporous Silicates Prepared Using Preorganized Templates in Supercritical Fluids[J],Science 2004,303,507-510.
    3.Law M,Goldberger J,Yang PD,Semiconductor nanowires and nanotubes[J],Annu.Rev.Mater.Res.2004.34,83-122.
    4.Cushing,B.L.;Kolesnichenko,V.L.;O'Connor,C.J.,Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles[J],Chem.Rev.2004,104,3893-3946.
    5.Jun Y.W.,Seo J.W.,Sang J.O.,Cheon J.Recent advances in the shape control of inorganic nano-building blocks[J],Coordination Chemistry Reviews,2005,249,1766-1775.
    6.F.Li,Y.Ding,R Gao,X.Xin,and Z.L.Wang.Single-Crystal Hexagonal Disks and Rings of ZnO:Low-Temperature,Large-Scale Synthesis and Growth Mechanism[J],Angew.Chem.Int.Ed.2004,43,5238-5242.
    7.Lu,W.;Ding,Y.;Chen,Y.;Wang,Z.L.;Fang,J.Bismuth Telluride Hexagonal Nanoplatelets and Their Two-Step Epitaxial Growth[J],J.Am.Chela.Soc.2005,127,10112-10116.
    8.Sampanthar,J.T.;Zeng,H.C.Arresting Butterfly-Like Intermediate Nanocrystals of γ-Co(OH)_2 via Ethylenediamine-Mediated Synthesis[J],J.Am.Chem.Soc.2002,124,6668-6675.
    9.Liu,Z.;Ma,R.;Osada,M.;Takada,K.;Sasaki,T.Selective and Controlled Synthesis of α-and β-Cobalt Hydroxides in Highly Developed Hexagonal Platelets[J],J.Am.Chem.Soc.2005,127,13869-13874.
    10.Wang,W.Z.;Poudel,B.;Yang,J.et al.,High-Yield Synthesis of Single-Crystalline Antimony Telluride Hexagonal Nanoplates Using a Solvothermal Approach[J],J.Am.Chem.Soc.2005,127,13792-13793.
    11.Maillard,M.;Giorgio,S.;Pileni,M.P.,Silver Nanodisks[J],Adv.Mater.2002,14, 1084-1086.
    12. Sun. X.: Dong. S.: Wang, E. Large-Scale Synthesis of Micrometer-Scale Single-Crystalline Au Plates of Nanometer Thickness by a Wet-Chemical Route [J], Angew. Chem., Int. Ed. 2004. 46, 6360-6063.
    13. Y. F. Shen, R. P. Zerger, R. N. DeGuzman, et al., Manganese Oxide Octahedral Molecular Sieves: Preparation. Characterization, and Applications [J], Science 1993,260,511-515.
    14. Y. C. Son, V. D. Makwana, A. R. Howell. S. L. Suib, Efficient, Catalytic. Aerobic Oxidation of Alcohols with Octahedral Molecular Sieves [J]. Angew. Chem. Int. Ed. 2001, 40, 4280-4283.
    15. O. Giraldo, S. L. Brock. W. S. Willis, et al., Manganese Oxide Thin Films with Fast Ion-Exchange Properties [J], J. Am. Chem. Soc. 2000, 122, 9330-9331.
    16. Armstrong A. R., Bruce P G. Synthesis of layered LiMnO_2 as an electrode for rechargeable lithium batteries [J]. Nature, 1996, 381, 499-500.
    17. R. Ma, Y. Bando, L. Zhang. T. Sasaki, Layered MnO_2 Nanobelts: Hydrothermal Synthesis and Electrochemical Measurements [J], Adv. Mater. 2004, 16, 918-922.
    18. Chabre, Y.; Pannetier. J. Structural and electrochemical properties of the proton / γ-MnO_2 system [J]. Prog. Solid State Chem. 1995, 23, 1-13.
    19. D. Balachandran, D. Morgan, G. Ceder, First Principles Study of H-insertion in MnO_2 [J], J. Solid State Chem. 2002, 166, 91-103.
    20. Manickam, M.; Singh, P.; Issa, T. B. et al., Lithium insertion into manganese dioxide electrode in MnO_2/Zn aqueous battery: Part I. A preliminary study [J], J. Power Sources 2004. 130, 254-259.
    21. Whittingham, M. S.; Zavalij P. Y. Manganese dioxides as cathodes for lithium rechargeable cells: the stability challenge [J], Solid State Ionics 2000, 131, 109-115.
    22. Wang, X.; Li, Y. D. Selected-Control Hydrothermal Synthesis of α- and β-MnO_2 Single Crystal Nanowires [J], J. Am. Chem. Soc. 2002, 124, 2880-2881.
    23. Li, Z. Q.; Ding, Y.; Xiong, Y. J. et al., One-step solution-based catalytic route to fabricate novel α-MnO_2 hierarchical structures on a large scale [J], Chem. Commun. 2005, 7,918-920.
    24. Zheng, D.; Sun, S.; Fan, W. et al., One-Step Preparation of Single-Crystalline β-MnO_2 Nanotubes [J], J. Phys. Chem. B. 2005,109,16439-16443.
    25. Li, W. N.; Yuan. J.; Gomez-Mower, S.; Sithambaram, S.; Suib, S. L. Synthesis of Single Crystal Manganese Oxide Octahedral Molecular Sieve (OMS) Nanostructures with Tunable Tunnels and Shapes [J], J. Phys. Chem. B. 2006, 110, 3066-3070.
    26. Shen X.F, Ding Y. S, Liu J. et al., Control of Nanometer-Scale Tunnel Sizes of Porous Manganese Oxide Octahedral Molecular Sieve Nanomaterials [J], Adv. Mater. 2005, 17,805-809.
    27. Zheng, D.; Yin, Z.; Zhang, W. et al., Novel Branched γ-MnOOH and β-MnO_2 Multipod Nanostructures [J], Cryst. Growth Des. 2006, 6, 1733-1735.
    28. Cheng F. Y, Zhao J. Z, Song W. et al. Facile Controlled Synthesis of MnO_2 Nanostructures of Novel Shapes and Their Application in Batteries [J]. Inorg. Chem., 2006, 45, 2038-2044.
    29. Chabre, Y.; Pannetier, J. Structural and electrochemical properties of the proton / γ-MnO_2 system [J], Prog. Solid State Chem. 1995, 23,1-13.
    30. Yuan Z. Y, Zhang Z. L., Du G. H., et al.. A simple method to synthesise single-crystalline manganese oxide nanowires [J], Chem. Phys. Lett., 2003, 378, 349-353.
    31. A. Kozawa, J. F. Yeager, Cathodic Reduction Mechanism of MnOOH to Mn(OH)_2 in Alkaline Electrolyte [J], J. Electrochem. Soc. 1968, 115, 1003-1007.
    32. P.M. De Wolff, J.W. Visser, R. Giovanoli and R. Briitsch. Chimia, 1978, 32, 257.
    33. De Wolff P M., Interpretation of some γ-MnO_2 diffraction patterns [J]. Acta Cryst., 1959,12,341-345.
    34. Ruetschi P. Cation-Vacancy Model for MnO_2 [J]. J Electrochem Soc., 1984, 131, 2737-2744.
    
    35. Pannetier J. [J].Progress in Batteries & Battery Materials , 1992, 11, 51-55.
    36. Chabre Y, Pannetier J., Structural and electrochemical properties of the proton/γ-MnO_2 system [J]. Progress in Solid State Chemistry, 1995, 23, 1-130.
    37.Simon D E,Anderson T N.Elliott C D.[J].ITE Letters,2000.1,131.
    38.Jouanneau S,Salle A L G L,Guyomard D.Influence of structural parameters on proton insertion in γ-MnO_2[J].Electrochimica Acta,2003,48.11-20.
    39.夏熙,木合塔尔·依米提.γ-MnO_2结构模型现状与EMD的性能[J],.电池工业.2002,7,169-173.
    40.许并社等.纳米材料及应用技术[Mj.化学工业出版社,2004,1-12.
    41.陈光崔崇.新材料概论[M].科学出版社,2003,258-259.
    42.X Wang and Y Li,Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods[J],Chem.Eur.J.2003,9,300-306.
    43.Yuan Z.Y.Zhang Z.L.,Du G.H.,et al..A simple method to synthesise single-crystalline manganese oxide nanowires[J],Chem.Phys.Lett.,2003,378.349-353.
    44.Y.Xiong,Y.Xie,Z.Li,C.Wu,Growth of Well-Aligned γ-MnO_2 Monocrystalline Nanowires through a Coordination-Polymer-Precursor Route[J],Chem.Eur.J..2003,9,1645-1651.
    45.J.Yuan.K.Laubernds.Q.Zhang,et al..S.elf-Assembly of Microporous Manganese Oxide Octahedral Molecular Sieve Hexagonal Flakes into Mesoporous Hollow Nanospheres[J],J.Am.Chem.Soc.2003,125,4966-4967.
    46.Wu,C.;Xie,Y.;Wang,D.et al.,Selected-Control Hydrothermal Synthesis of γ-MnO_2 3D Nanostructures[J],J.Phys.Chem.B 2003,107,13583-13587.
    47.Sayle,T.X.T.;Catlow,C.R.A.;Maphanga,R.R.et al.,Generating MnO_2Nanoparticles Using Simulated Amorphization and Recrystallization[J],J.Am.Chem.Soc.2005,127,12828-12837.
    48.Thi X.T.Sayle,C.Richard A.Catlowb,R.Rapell.Maphanga,et al.,Evolving microstructure in MnO_2 using amorphisation and recrystallisation[J],Journal of Crystal Growth,2006,294,118-129.
    49.Hill,J.R.;Freeman.C.M.;Rossouw,M.H.Understanding γ-MnO_2 by molecular modeling[J],J.Solid State Chem.2004,177,165-175.
    50.Fritsch S.;Post E.J.;Suib,S.L.et al.,Thermochemistry of Framework and Layer Manganese Dioxide Related Phases Chem.Mater.1998,10,474-479.
    51.X Wang and Y Li,Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods[J],Chem.Eur.J.2003,9,300-306.
    52.Brock,S.L.;Sanabria,M.;Suib,S.L.et al.,Particle Size Control and Self-Assembly Processes in Novel Colloids of Nanocrystalline Manganese Oxide [J],J.Phys.Chem.B.1999,103,7416-7428.
    53.夏熙编译.二氧化锰手册[M].四川科技出版社,1994,138-164.
    54.Liu X y,Boek E S,Brieis W J and Bennema P Searching for certainty[J],Nature,1995,374,23-23.
    55.W.D Shi,L.H Huo,H.S Wang,et al.,Hydrothermal growth and gas sensing property of flower-shaped SnS_2 nanostructures[J],Nanotechnology,2006,17,2918-2924.
    56.S.M.Lee,S.N.Cho,J.W.Cheon,Anisotropic Shape Control of Colloidal Inorganic Nanocrystals[J],Adv.Mater.2003,15,441-444.
    57.J.Park,E.Kang,C.J.Bac,et al.,Synthesis,Characterization,and Magnetic Properties of Uniform-sized MnO Nanospheres and Nanorods[J],J.Phys.Chem.B,2004,108,13594-13598.
    58.G.H.Lee,S.H.Huh,J.W.Jeong,et al.,Anomalous Magnetic Properties of MnO Nanoclusters[J],J.Am.Chem.Soc.2002,124,12094-12095.
    59.W.S.Seo,H.H.Jo,K.Lee,et al.,Size-Dependent Magnetic Properties of Colloidal Mn_3O_4 and MnO Nanoparticles[J],Angew.Chem.Int.Ed.2004,43,1115-1117.
    60.G.L.Wang,B.Tang,L.H.Zhuo,et al.,Facile and Selected-Control Synthesis of β-MnO_2 Nanorods and Their Magnetic Properties[J],Eur.J.Inorg.Chem.2006,11,2313-2317.
    61.J.B.Yang,X.D.Zhou,W.J.James,et al.,Growth and magnetic properties of MnO_(2-δ)nanowire microspheres[J],Appl.Phys.Lett.,2004,85,3160-3162
    62.V.E.Naish and E.A.Turov,Fiz.Met.Metalloved.1961,11,321.
    63.V.E.Naish and E.A.Turov,Fiz.Met.Metalloved.1960,9,10.
    1.Jose,M.;Masahiro,Y.Hydrothermal Processing of High-Quality Multiwall Nanotubes from Amorphous Carbon[J],J.Am.Chem.Soc.,2001,123,741-742.
    2.郭宪吉,侯文华,颜其洁,陈懿.层柱过渡金属氧化物[J],科学通报,2002,22.1681-1689.
    3.Zhang,L.;Cheng,P.Chin.Recent Advances in the Study of the Optical and Electronic Properties of Organic-Inorganic Nanocomposite Materials[J],J.Inorg.Chem.,2003,19,7-14.
    4.Zhang,L.L.;Lu,L.D.Review on inorganic layered compound inorganic layered compound and its application[J],Chinese New Chem.Mater.,2004,3,1-4.
    5.Nalwa,H.S.Handbook of nanostructured material and nanotechnology[M].San Diego:Academic Press,1999,Chap.1.
    6.Masato Machida,Xu Wei Ma,Hideki Taniguchi,et al.,Pillaring and photocatalytic property of partially substituted layered titanates,Na_2Ti_(3-x)M_xO_7and K_2Ti_(4-x)M_xO_9(M=Mn,Fe,Co,Ni,Cu)[J],Journal of molcular Catalysis A:ChemiCal,2000,155,131-142.
    7.Fabrice Leroux and Christine Taviot-Guého,Fine tuning between organic and inorganic host structure:new trends in layered double hydroxide hybrid assemblies[J],J.Mater.Chem.,2005,15,3628-3642.
    8.Zeng W.,Li J.,Mao Z.,et al.,Synthesis,Oxygenation and Catalytic Oxidation Performance of Crown Ether-Containing Schiff Base-Transition Metal Complexes[J],Adv.Synth.& Cataly.,2004,346,1385-1391.
    9.E.M.Martin Del Valle,Cyclodextrins and their uses:a review[J],Process Biochemistry,2004,39,1033-1046.
    10.Rousseau C,Christensen B,Mikael Bols,Artificial Epoxidase Ⅱ.Synthesis of Cyclodextrin Ketoesters and Epoxidation of Alkenes[J],Eur.J.Organic Chem.,2005,13,2734-2739.
    11.路艳罗,卫敏,杨文胜等.空气条件下高温固相合成层状LiMnO_2及其离子交换规律,高等学校化学学报[J],2002,11,2021-2025.
    12.闰俊萍,张中太,唐子龙等.插层复合材料的光催化研究进展[J],功能材料,2003,34,5,482-484.
    13.王玲玲,吴季怀.层状光催化纳米复合材料[J],化工新型材料2002,30,6-9.
    14.徐悦华,古国榜.光催化剂改性及固定的研究进展[J],材料导报2001,15,33-35.
    15.章永化,龚克成.聚合物/层状无机物纳米复合材料的研究进展[J],材料导报1998,12,61-65.
    16.V.Prevot,C.Forano,J.P.Besse,Hybrid derivatives of layered double hydroxides [J],Applied Clay Science 2001,18,3-15.
    17.G.Alberti,M.Bartocci,M.Santarelli,et al.,Mechanism of the Formation of Organic Derivatives of γ-Zirconium Phosphate by Topotactic Reactions with Phosphonic Acids in Water and Water-Acetone Media[J],Inorg.Chem.1997,36,2844-2849.
    18.B.Bujoli,P.Janvier,J.Villeras,et al.,Lamellar ferric oxychloride properties from intercalation to topochemical reactions[M].In:A.P.Legrand,S.Flandrois,Eds.;Chemical Physics of Intercalation.NATO ASI Ser.B,Phys.1987,172,411-414.
    19.C.Sanchez,Materiaux Hybrides[M].Arago 17.Ed Masson,Paris.1996,27-31.
    20.Rabu,P.;Drillon,M.In Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites[M];Nalwa,H.S.,Ed.;American Scientific Publishers:Stevenson Ranch,2003,1,297.
    21.P.Rabu and M.Drilton,Layered Organic-Inorganic Materials:A Way towards Controllable Magnetism[J],Adv.Eng.Mater.2003,5,198-210.
    22.P.Rabu,M.Drillon.K.Awaga,W.Fujita,T.Sekine,Magnetism:Molecules to Materials Ⅱ[M],Ed.by J.S.Miller and M.Drillon(Wiley VCH,Weinheim, Germany) 2002, 357-395.
    23. S. Yamanaka, T. Sako, and M. Hattori, Anion-Exchange in Basic Copper Acetate [J], Chem. Lett. 1989,18,1869-1872.
    24. S. Yamanaka, T. Sako, K. Seki, et al., Anion exchange reactions in layered basic copper salts [J], Solid State Ionics, 1992. 53-56, 527-533.
    25. A. J. Lopez, E. R. Castellon, P. O. Pastor, et al., Layered basic copper anion exchangers: chemical characterisation and X-ray absorption study [J], J. Mater. Chem., 1993, 3, 303-307.
    26. N. Masciocchi, E. Corradi, A.Sironi, et al., Preparation, Characterization, andab initioX-Ray Powder Diffraction Study of Cu_2(OH)_3(CH_3COO)·H_2O [J], J. Solid State Chem. 1997, 131,252-262.
    27. A. Demessence, G. Rogez, P. Rabu, Grafting of Thiophenecarboxylates into Magnetic Transition Metal Hydroxide Layers [J], Chem. Mater., 2006, 18, 3005-3015.
    28. W. Fujita, K. Awaga, Magnetic Properties of Cu2(OH)3(alkanecarboxylate) Compounds: Drastic Modification with Extension of the Alkyl Chain [J], Inorg. Chem. 1996,35,1915-1917.
    29. S.H. Park, C.H. Lee, C.E. Lee, et al., Magnetic orders in copper hydroxide n-alkylsulfonate layered compounds [J], Mater. Res. Bull. 2002, 37, 1773-1779.
    30. M. Drillon, C. Hornick, V. Laget, et al., Recent Experimental and Theoretical Studies of Molecular and Layered Metal-Radical Based Magnets [J], Mol. Cryst. Liq. Cryst. 1995,273, 125-140.
    31. P. Rabu, S. Rouba, V. Laget, et al., Ferro/antiferromagnetism mediated by interlayer organic spacers in layered copper(II) compounds [J], Chem. Commun., 1996,10,1107-1108.
    32. V. Laget, P. Rabu, C. Hornick, et al., New Layered Hydroxide-Based Organic/Inorganic Ferromagnets with Basal Spacings up to 40 A [J], Mol. Cryst. Liq. Cryst. 1997,305,291-302.
    33. W. Fujita, K. Awaga. EXAFS Study of Two-Dimensional Organic/Inorganic Hybrid Nanocomposites, Cu_2(OH)_3(n-C_mH_(2m+1)COO) (m = 0, 1, 7, 8, 9): Structural Modification in the Inorganic Layer Induced by the Interlayer Organic Molecule [J], Inorg. Chem. 1997. 36. 196-199.
    34. M. Meyn, K. Beneke, G. Lagaly, Anion-exchange reactions of hydroxy double salts [J], Inorg. Chem. 1993, 32, 1209-1215.
    35. M. Meyn, K. Beneke, G. Lagaly, Anion-exchange reactions of layered double hydroxides [J]. Inorg. Chem. 1990, 29, 5201-5207.
    36. S. Yamanaka, T. Sako, K. Seki, et al., Anion exchange reactions in layered basic copper salts [J]. Solid State Ionics, 1992, 53-56, 527-533.
    37. P. Rabu, M. Drillon and C. Hornick, Structural and spectroscopic study of organic-inorganic transition metal based layered magnets [J], Analusis, 2000, 28, 103-108.
    38. V. Laget, C. Hornick. P. Rabu, et al., Molecular magnets: Hybrid organic-inorganic layered compounds with very long-range ferromagnetism [J]. Coordination Chemistry Reviews 1998, 178-180, 1533-1553.
    39. M. Kurmoo, Hard Magnets Based on Layered Cobalt Hydroxide: The Importance of Dipolar Interaction for Long-Range Magnetic Ordering [J], Chem. Mater. 1999, 11,3370-3378.
    40. V. Laget, C. Hornick, P. Rabu, et al., Molecular magnets: Hybrid organic-inorganic layered compounds with very long-range ferromagnetism [J], Coordination Chemistry Reviews 1998, 178-180, 1533-1553.
    41. V. Laget. M. Drillon, C. Hornick, et al., Copper hydroxide based organic/inorganic ferromagnets [J], Journal of Alloys and Compounds 1997, 262-263, 423-427.
    42. L. Poul, N. Jouini. F. Fievet, Layered Hydroxide Metal Acetates (Metal = Zinc, Cobalt, and Nickel): Elaboration via Hydrolysis in Polyol Medium and Comparative Study [J], Chem. Mater. 2000, 12, 3123-3132.
    43. V. Laget, S. Rouba, P. Rabu, et al., Long range ferromagnetism in tunable cobalt(II) layered compounds up to 25 A apart [J], Journal of Magnetism and Magnetic Materials 1996,154, L7-L11.
    44. A. Cabanas, J. Li, P. Blood, T. Chudoba. et al., Synthesis of nanoparticulate yttrium aluminum garnet in supercritical water-ethanol mixtures [J], J. Supercritical Fluids, 2007,40,284-292.
    45. X. Li, H. Liu, J.Wang, et al., Production of Nanosized YAG Powders with Spherical Morphology and Nonaggregation via a Solvothermal Method [J], J. Am. Ceram. Soc. 2004, 87, 2288-2290.
    46. H.I. Chen, H.Y. Chang, Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents [J]. Colloids and Surfaces A, 2004, 242,61-69.
    47. M. Dixit, G. N. Subbanna, P. V. Kamath, Homogeneous precipitation from solution by urea hydrolysis: a novel chemical route to the a-hydroxides of nickel and cobalt [J], J. Mater. Chem. 1996, 6, 1429-1432.
    48. F. Cavani, F. Trifiro, A. Vaccari, Hydrotalcite - type anionic clays: preparation properties and applications [J], Catal. Today 1991,11, 173-301.
    49. R. S. Jayashree and P. V. Kamath, Electrochemical synthesis of α-cobalt hydroxide [J], J. Mater. Chem, 1999, 9, 961-963.
    50. Y. Zhu, H. Li, Y. Koltypin and A. Gedanken, Preparation of nanosized cobalt hydroxides and oxyhydroxide assisted by sonication [J], J. Mater. Chem, 2002, 12, 729-733.
    51. V. Laget, C. Hornick, P. Rabu, M. Drillon, Hybrid organic-inorganic layered compounds prepared by anion exchange reaction: correlation between structure and magnetic properties [J], J. Mater. Chem, 1999, 9,169-174.
    52. R.C. Reynolds, in: D.L. Bish, J.E. Post (Eds.), Modern powder diffraction (Reviews in mineralogy Vol. 20) paper [M], 1989.
    53. C. Hornick, P. Rabu, M. Drillon, Hybrid organic-inorganic multilayer materials: influence of n electrons as magnetic media in a series of bridged-layer compounds M_2(OH)_(4-x)A_(x/2) (M=Cu(II) or Co(II). A=dicarboxylate anion) [J]. Polyhedron. 2000. 19. 259-266.
    54. P. Jeevanan, Y. Koltypin, A. Gedanken et al., Synthesis of a-cobalt(II) hydroxide using ultrasound radiation [J], J. Mater. Chem., 1999, 10, 511-514.
    55. M. Taibi, S. Ammar, N. Jouini. et.al., Layered nickel hydroxide salts: synthesis, characterization and magnetic behaviour in relation to the basal spacing [J], J. Mater. Chem., 2002. 12, 3238-3244.
    56. H. C. Zeng, Z. P. Xu. M. Qian, Synthesis of Non-Al-Containing Hydrotalcite-like Compound Mg_(0.3)Co_(0.6)~ⅡCo_(0.2)~Ⅲ(OH)_2(NO_3)_(0.2)·H_2O [J], Chem. Mater. 1998, 10,
    2277-2283.
    57. R. L. Carlin, Magnetochemistry [M], Springer-Verlag, Berlin, 1986.
    58. F. E. Mabbs and D. J. Machin, Magnetism and transition metal complexes [M], Chapman and Hall Ltd., London, 1973.
    59. O. Kahn, Molecular Magnetism [M], VCH Publishers, New York.
    60. A. Demessence, G. Rogez, P. Rabu, Grafting of Thiophenecarboxylates into Magnetic Transition Metal Hydroxide Layers [J], Chem. Mater., 2006, 18, 3005-3015.
    1. Kim H S, Lee B J. Prak D H, Kwon Y S. Fabrication of an organic-inorganic hybrid LB film of a magnetic polyoxometalate [J], Syn Matals, 2005, 153, 469-472.
    2. Petrucci G L, Fenwick D, Kakkar A K. A new catalytic hybrid material from simple acid-base hydrolytic chemistry [J], J. Mol. Catal. A: Chem, 1999, 146, 309-315.
    3. Lebeau B, Sanchez C. Sol-gel derived hybrid inorganic-organic nanacomposites for optics [J], Curr. Opin. Solid St. M. Sci., 1999, 4, 11-23.
    4. Houbertz R, Domann G, Cronauer C, et al., Inorganic-organic hy- brid materials for ap-plication in optical devices [J], Thin Solid Films, 2003,442, 194-200.
    5. Liu P, Bandara J, Lin Y, Elgin D. Formation of Nanocrystalline Titanium Dioxide in Perfluorinated Ionomer Membrane [J], Langmuir, 2002, 18, 10398-10401.
    6. Rollins H W, Lin F, Johnson J, et al., Nanoscale cavities for nanoparticles in perfluorinated ionomer membranes [J], Langmuir, 2000,16, 8031-8036.
    7. Siuzdak A, Start R, Mauritz A. Surlyn/titanate hybrid materials via polymer in situ sol-gel chemistry [J], J Polym Sci B: Polym Phys, 2003, 41,11-22.
    8. Fan F R, Liu H Y, Bard J. Integrated chemical system: photocata-lysis at TiO_2 incorporated into nafion and clay [J], J Phys Chem, 1985, 89, 4418-4420.
    9. Embs W F, Wung L J, Prasad N. Stucture and morphology of sol- gel prepared polymer-ceramic composite thin films [J], Polym, 1993, 34, 4607-4612.
    10. Wang S. F, Hu Yuan, et al., Preparation and flammability properties of polyethylene/clay nanocomposites by melt intercalation method from Na~+ montmorillonite [J], Mater Lett, 2003, 57, 2675-2678.
    11. Alexander B. Morgan, Richard H. Harris Jr., Takashi Kashiwagi, et al, Flammability of polystyrene layered silicate (clay) nanocomposites: Carbonaceous char formation [J], Fire Mater, 2002, 26, 247-253.
    12. Levy D. Avnir D. Effects of the changes in the properties of silica cage along the gel/xerogel transition on the photochromic behavior of trapped spiropyrans [J], J. Phys. Chem., 1988, 92, 4734-4738.
    13. Schaudel B, Guermeur C, Sanchez C, et al. Spirooxazine- and spiropyran-doped hybrid organic-inorganic matrices with very fast photochromic responses [J]. J. Mater. Chem., 1997, 7, 61-65.
    14. Biteau J, Chaput F, Lahlil K. et al., Large and Stable Refractive Index Change in Photochromic Hybrid Materials [J], Chem. Mater. 1998. 10,1945-1950.
    15. B. D. Mac Craith, C. Mcdonagh, G. OKeeffe, et al. Fibre optic chemical sensors based on evanescent wave interactions in sol-gel-derived porous [J], J. Sol-gel Sci. Technol., 1994,2,661-665.
    16. Narang U. Gvishi R, Bright F V, et al., Sol-gel-derived micron scale optical fibers for chemical sensing [J], J. Sol-gel Sci. Technol., 1996, 1, 113-119.
    17. Franville A C, Zambon D, Mahiou R, et al. Synthesis and optical features of an europium organic-inorganic silicate hybrid [J], J. Alloys and Compounds, 1998, 275-277.831-834.
    18. L.Y. Jiang, C. M. Leu, K. H. Wei, Layered Silicates/Fluorinated Polyimide Nanocomposites for Advanced Dielectric Materials Applications [J], Adv. Mater., 2002, 14, 426-429.
    19. Schmidt H. New type of non-crystalline solids between inorganic and organic materials [J], J. Non-Cryst. Solids, 1985, 73, 681-691.
    20. Wilkes GL , Orler B , Huang H H. Structure-property behavior of new hybrid materials incorporating oligomeric species into sol-gel glasses. 3. Effect of acid content, tetraethoxysilane content, and molecular weight of poly(dimethylsiloxane [J], 1987, 20, 1322-1330.
    21. C. Sanchez, F. Babonneau, Materiaux Hybrides [M], Observatoire Francais des Techniques Avancees - Masson - Paris, Milan, Barcelone, Bonn, 1996.
    
    22. C. Sanchez, G. J. d. A. A. Soler-Illia, F. Ribot, et al., Designed Hybrid Organic-Inorganic Nanocomposites from Functional Nanobuilding Blocks[J],Chem.Mater.,2001,13,3061-3083.
    23.C.Sanchez,F.Ribot,Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry[J],New J.Chem.,1994,18,1007-1047.
    24.葛建芳,卢凤纪.溶胶-凝胶法制备有机-无机反应型杂化材料[J],化学通报2002,65,1-7.
    25.Christian Ouizard,Alain Bac,Mihail Barboiu,et al.Hybrid organic-inorganic membranes with specific transport properties:Applications in separation and sensors technologies[J],Separation and Purification Technology,2001,25,167-180.
    26.吴璧耀/张超灿/章文贡等编.有机-无机杂化材料及其应用[M],化学工业出版社.2005.
    27.石智强,刘晓蕾,刘孝波.有机-无机纳米复合材料的研究进展[J],合成化学,2004,12,251-254.
    28.Joel S.Miller,Joseph C.Calabrese,Arthur J.Epstein,et al.,Ferromagnetic properties of one-dimensional decamethylferrocenium tetracyanoethylenide(1:1):[Fe(η5-C_5Me_5)_2]~(*+)[TeNE]~(*-)[J],J.Chem.Soc.,Chem.Commun.,1986,1026-1028,
    29.Y.Pontillon,A.Caneschi,D.Gatteschi,E.Ressouche,J.Schweizer and R.Sessoli.Spin density in a ferromagnetic nitronyl nitroxide free radical[J],Physica B:Condensed Matter,1999,267-268,51-55.
    30.P.-M.Allemand,C.Fite,G.Srdanov,N.Keder,et al.,On the complexities of short range ferromagnetic exchange in a nitronyl nitroxide[J],Synthetic Metals,1991,43,3291-3295.
    31.Valerie Lager,Claudie Hornick,Pierre Rabu,Marc Drillon,Philippe Turek,Raymond Ziessel.Multilayered Ferromagnets Based on Hybrid Organic-Inorganic Derivatives[J],Adv.Mater.,1998,10,1024-1028.
    32.G.L.J.A.Rikken,E.Raupach,Observation of magneto-chiral dichroism[J], Nature, 1997, 390, 493-494.
    33. G. L. J. A. Rikken, E. Raupach, Enantioselective magnetochiral photochemistry [J]. Nature 2000, 405, 932-935.
    34. L. D. Barron, ChemistryChirality, magnetism and light [J]. Nature, 2000, 405. 895-896.
    35. N. S. Ovanesyan, V. D. Makhaev, S. M. Aldoshin, et al., Structure, magnetism and optical properties of achiral and chiral two-dimensional oxalate-bridged anionic networks with symmetric and asymmetric ammonium cations [J], Dalton Trans. 2005,18,3101-3107.
    36. A. Beghidja, G. Rogez, P. Rabu, et al., An approach to chiral magnets using α-hydroxycarboxylates [J], J. Mater. Chem. 2006, 16, 2715-2728.
    37. A. Beghidja Synthese, Etude Structurale et Magnetique d'a-Hydroxy Carboxylates de Metaux de Transition [D], These de doctorat, Universite Louis Pasteur, Strasbourg, 2005.
    38. M. Minguet, D. Luneau. E. Lhotel, et al., An Enantiopure Molecular Ferromagnet [J], Angew. Chem. Int. Ed. 2002, 41, 586-589.
    39. K. Inoue, H. Imai, P. S. Ghalsasi, et al., A Three-Dimensional Ferrimagnet with a High Magnetic Transition Temperature (TC) of 53 K Based on a Chiral Molecule [J], Angew. Chem. Int. Ed. 2001, 40, 4242-4245.
    40. P. Rabu, M. Drillon, Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites [M], 2003, 1,297.
    41. Osamu Okuda, Koryo Kagaku Soran, Fragrance Chemistry Comprehensive Bibliography (II) [M], published by Hirokawa Shoten, 1963, 1140.
    42. M. Seredyuk, A. B. Gaspar, V. Ksenofontov, et al., Room Temperature Operational Thermochromic Liquid Crystals [J], Chem. Mater. 2006. 18, 2513-2519.
    43. A. B. Gaspar. V. Ksenofontov, M. Seredyuk, et al., Multifunctionality in spin crossover materials [J], Coord. Chem. Rev. 2005, 249, 2661-2676.
    44. F. Cavani, F. Trifiro, A. Vaccari, Hydrotalcite - type anionic clays: preparation properties and applications [J]. Catal. Today 1991,11, 173-301.
    45. Holland B T, Isbester P K, Blanford C F, et al. Synthesis of or-dered aluminophosphate and galloaluminophosphate mesoporous materials with anion-exchange properies utillizing polyoxometa-late cluster/surfactant salts as precursors [J], J Am Chem Soc, 1997,119, 6796-6803.
    46. Kron D A, Holland B T, Wipson R, et al. Anion exchange proper-ties of a mesoporous aluminophosphate [J], Langmuir, 1999, 15, 8300-8308.
    47. Bhaumik A, Inagaki S. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity [J], J Am Chem Soc, 2001, 123, 691-696.
    48. Inagaki S, Guan S, Fukusgima Y, et al. Novel mesoporous materi-als with a uniform distribution of organic groups and inorganic oxide in their frameworks [J], J. Am. Chem. Soc, 1999,121, 9611-9614.
    49. Melde B J, Holland B T, Blanford C F, et al. Mesoporous sieves with unified hybrid inorganic/organic frameworks [J], Chem. Mater., 1999, 11, 3302-3308.
    50. Asefa T, Maclachlan M J. Coombs N, et al. Periodic mesoporous organosilicas with organic groups inside the channel walls [J], Nature, 1999,402, 867-871.
    51. Zhang Z, Dai S. Preparation and characterization of novel inorganic-organic mesoscopic ordered composites with bridges formed by coordination compounds [J], J. Am. Chem. Soc, 2001,123, 9204-9205.
    52. Xu X Z, Han Y, Zhao L, et al. Anion-exchange properties and reversible phase transitions of metal cation-mediated bridged organic-inorganic hybrid mesoscopic materials [J], Chem. Mater, 2003, 15, 74-77.
    53. S. Yamanaka, T. Sako, and M. Hattori, Anion-Exchange in Basic Copper Acetate [J], Chem. Lett. 1989, 18, 1869-1872.
    54. S. Yamanaka, T. Sako, K. Seki, et al., Anion exchange reactions in layered basic copper salts [J], Solid State Ionics, 1992, 53-56, 527-533.
    55. V. Laget, C. Hornick, P. Rabu, M. Drillon, Hybrid organic-inorganic layered compounds prepared by anion exchange reaction: correlation between structure and magnetic properties [J], J. Mater. Chem., 1999, 9,169-174.
    56. V. Laget. M. Drillon. C. Hornick. et al., Copper hydroxide based organic/inorganic ferromagnets [J], Journal of Alloys and Compounds 1997. 262-263,423-427.
    57. A. Demessence. G. Rogez, P. Rabu, Grafting of Thiophenecarboxylates into Magnetic Transition Metal Hydroxide Layers [J], Chem. Mater., 2006, 18. 3005-3015.
    58. C. Hornick, P. Rabu, M. Drillon, Hybrid organic-inorganic multilayer materials: influence of n electrons as magnetic media in a series of bridged-layer compounds M_2(OH)_(4-x)A_(x/2) (M=Cu(II) or Co(II), A=dicarboxylate anion) [J], Polyhedron, 2000, 19, 259-266.
    59. Rueff, J. M.; Nierengarten, J. F.; Gilliot, P. et al. Influence of Magnetic Ordering on the Luminescence in a Layered Organic-Inorganic OPV-Ni(II) Compound [J], Chem. Mater. 2004. 16, 2933-2937.
    60. V. Laget, C. Hornick, P. Rabu, M. Drillon, Hybrid organic-inorganic layered compounds prepared by anion exchange reaction: correlation between structure and magnetic properties [J], J. Mater. Chem., 1999, 9, 169-174.
    61. V. Laget, C. Hornick, P. Rabu, et al., Molecular magnets: Hybrid organic-inorganic layered compounds with very long-range ferromagnetism [J], Coordination Chemistry Reviews 1998, 178-180, 1533-1553.
    62. M. Dixit, G. N. Subbanna, P. V. Kamath, Homogeneous precipitation from solution by urea hydrolysis: a novel chemical route to the a-hydroxides of nickel and cobalt [J], J. Mater. Chem. 1996, 6, 1429-1432.
    63. F. Cavani, F. Trifiro, A. Vaccari, Hydrotalcite - type anionic clays: preparation properties and applications [J], Catal. Today 1991, 11, 173-301.
    64. R. S. Jayashree and P. V. Kamath, Electrochemical synthesis of α-cobalt hydroxide [J], J. Mater. Chem.. 1999, 9, 961-963.
    65. Y. Zhu, H. Li. Y. Koltypin and A. Gedanken, Preparation of nanosized cobalt hydroxides and oxyhydroxide assisted by sonication [J]. J. Mater. Chem., 2002. 12, 729-733.
    66. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds [M], Wiley, New York, 1986.
    67. J. R. Ferraro, W. R. Walker, Infrared Spectra of Hydroxy-Bridged Copper(II) Compounds [J], Inorg. Chem. 1965,4,1382-1386.
    68. J.-M. Rueff, N. Masciocchi, P. Rabu, et al., Synthesis, Structure and Magnetism of Homologous Series of Polycrystalline Cobalt Alkane Mono- and Dicarboxylate Soaps [J], Chem. Eur. J., 2002, 8, 1813-1820.
    69. C. Oldham, Comprehensive Coordination Chemistry (The Synthesis, Reactions, Properties and Applications of Coordination Compounds) [M], Vol. 2 Ligands, Oxford, New York, Beijing, Frankfurt, Sao Paulo, Sydney, Tokyo, Toronto, 1987.
    70. V. Robert, G. Lemercier, A Combined Experimental and Theoretical Study of Carboxylate Coordination Modes: A Structural Probe [J], J. Am. Chem. Soc. 2006, 128,1183-1187.
    71. G. B. Deacon, R. J. Phillips, Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination [J], Coord. Chem. Rev. 1980, 33, 227-250.
    72. C. Dendrinou-Samara, G. Tsotsou, L. V. Ekateriniadou, et al., Anti-inflammatory drugs interacting with Zn(II), Cd (II) and Pt(II) metal ions [J], J. Inorg. Biochem. 1998,71,171-179.
    73. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds [M], Wiley, New York, 1986.
    74. G. B. Deacon, R. J. Phillips, Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination [J], Coord. Chem. Rev. 1980, 33, 227-250.
    75. A. J. Lopez, E. R. Castellon, P. O. Pastor, et al., Layered basic copper anion exchangers: chemical characterisation and X-ray absorption study [J], J. Mater. Chem., 1993,3, 303-307.
    76. L. Poul, N. Jouini, F. Fievet. Layered Hydroxide Metal Acetates (Metal = Zinc, Cobalt, and Nickel): Elaboration via Hydrolysis in Polyol Medium and Comparative Study [J], Chem. Mater. 2000, 12, 3123-3132.
    77. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds [M], John Wiley & Sons, New York, 4th Edition., 1986.
    78. V. Laget, C. Hornick, P. Rabu, M. Drillon, Hybrid organic-inorganic layered compounds prepared by anion exchange reaction: correlation between structure and magnetic properties [J], J. Mater. Chem.. 1999, 9. 169-174.
    79. A. B. P. Lever, Inorganic Electronic Spectroscopy [M], 2nd Ed., Elsevier, Amsterdam, 1984.
    80. A. Demessence, G. Rogez, P. Rabu, Grafting of Thiophenecarboxylates into Magnetic Transition Metal Hydroxide Layers [J], Chem. Mater., 2006, 18, 3005-3015.
    81. Markov, L.; Petkov, K.; Petkov, V. On the thermal decomposition of some cobalt hydroxide nitrates [J], Thermochim. Acta, 1986, 106, 283-292.
    82. W. L. Roth, The magnetic structure of Co_3O_4 [J], J. Phys. Chem. Solids 1964, 25, 1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700