用户名: 密码: 验证码:
金属硫化物及铁、锰氧化物纳米结构的水热合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属硫化物、氧化物都是重要的且具有广泛应用背景的材料。金属硫化物纳米材料是一类重要的半导体材料。比如硫化锌是重要的宽禁带半导体材料(Eg=3.72 eV),广泛应用于半导体、颜料、光致发光、太阳能电池、红外探测器、气敏感传感器等领域。硫化锰也是一种宽禁带半导体材料,可以用作太阳能电池的缓冲层,掺入少量的其它离子比如Cd或者Zn时,显示了良好的磁性能。金属氧化物纳米材料不但拥有体相材料时的压电、化学传感、光感应等优异的性能,而且由于几何和尺寸效应表现出许多特有的属性,是一类名副其实的多功能材料,在透明电子元件、压电换能器、发光二极管等方面有着广泛地潜在应用。尽管当前金属硫化物、氧化物的制备已取得了较大的发展,但其形貌的控制合成仍没有很好的解决。因此,大量、低成本和有效地合成与组装各种形貌的金属硫化物、氧化物纳米材料无论从基础研究,还是从性能和应用的角度来看,都有着特殊重要的意义。
     本文采用简单的水热法在有机物分子或表面活性剂的辅助下制备出多种不同形貌的金属硫化物、氧化物纳米材料,包括树枝状、球状、立方状、空心立方状及花状的PbS,还有球状的ZnS、SnS、CdS,纺锤形的α-Fe_2O_3、分枝状的γ-MnOOH等,并考察了反应时间、温度、反应物浓度及表面活性剂的种类等对生成产物形貌的影响。最后,对各种形貌产物的形成机制进行了初探。
     以醋酸铅为铅源、硫代乙酰胺(TAA)为硫源,在十二烷基磺酸钠(SDS)的辅助下80℃下低温水热反应制备出了树枝状的PbS,观察发现制备的树枝状PbS由纳米颗粒粘连而成。反应物中再加入表面活性剂十六烷基三甲基溴化铵(CTAB),由于其形成微胶束的限制作用,反应产物不再是颗粒粘连的树枝状纳米结构,而是颗粒粘连的球状PbS。反应温度提高到120℃时生成产物为空心立方状PbS。反应温度继续提高到160℃时生成产物为实心立方状PbS。在120℃下反应时,将硫源替换为硫脲,反应产物也随之变化为PbS纳米棒。此外,将表面活性剂柠檬酸或CTAB替换SDS,可合成花状的PbS。
     根据上述球状PbS的合成原理,将其推广到其它硫化物,成功的制备出球状ZnS、SnS、CdS等硫化物。这说明低温反应时表面活性剂CTAB所形成的微胶束在球状产物的合成上起到了主要的软模板限制作用,而合成产物的晶体结构影响不大。提高反应温度,特别是到160℃时,球状ZnS产物已不能形成,而是生成三角的ZnS颗粒,SnS产物中也主要是片状的SnS,CdS产物虽然还有颗粒粘连成球的趋势,但是外观已不再是球形。这说明高温下合成产物的晶体结构对产物的形貌起主要作用,CTAB所形成的微胶束的软模板限制作用相对较弱。
     以乙二醇(EG)作为辅助剂,NH_4Cl作为矿化剂水热制备出了纺锤形的α-Fe_2O_3纳米颗粒,其长轴与短轴之比约为2:1。在考察反应物浓度对产物形貌影响时发现,Fe~(3+)起始反应浓度对α-Fe_2O_3纳米颗粒的形貌影响很大。随着Fe~(3+)起始反应浓度的增加,纺锤形的α-Fe_2O_3的短轴越来越长,α-Fe_2O_3纳米颗粒的形貌从纺锤形向球形过渡。采用磁强样品振动器(VSM)对长、短轴比不一的α-Fe_2O_3纳米颗粒的磁性能进行了表征,发现不同轴比的α-Fe_2O_3纳米颗粒表现出两种磁性:顺磁性和反磁性。
     利用即具有长链结构,又具有还原性的聚乙二醇(PEG)与高锰酸钾在120℃下低温水热反应,合成了多枝状的γ-MnOOH。合成时通过控制PEG的量或者加入一定量的表面活性剂CTAB作为反应物,反应产物只生成γ-MnOOH纳米线,从而实现γ-MnOOH多枝状纳米结构和一维纳米线的选择性生长。提高水热反应的温度(160℃),发现多枝状的γ-MnOOH产物的分枝数变得更单一,主要以五分枝的γ-MnOOH为主(约60%),这可能是温度提高,PEG的还原性增强,有利于晶体多核生长的结果。
Metal sulfides and oxides are important materials with a wide range of application. Metal sulfides nanomaterials are a group of important semiconductors. For example, ZnS is one of the most important semiconducts with a wide bandgap of 3.72 eV, which was widely used in the fields of semiconductors, pigments, photoluminescence, solar cells, infrared windows, gas sensors. MnS is also a semiconduct with a wide bandgap, which was usually used as the buffer layers of solar cells. When a small quantity of ions, such as Cd~(2+), Zn~(2+), was doped, the doped MnS shows excellent magnetic property. Metal oxides nanomaterials are really a group of functional materials, which not only have excellent properties such as piezoelectricity, chemical sensors, light sensors as well as the corresponding blocks, but also have a wide range of potential application in transparent electronics, piezoelectric transducers, light-emitting devices, etc. for the shape and size effect. At present, the preparation of metal sulfides and oxides has made a great progress, but their shape-controlled synthesis is not solved still. Therefore, large-scale, cost-effective, simple and practical synthesis and assembly of metal sulfides and oxides with different shapes is of importance for the fundamental research and application.
    We prepared a few kinds of metal sulfides and oxides with different shapes using a simple hydrothermal method assisted by organic molecules or surfactants, including dendritic, spheric, cubic, hollow cubic and flower-like PbS, spheric ZnS, SnS and CdS, spindle-type α-Fe_2O_3, multi-armed γ-MnOOH, ect. The reation time, temperature, reactant concentration and surfactants were investigated in order to learn about how they affect the shape of the products. Finally, we made a primary study of the formation mechanism of the synthesized nanomaterials with different shapes.
    We synthesized dendritic PbS nanostructure, which was conglutinated by the nanoparticles, via a low temperature (80℃) hydrothermal method assisted by the surfactant, SDS. We used Pb(Ac)2 as the lead source and TAA as the sulphur source. When another surfactant, CTAB, was added as a reactant, the obtained PbS nanostructure was not dendritic nanostructure but spheric PbS, which was also conglutinated by the nanoparticles. Maybe the formed micelles of CTAB in the solution played the role of soft template, which confined the conglutianted nanoparticles to form the spheric structure. When the reaction temperature was
    increased, the shape of the obtained products was changed. The hollow cubic PbS was obtained when the reaction temperature increased to 120℃. When it was increased to 160 ℃, the obtained product was cubic PbS. When the reaction temperature is 120 ℃ and the sulphur source was replaced by (NH_2)_2CS, the obtained product was 1D PbS nanorod. In addition, When the surfactant, SDS, was replaced by CA or CTAB, we can obtain the flower-like PbS nanostracture.
    According to the synthesized principle of spheric PbS nanostructure metioned above, we prepared other spheric metal sulfides successfully,such as ZnS, SnS, CdS, etc. This further proved that It is the formed micelles of CTAB in the solution play more important roles in forming the spheric nanostructure as a soft template, not the crystalline structure of the obtained products at low synthesized temperature. When the reaction temperature was increased, especially to 160 ℃, We can not obtain the spheric ZnS nanostructure again, but the triangle ZnS nanoparticles. The obtained SnS products were mainly the plate-like structure. Although the CdS products still have the trend to form spheric structures, which was conglutinated by the nanoparticles, the shape is not spheric again. This proved that the crystalline structure of the obtained products plays more important roles in deciding the shape of products at high reaction temperature than the formed micelle of CTAB as a soft template.
    We prepared a kind of spindle-type α-Fe_2O_3 via a facile hydrothermal method using glycol as the assisted agent and NH_4Cl as the mineralized agent. The ratio of major axis and minor axis of the synthesized spindle-type α-Fe_2O_3 is about 2/1. We found that the starting reaction concentration of Fe~(3+) has great effect on the shape of the products. When it increased, the length of the minor axis of the α-Fe_2O_3 was elongated and the shape of α-Fe_2O_3 nanoparticles was transformed into sphere from spindle-type. The magnetic property of the α-Fe_2O_3 nanoparticles with different ratio of major axis and minor axis were investigated by the vibrating sample magnetometer(VSM). The results show that they have two kinds of magnetic properties, diamagnetism and paramagnetism.
    We synthesized a kind of multipods γ-MnOOH via a low temperature hydrothermal method based on the reaction of polyglycol, which has a long chain structure and reductive property, and KMnO_4. When the volume of PEG was controlled or an appropriate mount of surfactant, CTAB, was added as the starting reactant, the obtained product will be 1D γ-MnOOH nanorod or nanowire only. It can easily realize the selective growth of γ-MnOOH multipods and 1D nanowire. When the reaction temperature was increased to 160 ℃, the
    number of the arms of the obtained y-MnOOH multipods were more uniform. They are mainly five-armed γ-MnOOH, 60%. Maybe the stronger reductive property of polyglycol led to the multiple growth centers of γ-MnOOH, When the reaction temperature was increased.
引文
[1] E. Regis, Nano: The Emerging Science of Nanotechnology—Remaking the World-Molecule by Molecule, Little Brown and Company, Boston, 1995
    [2] 朱静,“纳米材料和器件”清华大学出版社,2003
    [3] 张立德,牟季美,“纳米材料与纳米结构”科学出版社,2001
    [4] Molecular Beam Epitaxy: Fundamentals and Current Status (Eds: M. A. Herman, H. Sitter), Springer, Berlin 1996
    [5] R. Notzel, K.H. Ploog. Direct synthesis of semiconductor quantum-wire and quantum-dot structures. Adv. Mater. 1993, 5: 22-29.
    [6] H. Weller. Quantized Semiconductor Particles: A novel state of matter for materials science. Adv. Mater. 1993, 5: 88-95.
    [7] M. Nirmal, L. Brus. Luminescence Photophysics in Semiconductor Nanocrystals. Acc. Chem. Res. 1999, 32: 407-414.
    [8] V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Maklo, J.A. Hollingsworth, C.A. Leatherdale, H.J. Eisler, M.G. Bawendi. Optical gain and stimulated emission in nanocrystal quantum dots. Science, 2000, 290: 314-317.
    [9] D.L. Klein, R. Roth, A.K.L. Lim, A.P. Alivisatos, P.L. McEuen. A single-electron transistor made from a cadmium selenide nanocrystal. Nature, 1997, 389: 699-701.
    [10] H. Pettersson, L. Baath, N. Carlsson, W. Seifert, L. Samuelson. Case study of an InAs quantum dot memory: Optical storing and deletion of charge. Appl. Phys. Lett., 2001, 79: 78-80.
    [11] A.N. Shipway, E. Katz, I. Willner. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem, 2000, 1: 18-52.
    [12] J. Phillips. Evaluation of the fundamental properties of quantum dot infrared detectors. J. Appl. Phys., 2002,91: 4590-4594.
    [13] S. Coe, W. K. Woo, M. Bawendi, V. Bulovic. Electroluminescence from single monolayers of nanocrystais in molecular organic devices. Nature, 2002,420: 800-803.
    [14] Z.L. Wang. Characterizing the Structure and Properties of Individual Wire-Like Nanoentities. Adv. Mater., 2000, 12:1295-1298.
    [15] D.L. Wang, C. M. Lieber. Nanocrystals branch out. Nat. Mater., 2003, 2: 355-356.
    [16] L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater., 2003, 2: 382-385.
    [17] A.G. Kanaras, C. Sonnichsen, H. Liu, A.P. Alivisatos. Controlled Synthesis of Hyperbranched Inorganic Nanocrystals with Rich Three-Dimensional Structures. Nano. Lett., 2005, 5:2164-2167.
    [18] D. Wang, F. Qian, C. Yang, Z. Zhong, C.M. Lieber. Rational Growth of Branched and Hyperbranched Nanowire Structures. Nano. Lett., 2004, 4: 871-874.
    [19] Y. Yin, Y. Lu, B. Gates, Y. Xia. Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures. J. Am. Chem. Soc., 2001, 123: 8718-8729.
    [20] Y. Lu, Y. Yin, Z. Li, Y. Xia. Synthesis and self-assembly of Au@SiO_2 core-shell colloids. Nano. Lett., 2002, 2: 785-788.
    [21] Y. Yin, Y. Xia. Self-assembly of spherical colloids into helical chains with well-controlled handedness. J. Am. Chem. Soc., 2001, 125: 2048-2049.
    [22] L.J. Lauhon, M.S. Gudiksen, C.M. Lieber. Semiconductor nanowire heterostructures. Phil, Trans. R. Soc. Lond. A, 2004, 362: 1247-1260.
    [23] X. Peng, L. Manna, W. Yang. Shape control ofCdSe nanocrystals. Nature, 2000, 404: 59-61.
    [24] D.J. Sirbuly, M. Law, H. Yan, P.Yang. Semiconductor Nanowires for Subwavelength Photonics Integration. J. Phys. Chem. B, 2005, 109: 15190-15213.
    [25] W.I. Park, G. Yi, J.W. Kim, S.M. Park. Schottky nanocontacts on ZnO nanorod arrays. Appl.Phys.Lett., 2003, 82: 4358-4360.
    [26] X. Duan, Y. Huang, Y. Cui, J. Wang, C.M.Lieber. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409: 66-69.
    [27] V. Semet, V.T. Binh, P. Vincent. Field electron emission from individual carbon nanotubes of a vertically aligned array. Appl.Phys.Lett., 2002, 81: 343-345.
    [28] M.A. Guillorn, A.V. Melechko, V.I. Merkulov, D.K. Hensley, M.L. Simpson, D.H. Lowndes. Self-aligned gated field emission devices using single carbon nanofiber cathodes. Appl. Phys. Lett., 2002, 81: 3660-3662.
    [29] K. Matsumoto, S. Kinosita, Y. Gotoh, T. Uchiyama, S. Manalis, C. Quate. Ultralow biased field emitter using single-wall carbon nanotube directly grown onto silicon tip by thermal chemical vapor deposition. Appl. Phys. Lett., 2001, 78: 539-540.
    [30] Z. Pan, H. Lai, F.C.K. Au. Oriented silicon carbide nanowires synthesis and field emission properties. Adv. Mater., 2000, 12:1186-1190.
    [31] L. Dong, J. Jiao, D.W. Tuggle, J.M. Petty, S.A. Elliff, M.Coulter. ZnO nanowires formed on tungsten substrates and their electron field emission properties. Appl. Phys. Lett., 2003, 82:1096-1098.
    [32] Y.W. Zhu, H.Z. Zhang, X.C. Sun. Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett., 2003, 83: 144-146.
    [33] C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett., 2002, 81: 3648-3650.
    [34] A.K. Salem, M. Chen, J. Hayden, K.W. Leong, P.C. Searson. Directed assembly of multisegment Au/Pt/Au nanowires. Nano Lett., 2004, 4:1163-1165.
    [35] Y. Wang, Z. Tang, S. Tan, N.A. Kotov. Biological assembly of nanocircuit prototypes from protein-modified CdTe nanowires. Nano Lett., 2005, 5: 243-248.
    [36] K.K. Caswell, J.N. Wilson, U.H.E Bunz, C.J. Murphy. Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J. Am. Chem. Soc., 2003, 125: 13914-13915.
    [37] M. Chen, L. Guo, R. Ravi, P.C. Searson. Kinetics of receptor directed assembly of multisegment nanowires. J. Phys. Chem. B, 2006, 110:211-217.
    [38] A.K. Salem, J. Chao, K.W. Leong, EC. Searson. Receptor-mediated self-assembly of multi-component magnetic nanowires. Adv.Mater., 2004, 16: 268-271.
    [39] W.I. Park, Y.H. Jun, S.W. Jung, G.. Yia. Excitonic emissions observed in ZnO single crystal nanorods. Appl. Phys. Lett., 2003, 82: 964-966.
    [40] M.H. Huang, S. Mao, H. Feick. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292: 1897-1899.
    [41] J.C. Johnson, H.Yan, R.D. Schaller, L.H. Haber, R.J. Saykally, EYang. Single nanowire lasers. J. Phys. Chem. B, 2001, 105:11387-11390.
    [42] H. Yan, R. He, J. Johnson, M. Law, R.J. Saykally, P. Yang. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc., 2003, 125: 4728-4729.
    [43] J.C. Johnson, H. Yan, P. Yang, R.J. Saykally. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B, 2003, 107:8816-8828.
    [44] M. Law, H. Kind, B. Messer, F. Kim, E Yang. Photochemical sensing of NO_2 with SnO_2 nanoribbon nanosensors at room temperature. Angew. Chem. Int. Ed, 2002, 41: 2405-2408.
    [45] Z. Wang. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-from materials to nanodevices. Adv.Mater, 2003, 15: 432-436.
    [46] Y. Wang, X. Jiang, Y. Xia. A solution-phase, precursor route to polycrystalline SnO_2 nanowires that can be used for gas sensing under ambient conditions. J. Am. Chem. Soc., 2003, 125:16176-16177.
    [47] C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Hart, C. Zhou. In_2O_3 nanowires as chemical sensors. Appl. Phys. Lett., 2003, 82: 1613-1615.
    [48] A. Gurlo, N. Barsan, U. Weimar, M. Ivanovskaya, A. Taurino, P. Siciliano. Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas-sensing properties. Chem. Mater, 2003,15: 4377-4383.
    [49] F. Patolsky, C.M. Lieber. Nanowire nanosensors. Materials today 2005: 20-28.
    [50] G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol., 2005, 23:1294-1301.
    [51] D.J. Sirbuly, M. Law, H. Yah, P. Yang. Semiconductor Nanowires for Subwavelength Photonics Integration. J. Phys. Chem. B, 2005, 109: 15190-15213.
    [52] E.W. Wong, P.E. Sheehan, C.M. Lieber. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277:1971-1975.
    [53] Z. Wang, R. Gao, Z. Pan, Z.Dai. Nano-scale mechanics of nanotubes, nanowires, and nanobelts. Adv. Eng. Mater., 2001, 3: 657-661.
    [54] P. Kim, C.M. Lieber. Nanotube nanotweezers. Science, 1999, 286: 2148-2150.
    [55] S.Y. Bae, H.W. Seo, J.H. Park. Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. J. Phys. Chem. B, 2004, 108: 5206-5210.
    [56] Y.J. Chen, J.B. Li, Y.S. Han, X.Z. Yang, J.H. Dai. The effect of Mg vapor source on the formation of MgO whiskers and sheets. J. Cryst. Growth, 2002, 245: 163-170.
    [57] X. Liu, C. Li, S. Han, J. Han, C.W. Zhou, Synthesis and electronic transport studies of CdO nanoneedles, Appl. Phys. Lett., 2003, 82: 1950-1952.
    [58] J.M. Wu, H.C. Shih, W.T. Wu, Y.K. Tseng, I.C. Chen, Thermal evaporation growth and the luminescence property ofTiO_2 nanowires. J. Cryst. Growth, 2005, 281: 384-390.
    [59] Z.R. Dai, J.L. Gole, J.D. Stout, Z.L. Wang, Tin oxide nanowires, nanoribbons, and nanotubes, J. Phys. Chem. B, 2002, 106: 1274-1279.
    [60] L. Dai, X.L. Chen, J.K. Jian, M. He, T. Zhou, B.Q. Hu. Fabrication and characterization of In_2O_3 nanowires. Appl. Phys. A Mater. Sci. Process., 2002, 75: 687-689.
    [61] P.C. Chang, Z.Y. Fan, W.Y. Tseng, A. Rajagopal, J.G. Lu. β-Ga_2O_3 nanowires: synthesis, characterization, and p-channel field-effect transistor. Appl. Phys. Lett., 2005, 87:2221021-2221023.
    [62] J.P. Ge, Y.D. Li. Controllable CVD route to CoS and MnS single-crystal nanowires. Chem. Commun., 2003,19: 2498-2499.
    [63] J.P. Ge, Y.D. Li. Selective atmospheric pressure chemical vapor deposition route to CdS arrays, nanowires, and nanocombs. Adv. Funct. Mater, 2004, 14: 157-162.
    [64] J.P. Ge, J. Wang, H.X. Zhang, X. Wang, Q. Peng,Y.D. Li. Halide-transport chemical vapor deposition of luminescent ZnS: Mn~(2+) one-dimensional nanostructures. Adv. Funct. Mater., 2005, 15: 303-308.
    [65] J.P. Ge, J. Wang, H.X. Zhang, X. Wang, Q. Peng,Y.D. Li. Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior. Chem. Eur. J., 2005, 11: 1889-1894.
    [66] R.S. Wagner, W.C. Ellis. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett., 1964, 4: 89-90.
    [67] R.S. Wagner, W.C. Ellis, S.M. Arnold, K.A. Jackson, Study of filamentary growth of silicon crystals from vapor, J. Appl. Phys., 1964, 35: 2993-3000.
    [68] R.S. Wagner. 1970, Whisker Technology (New York: Wiley).
    [69] X. Liu, X.H. Wu, H. Cao, R.P.H. Chang. Growth mechanism and properties of ZnO nanorods synthesized by plasmaenhanced chemical vapor deposition. J. Appl. Phys., 2004, 95:3141-3147.
    [70] Wu Y, Yang P. Direct observation of vapor-liquid-solid nanowire growth. J. Am.Chem.Soc., 2001, 123: 3165-3166.
    [71] Q. Zhao, X. Xu, H. Zhang, Y. Chen, J. Xu, D. Yu. Catalyst-free growth of single-crystalline alumina nanowire arrays. Appl. Phys. A Mater. Sci. Process., 2004, 79: 1721-1724.
    [72] A. Umar, S.H. Kim, Y.S. Lee, K.S. Nahm, Y.B. Hahn. Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor-solid growth mechanism: structural and optical properties. J. Cryst. Growth, 2005, 282: 131-136.
    [73] A. Sekar, S.H. Kim, A. Umar, Y.B. Hahn, Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders, J. Cryst. Growth, 2005, 277: 471-478.
    [74] Y. Sun, G.M. Fuge, M.N.R. Ashfold, Growth mechanisms for ZnO nanorods formed by pulsed laser deposition, Superlattice Microst., 2006, 39: 33-40.
    [75] N. Cabrera, W.K. Burton. Crystal growth and surface structure. Discuss. Faraday Soc., 1949, 2: 40-42.
    [76] G.W. Sears, A mechanism of whisker growth, Acta. Metallurgica., 1955,3: 367-369.
    [77] J.M. Blakely, K.A. Jackson, Growth of crystal whiskers, J. Chem. Phys., 1962, 37: 428-432.
    [78] A.M. Morales,C.M. Lieber. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science, 1998, 279:208-211.
    [79] X.F. Duan, C.M. Lieber. General Synthesis of Compound Semiconductor Nanowires. Adv. Mater., 2000, 12: 298-302.
    [80] M.S. Gudiksen, C.M. Lieber, Diameter-selective synthesis of semiconductor nanowires. J. Am. Chem. Soc., 2000, 122: 8801-8802.
    [81] H.F. Yan, Y. Xing, Q.L. Hang, D.P Yu, Y.P. Wang, J. Xu, Z.H. Xi, S.Q Feng. Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism. Chem. Phys. Lett., 2000, 323: 224-228.
    [82] F.L. Deepak. C.P. Vinod. K Mukhopadhyay, A. Govindaraj, C.N.R. Rao. Boron nitride nanotuhes and nanowires. Chem. Phys. Lett., 2002, 353: 345-352.
    [83] J.J. Wu, S.C. Liu. Catalyst-Free Growth and Characterization of ZnO Nanorods. J. Phys. Chem. B, 2002, 106:9546-9551.
    [84] K.W. Chang, L.T. Wu. Low-Temperature Catalytic Growth of Ga_2O_3 Nanowires by Single Organometallic Precursor. J. Phys. Chem. B, 2004, 108:1838-1843.
    [85] M.K. Sunkara, S. Sharma, R. Miranda, G. Lian, E.C. Dickey. Bulk synthesis of silicon nanowires using a low-temperature vapor-liquid-solid method. App. Phys. Lett., 2001, 79: 1546-1548.
    [86] Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber. Controlled Growth and Structures of Molecular-Scale Silicon Nanowires. Nano. Lett., 2004, 4: 433-436.
    [86] J.J. Wu, S.C. Liu. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater., 2002, 14:215-218.
    [88] C.R. Martin. Nanomateriats: a membrane-based synthetic approach. Science, 1994, 266: 1961-1966.
    [89] L. Li, Y. Zhang, G.H. Li, L.D. Zhang. A route to fabricate single crystalline bismuth nanowire arrays with different diameter. Chem. Phys. Lett. 2003, 378: 244-249.
    [90] C.G. Jin, G.W. Jiang, W.E Liu, W.L. Cai, L.Z. Yao, Z. Yao, X.G. Li. Fabrication of large area single crystal bismuth nanowire arrays. J. Mater. Chem., 2003, 13: 1743-1746.
    [91] Y. Li, G.W. Meng, L.D. Zhang. Ordered semiconductor ZnO nanowire arrays and their photo luminescene properties. Appl. Phys. Lett., 2000, 76:2011-2013.
    [92] M.J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen. Fabrication and optical properties of large scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem. Phys. Lett. 2002, 363: 123-128.
    [93] D.S. Xu, Y.J. Xu, D.P. Chen, G.L. Guo, L.L. Gui, Y.Q. Tang. Preparation and characterization of CdS nanowire arrays by do electrodeposit in porous anodic aluminum oxide templates. Chem. Phys. Lett., 2000, 325: 340-344.
    [94] M. Zheng, L. Zhang, X. Zhang, J. Zhang, G. Li. Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes. Chem. Phys. Lett., 2001, 334: 298-302.
    [95] B.B. Lakshmi, Y.K. Dorhout, C.R. Martin. Sol-Gel Template Synthesis of Semiconductor Nanostructures. Chem. Mater, 1997, 9: 857-862.
    [96] B. Cheng, E.T. Samulski. Fabrication and characterization of nanotubular semiconductor oxides In_2O_3, and Ga_2O_3. J. Mater Chem., 2001, 11: 2901-2902.
    [97] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater., 2003, 15: 353-389.
    [98] M. Li, S. Mann. Emergence of morphological complexity in BaSO_4 fibers synthesized in AOT microemulsions. Langmuir, 2000, 16: 7088-7094.
    [99] S.M. Zhou, Y.S. Feng, L.D. Zhang. A two-step route to self-assembly of CdS nanotubes via electrndeposition and dissolution. Eur. J. Inorg. Chem., 2003, 1794-1797.
    [100] C.C. Chen, C.Y. Chao, L.H. Lang. Simple solution-phase synthesis of soluble CdS and CdSe nanorods, Chem. Mater., 2000, 12:1516-1518.
    [101] B.D. Busbee, S.O. Obare, C.J. Murphy. An improved synthesis of high-sspect-ratio gold nanorods, Adv. Mater, 2003, 15: 414-416.
    [102] L. Manna, E.C. Scher, A.P. Alivisatos. Synthesis of soluble and processable rod-, arrow-, teardropand tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc., 2000, 122:12700-12706.
    [103] X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos. Shape control of CdSe nanocrystals. Nature, 2000, 404: 59-61.
    [104] R.J. Qi, Y.J. Zhu, G.F. Cheng, Y.H. Huang. Sonochemical synthesis of single-crystalline CeOHCO_3 rods and their thermal conversion to CeO_2 rods. Nanotechnology, 2005, 16: 2502-2506.
    [105] J.L. Zhang, J.M. Du, B.X. Han, Z.M. Liu, T. Jiang, Z.F. Zhang. Sonochemical formation of single-crystalline gold nanobelts, Angew. Chem. Int. Ed., 2006, 45:1116-1119.
    [106] S.F. Wang, F. Gu, M.K. Lu. Sonochemical synthesis of hollow PbS nanospheres, Langmuir, 2006, 22, 398-401.
    [107] Y.D. Li, Y.T. Qian, H.W. Liao, Y. Ding, L. Yang, C.Y. Xu, F.Q. Li, G.E. Zhou. A reduction-pyrolysis-catalysis synthesis of diamond. Science, 1998, 281: 246-247.
    [108] 霍启华,冯守华,徐如人,非水体系中全硅沸石分子筛洽成的研究—全硅方钠石与ZSM-39的品化,化学学报,1998,48:639-642.
    [109] 徐如人,庞文琴,有机合成与制备化学,高等教育出版社2001.
    [110] Y.D. Li, J.W. Wang, Z.X. Deng, Y.Y. Wu, X.M. Sun, D.P. Yu, P.D. Yang. Bismuth Nanotubes: A rational low-temperature synthetic route. J. Am. Chem. Soc., 2001, 123, 9904-9905.
    [111] Y.D. Li, X.L. Li, R.R.R. He, J. Zhu, Z.X.X. Deng. Artificial lamellar mesostructures to WS2 Nanotubes. J. Am. Chem. Soc., 2002, 124, 1411-1416.
    [112] R.N. Bhargava, D. Gallagher, X. Hong, D. Nurmikko. Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett., 1994, 72: 416-419.
    [113] E. Monroy, F. Omnes, F. Calle. Wide-band gap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol., 2003, 18: R33-R51.
    [114] W. Park, J.S. King, C.W. Neff, C. Liddell, C. Summers. ZnS-based photonic crystals. Phys. Status Solidi B, 2002, 229: 949-960.
    [115] B. Gilbert, B.H. Frazer, H. Zhang, F. Huang, J.F. Banfield, D. Haskel, J.C. Lang, G. Srajer, S.G. ED. X-ray absorption spectroscopy of the cubic and hexagonal polytypes of zinc sulfide. Phys. Rev. B, 2002, 66, 2452051-2452056.
    [116] S.B. Qadri, E.F. Skelton, A.D. Dinsmore, J.Z. Hu, W.J. Kim, C. Nelson, B.R. Ratna. The effect of particle size on the structural transitions in zinc sulfide. J. Appl. Phys., 2001, 89: 115-119.
    [117] S. Desgreniers, L. Beaulieu, I. Lepage. Pressure induced structural changes in ZnS. Phys. Rev. B, 2000, 61: 8726-8733.
    [118] S.B. Qadri, E.E Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.E Gray, B.R. Ratna. Size-induced transition-temperature reduction in nanoparticles of ZnS. Phys. Rev. B, 1999, 60:9191-9193.
    [119] A.P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271, 933-937.
    [120] C.M. Lieber. One-dimensional nanostructures: chemistry, physics applications. Solid State Commun., 1998, 107: 607—616.
    [121] Y.W. Zhao, Y. Zhang, H. Zhu, G.C. Hadjipianayis, J.Q. Xiao. Low-temperature synthesis of hexagonal (wurtzite) ZnS nanocrystals. J. Am. Chem. Soc., 2004, 126: 6874-6875.
    [122] D.Moore, Z.L.Wang. Growth of anisotropic one-dimensional ZnS nanostructures. J. Mater Chem., 2006, 16: 3898-3905.
    [123] X.J. Xu, G.T. Fei, W.H. Yu, X.W. Wang, L.Chen, L.D. Zhang. Preparation and formation mechanism of ZnS semiconductor nanowires made by the electrochemical deposition method. Nanotechnology, 2006, 17: 426-429.
    [124] Y. Jiang, W.J. Zhang, J.S. Jie, X.M. Meng, J.A. Zapien, S.T. Lee. Homoepitaxial growth and lasing properties of ZnS nanowire and nanoribbon arrays. Adv. Mater, 2006, 18, 1527-1532.
    [125] H.Y. Lu, S.Y. Chu, C.C. Chang. Synthesis and optical properties of well-aligned ZnS nanowires on Si substrate. J. Cryst. Growth, 2005, 280:173-178.
    [126] J.H. Zhan, Y. Bando, J.Q. Hu, T.Sekiguchi, D.Golberg. Single-catalyst confined growth of ZnS/Si composite nanowires. Adv. Mater, 2005, 17: 225-230.
    [127] H. Zhang,S.Y. Zhang, M. Zuo, G.P. Li, J.G. Hou. Synthesis of ZnS nanowires and assemblies by carbothermal chemical vapor deposition and their ohotoluminescence. Eur. J. Inorg. Chem., 2005, 47-50.
    [128] H. Moon, C. Nam, C. Kim, B. Kim. Synthesis and photoluminescence of zinc sulfide nanowires by simple thermal chemical vapor deposition. Mater Res. Bull., 2006, 41: 2013-2017.
    [129] R.T. Lv, C.B. Cao, H.S. Zhu. Synthesis and characterization of ZnS nanowires by AOT micelle-template inducing reaction. Mater Res. Bull., 2004, 39:1517-1524.
    [130] Y.C. Zhang, G.Y. Wang, X.Y. Hu, W.W. Chen. Solvothermal synthesis of uniform hexagonal-phase ZnS nanorods using a single-source molecular precursor. Mater Res. BulL, 2006, 41: 1817-1824.
    [131] J.H. Yu, J. Joo, H.M. Park, S. Baik, Y.W. Kim, S.C. Kim, T. Hyeon. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc., 2005, 127: 5662-5670.
    [132] K.P. Kalyanikutty, M. Nikhila, U. Maitra, C.N.R. Rao. Hydrogel-assisted synthesis of nanotubes and nanorods of CdS, ZnS and CuS, showing some evidence for oriented attachment. Chem. Phys. Lett., 2006, 432: 190-194.
    [133] T.Y. Zhai, Z.J. Gu, Y. Ma, W.S. Yang, L.Y. Zhao, J.N. Yao. Synthesis of ordered ZnS nanotubes by MOCVD-template method. Mater. Chem.Phys., 2006, 100: 281-284.
    [134] W.T. Yao, S.H. Yu, L. Pan, J. Li, Q.S. Wu, L. Zhang, H. Jiang. Flexible wurtzite-type ZnS nanobelts with quantum-size effects: a diethylenetriamine-assisted solvothermal approach. Small, 2005, 1: 320-325.
    [135] S.Kar, S.Chaudhuri. Synthesis and optical properties of single and bicrystalline ZnS nanoribbons. Chem. Phys. Lett., 2005, 414, 40-46.
    [136] C. H. Liang, Y. Shimizu, T. Sasaki, H. Umehara, N. Koshizaki. Au-mediated growth of wurtzite ZnS nanobelts, nanosheets, and nanorods via thermal evaporation. J. Phys. Chem. B, 2004, 108: 9728-9733.
    [137] Z.W. Wang, L.L. Daemen, Y.S. Zhao, C.S. Zha, R.T. Downs, X.D.Wang, Z.L. Wang, R.J. Hemley, Morphology-tuned wurtzite-type ZnS Nanobelts.Nat. Mater., 2005, 4: 922-927.
    [138] Y.F. Hao, G.W Meng, Z.L. Wang, C.H. Ye, L.D. Zhang, Periodically twinned nanowires and polytypic nanobelts of ZnS: The role of mass diffusion in vapor-liquid-solid growth. Nano Lett., 2006, 6: 1650-1655.
    [139] Y.Q. Li, K. Zou, Y.Y. Shah, J.A. Zapien, S. Lee. Catalyst-assisted formation of nanocantilever arrays on ZnS nanoribbons by post-annealing treatment. J. Phys. Chem. B, 2006, 110: 6759-6762.
    [140] H. Deng, C. Chen, Q. Peng, Y.D. Li. Formation of transition-metal sulfide microspheres or microtubes. Mater. Chem.Phys., 2006, 100: 224-229.
    [141] F. Gu, C.Z. Li, S.F. Wang, M. K. Lu. Solution-phase synthesis of spherical zinc fulfide nanostructures. Langmuir, 2006, 22:1329-1332.
    [142] H.J. Liu, Y.H. Ni, M. Han, Q. Liu, Z. Xu, J.M. Hong, X. Ma. A facile template-free route for synthesis of hollow hexagonal ZnS nano- and submicro-spheres. Nanotechnology, 2005, 16:2908-2912.
    [143] Z.S. Hu, L.Y. Li, X.D. Zhou, X. Fu, G.H. Gu. Solvothermal synthesis of hollow ZnS spheres. J. Colloid InterfSci., 2006, 294: 328-333.
    [144] J.Q. Hu, Y. Bando, J.H. Zhan, D. Golberg. Growth of wurtzite ZnS micrometer-sized diskettes and nanoribbon arrays with improved luminescenece. Adv. Funct. Mater., 2005, 15: 757-762.
    [145] G.T. Zhou, X.C. Wang, J.C. Yu. A low-temperature and mild solvothermal route to the synthesis of wurtzite-type ZnS with single-crystalline nanoplate-like morphology. Cryst.Growth Des.,2005, 5: 1761-1765.
    [146] J. Zhang, Y.D. Yang, F.H. Jiang, J.P. Li, B.L. Xu, X.C. Wang, S.M. Wang. Fabrication, structural characterization and photoluminescence of Q-1D semiconductor ZnS hierarchical nanostructures. Nanotechnology, 2006, 17: 2695-2700.
    [147] Y. Jung, D.K. Ko, R. Agarwal. Synthesis and structural characterization of single-crystalline branched nanowire heterostructures. Nano Lett., 2007, 7: 264-268.
    [148] L.F. Dong, J. Jiao, M. Coulter, L. Love. Catalytic growth of CdS nanobelts and nanowires on tungsten substrates. Chem. Phys. Lett., 2003, 376: 653-658.
    [149] Y.D. Li, H.W. Liao, Y. Ding, Y.T. Qian, L. Yang, G.E. Zhou. Nonaqueous synthesis of CdS nanorod semiconductor. Chem. Mater, 1998, 10: 2301-2303.
    [150] S. Acharya, I. Patla, J. Kost, S. Efrima, Y. Golan. Switchable assembly of ultra narrow CdS nanowires and nanorods. J. Am. Chem. Soc., 2006, 128: 9294-9295.
    [151] Z.Q. Wang, J.F. Gong, J.H. Duan, H.B. Huang, S.G. Yang, X.N. Zhao, R.Zhang, Y.W. Du. Direct synthesis and characterization of CdS nanobelts. Appl. Phys. Lett., 2006, 89:033102-033104.
    [152] F. Gao, Q.Y. Li, S.H. Xie, D.Y. Zhao. A Simple Route for the Synthesis of Multi-Armed CdS Nanorod Based Materials. Adv. Mater, 2002, 14:1537-1540.
    [153] H.B. Chu, X.M. Li, G.D. Chen, W.W. Zhou, Y. Zhang, Z. Jin, J.J. Xu, Y. Li. Shape-controlled synthesis ofCdS nanocrystals in mixed solvents. Cryst. Growth Des., 2005, 5:1801-1806.
    [154] Z.H. Dai, J. Zhang, J.C. Bao, X.H. Huang, X.Y. Mo. Facile synthesis of high-quality nano-sized CdS hollow spheres and their application in electrogenerated chemiluminescence sensing. J. Mater Chem., 2007, 17: 1087-1093.
    [155] J. Zhang. Y.D. Yang, F.H. Jiang, J.P. Li, B.L. Xu, S.M. Wang, X.C. Wang. Fabrication of semiconductor CdS hierarchical nanostructures. J. Cryst. Growth, 2006, 293:236-241.
    [156] M. Kowshik, W. Vogel, J. Urban, S.K. Kulkarni, K.M. Paknikar. Microbial synthesis of semiconductor PbS nanocrystallites. Adv. Mater, 2002, 14:815-818.
    [157] D. Li, C.J. Liang, Y. Liu, S.X. Qian. Femtosecond nonlinear optical properities of PbS nanoparticles. J. Lumin., 2007, 122: 549-551.
    [158] E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A.Q. Le Quang,I. Ledoux-Rak, J. Zyss. Stable PbSe/PbS and PbSe/PbSexSl-x core-shell nanocrystal quantum dots and their applications. J. Phys. Chem. B, 2006, 110: 25356-25365.
    [159] Y. Zhou, H. Itoh, T. Uemura, K. Naka, Y. Chujo. Preparation, optical spectroscopy, and electrochemical studies of novel π-conjugated polymer-protected stable PbS colloidal nanoparticles in a nonaqueous solution. Langmuir, 2002, 18: 5287-5292.
    [160] P.T. Zhao, J.M. Wang, G. Cheng. Fabrication of symmetric hierarchical hollow PbS microcrystals via a facile soivothermal process. J. Phys. Chem. B, 2006, 110: 22400-22406.
    [161] J.X. Wan, X.Y. Chen, Z.H. Wang, W.C. Yu, Y.T. Qian. Synthesis of uniform PbS nanorod bundles via a surfactant-assisted interface reaction route. Mater Chem.Phys., 2004, 88:217-220.
    [162] J.P. Ge, J. Wang, H.X. Zhang, X. Wang, Q. Peng, Y.D. Li. Orthogonal PbS Nanowire Arrays and Networks and Their Raman Scattering Behavior. Chem. Eur. J., 2005, 11: 1889-1894.
    [163] H. Zhang, M. Zuo, S. Tan, G. P. Li, S.Y. Zhang. Carbothermal reduction/sulfidation synthesis and structural characterization of PbS nanobelts and nanowires. Nanotechnology, 2006, 17:2931
    [164] C. Wu, J.B. Shi, C.J. Chen, J.Y. Lin. Synthesis and optical properties of ordered 30 nm PbS nanowire arrays fabricated into sulfuric anodic alumina membrane. Mater Lett., 2006, 60: 29-30.
    [165] K.T. Yong, Y. Sahoo, K.R. Choudhury, M.T. Swihart, J.R. Minter, EN. Prasad. Control of the morphology and size of PbS nanowires using gold nanoparticles. Chem. Mater, 2006, 18: 5965-5972.
    [166] S.M. Lee, Y.W. Jun, S.N. Cho, J. Cheon. Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks. J. Am.Chem. Soc., 2002, 124:11244-11245.
    [167] N.N. Zhao, L.M. Qi. Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants. Adv. Mater, 2006, 18: 359-362.
    [168] D.B. Kuang, A.W. Xu, Y.P. Fang, H.Q. Liu, C. Frommen, D. Fenske. Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process. Adv. Mater, 2003, 15:1747-1750.
    [169] G.J. Zhou, M.K. Lu, Z.L. Xiu, S.F. Wang, H.P. Zhang, Y.Y. Zhou, S.M. Wang. Controlled synthesis of high-auality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution Process. J. Phys. Chem. B, 2006, 110: 6543-6548.
    [170] H.L. Cao, Q. Gong, X.F. Qian, H.L. Wang, J.T. Zai, Z.K. Zhu. Synthesis of 3D hierarchical dendrites of lead chalcogenides in large scale via microwave-assistant method. Cryst. Growth Des., 2007, 7: 425-429.
    [171] S.F. Wang, F. Gu, M.K. Lu. Sonochemical synthesis of hollow PbS nanospheres. Langmuir, 2006, 22: 398-401.
    [172] H.M. Hu. B.J. Yang, J.H. Zeng, Y.T. Qian. Morphology evolution of SnS nanocrystals: from 3D urchin-like architectures to 1D nanostructures. Mater Chem. Phys., 2004, 86: 233-237.
    [173] N. Reddy, K. Ramesh, R. Ganesan, K.T.R. Reddy, K.R. Gunasekhar, E.S.R. Gopal. Synthesis and characterisation of co-evaporated tin sulphide thin films. Appl. Phys. A, 2006, 83:133-138.
    [174] S.K. Panda, A. Datta, A. Dev, S. Gorai, S. Chaudhuri. Surfactant-assisted synthesis of SnS nanowires grown on tin foils, Cryst. Growth Des., 2006, 6: 2177-2181.
    [175] S. Schlecht, L. Kienle. Mild solvothermal synthesis and TEM investigation of unprotected nanoparticles of tin sulfide. Inorg. Chem., 2001, 40: 5719-5721.
    [176] H.L. Zhu, D.R. Yang, H. Zhang. Hydrothermal synthesis, characterization and properties of SnS nanoflowers. Mater Lett., 2006, 60: 2686-2689.
    [177] M. Huang, S. Mao,H. Feick, H. Yan, Y. Wu,H. Kind, E. Weber, R. Russo, P. Yang. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292, 1897-1899.
    [178] W.I Park, G.C.Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater, 2004, 16: 87-90.
    [179] W.I Park, J.S. Kim, G.C. Yi, M.H. Bae, H.J Lee. Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors. Appl. Phys. Lett., 2004, 85: 5052-5054.
    [180] Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, D.P. Yu. Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett., 2003, 83: 144-146.
    [181] R. Janisch, P. Gopal, N. A. Spaldin. Transition metal-doped TiO_2 and ZnO present status of the field. J. Phys. Corders. Matter, 2005, 17: R657-R689.
    [182] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett., 2004, 84: 3654-3656.
    [183] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang. Positive temperature coefficient resistance and humidity sensing properties ofCd-doped ZnO nanowires. Appl. Phys.Lett., 2004, 84: 3085-3087.
    [184] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292, 1897-1899.
    [185] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang. Catalytic growth of zinc oxide nanowires by vapor transport. Adv.Mater, 2001, 13: 113-116.
    [186] B.D. Yao, Y.F. Chan, N. Wang. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett., 2002, 81: 757-759.
    [187] L.E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano. Lett., 2005, 5:1231-1236.
    [188] C. Liu, J.A. Zapien, Y. Yao, X. Meng, C.S. Lee, S. Fan, Y. Lifshitz, S. T. Lee. High-density, ordered ultraviolet light-emitting ZnO nanowire arrays. Adv. Mater, 2003, 15: 838-841.
    [189] S. Y. Li, P. Lin, C. Y. Lee, T. Y. Tseng. Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process. J. Appl. Phys., 2004, 95, 3711-3716.
    [190] B. Liu, H.C. Zeng. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc., 2003, 125, 4430-4431.
    [191] M. Guo, P. Diao, S. Cai. The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films. J. Solid State Chem., 2005, 178, 3210-3215.
    [192] W.I. Park, Y.H. Jun, S.W. Jung, G.C. Yi. Excitonic emissions observed in ZnO single crystal nanorods. Appl. Phys. Lett., 2003, 82, 964-966.
    [193] A. B. Hartanto, X. Ning, Y. Nakata, T. Okada. Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume. Appl. Phys. A, 2003, 78, 299-301.
    [194] W.D. Yu, X.M. Li, X.D. Gao. Self-catalytic synthesis and photoluminescence of ZnO nanostructures on ZnO nanocrystal substrates. Appl. Phys. Lett., 2004, 84: 2658-2660.
    [195] Y. Dai, Y. Zhang, Q. K. Li, C.W. Nan. Synthesis and optical properties of tetrapod-like zinc oxide nanorods. Chem. Phys. Lett., 2002, 358: 83-86.
    [196] Y. Dai, Y. Zhang, Z.L. Wang. The octa-twin tetraleg ZnO nanostructures. SolidState Commun., 2003, 126: 629-633.
    [197] V.A.L. Roy, A. B. Djurisic, W.K. Chan, J. Gao, H.E Lui, C. Surya. Luminescent and structural properties of ZnO nanorods prepared under different conditions. Appl. Phys. Lett., 2003, 83:141-143.
    [198] H. Yah, R. He, J. Pham, P. Yang. Morphogenesis of one-dimensional ZnO nano-and microcrystals. Adv. Mater, 2003, 15: 402-405.
    [199] Z.W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of semiconducting oxides. Science, 2001, 291: 1947-1979.
    [200] H. Yah, J. Johnson, M. Law, R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, P. Yang. ZnO nanoribbon microcavity lasers. Adv. Mater, 2003, 15:1907-1911.
    [201] Y. B. Li, Y. Bando, T. Sato, K. Kurashima. ZnO nanobelts grown on Si substrate. Appl. Phys. Lett., 2002, 81: 144-146.
    [202] J. Y. Lao, J.G. Wen, Z.F. Ren. Hierarchical ZnO nanostructures. Nano. Lett., 2002, 2: 1287-1291.
    [203] J. Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren. ZnO nanobridges and nanonails. Nano. Lett., 2003, 3: 235-238.
    [204] J.H. Park, H.J. Choi, Y.J. Choi, S.H. Sohn, J.G. Park. Ultrawide ZnO nanosheets. J. Mater. Chem., 2004, 14: 35-36.
    [205] Z.L. Wang, X.Y. Kong, Y. Ding, P. Gao, W.L. Hughes, R. Yang, Y. Zhang. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater., 2004, 14: 943-956.
    [206] P. X. Gao, Z. L. Wang. Nanopropeller arrays of zinc oxide. Appl. Phys. Lett., 2004, 84: 2883-2885.
    [207] X.Y. Kong, Z.L. Wang. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano. Lett., 2003, 3:1625-1631.
    [208] A.B. Djurisic, Y.H. Leung. Optical Properties ofZnO Nanostructures. Small, 2006, 2: 944-961.
    [209] J.S. Jeong, J.Y. Lee, C.J. Lee, S.J. An, G.C. Yi. Synthesis and characterization of high-quality In_2O_3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature, Chem. Phys. Lett., 2004, 384: 246-250.
    [210] H.J. Chun, Y.S. Choi, S.Y. Bae, H.C. Choi, J. Park, Single-crystalline gallium-doped indium oxide nanowires, Appl. Phys. Lett., 2004, 85: 461-463.
    [211] C. Li, D.H. Zhang, S. Han, X.L. Liu, T. Tang, C.W. Zhou. Diameter-controlled growth of single-crystalline In_2O_3 nanowires and their electronic properties, Adv. Mater., 2003, 15:143-146.
    [212] X.C.Wu, J.M. Hong, Z.J. Han, Y.R. Tao, Fabrication and photoluminescence characteristics of single crystalline In_2O_3 nanowires, Chem. Phys. Lett., 2003, 373: 28-32.
    [213] Y.F. Hao, G.W. Meng, C.H. Ye, L.D. Zhang. Controlled synthesis of In_2O_3 octahedrons and nanowires. Cryst. Growth Design, 2005, 5: 1617-1621.
    [214] J. Lao, J. Huang, D. Wang, Z. Ren. Self-Assembled In_2O_3 Nanocrystal Chains and Nanowire Networks. Adv. Mater., 2004, 16: 65-69.
    [215] E. Stern, G. Cheng, S. Guthrie, D. Turner-Evans, E. Broomfield, C. Li, D. Zhang, B. Lei, Z. Zhou, M.A. Reed. Comparison of laser-ablation and hot-wall chemical vapour deposition techniques for nanowire fabrication. Nanotechnology, 2006, 17: S246-S252.
    [216] K.C. Kam, F.L. Deepak, A.K. Cheetham, C.N.R. Rao. In_2O_3 nanowires, nanobouquets and nanotrees. Chem. Phys. Lett., 2004, 397: 329-334.
    [217] H.J. Chun, Y.S. Choi, S.Y. Bae, J. Park. Bicrystalline indium oxide nanobelts. Appl.Phys.A, 2005, 81: 539-542.
    [218] T. Toupance, O. Babot, B. Jousseaume, G. Villaca. Nanocrystalline mesoporous tin dioxide prepared by the sol-gel route from a dialkoxydi(beta-diketonato)tin complex. Chem. Mater., 2003, 15: 4691-4697.
    [219] Z. Ying, Q. Wan, Z.T. Song, S.L. Feng. SnO_2 nanowhiskers and their ethanol sensing characteristics. Nanotechnology, 2004, 15: 1682-1684.
    [220] G. Vilaca, B. Jousseaume, C. Mahieus, C. Belin, H. Cachet, M.C. Bernard, V. Vivier, T. Toupance. Tin dioxide materials chemically modified with trialkynylorganotins: functional nanohybrids for photovoltaic Applications. Adv. Mater., 2006, 18:1073-1077.
    [221] S. Ferrere, A. Zaban,; B. A. Gregg. Dye sensitization of nanocrystalline tin oxide by perylene derivatives. J. Phys. Chem. B, 1997, 101: 4490-4493.
    [222] Z.R. Dai, Z.W. Pan, Z.L. Wang. Ultra-long single crystalline nanoribbons of tin oxide. Solid State Commun., 2001, 118:351-354.
    [223] G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, A. Vomiero. Synthesis and characterization of semiconducting nanowires for gas sensing. Sensor Actuat B-Chem., 2007, 121: 208-213.
    [224] D.F. Zhang, L.D. Sun, G. Xu, C.H. Yah. Size-controllable one-dimensinal SnO_2 nanocrystals: synthesis, growth mechanism, and gas sensing property. Phys. Chem. Chem. Phys., 2006, 8: 4874-4880.
    [225] Z.R. Dai, Z.W. Pan, Z.L. Wang. Growth and structure evolution of novel tin oxide diskettes. J. Am. Chem. Soc., 2002, 124: 8673-8680.
    [226] P.Z. Ying, Z.F. Ni, W.J. Xiu, L.J. Jia, Y. Luo. Study on synthesis and gas sensitivity of SnO_2 nanobelts, Chin. Phys. Lett., 2006, 23: 1026-1028.
    [227] S.H. Luo, J.Y. Fan, W.L. Liu, M. Zhang, Z.T. Song, C.L. Lin, X.L. Wu, P. Chu. Synthesis and low-temperature photoluminescence properties of SnO_2 nanowires and nanobelts, Nanotechnology, 2006, 17: 1695-1699.
    [228] L.H. Xia, B.F. Yang, Z.P. Fu, Y.L. Yang, H.W. Yan, Y.D. Xu, S.Q. Fu, G.P. Li. High-yield solvothermal synthesis of single-crystalline tin oxide tetragonal prism nanorods. Mater Lett., 2007, 61: 1214-1217.
    [229] J.Q. Sun, J.S. Wang, X.C. Wu, G.S. Zhang, J.Y. Wei, S.Q. Zhang, H. Li, D.R. Chen, Novel method for high-yield synthesis of rutile SnO_2 nanorods by oriented aggregation, Cryst. Growth Des., 2006, 6: 1585-1587.
    [230] J.H. He, T.H. Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou, Z.L. Wang. Beaklike SnO_2 nanorods with strong photoluminescent and field-emission properties, small, 2006, 2:116-120.
    [231] Z.W. Chen, J.K.L. Lai, C.H. Shek. Bulk-quantity SnO_2 nanorods synthesized from simple calcining process based on annealing precursor powders. J.Non-Cryst. Solids, 2005, 351:3619-3623.
    [232] J.Q. Hu, Y. Bando, D. Golberg. Self-catalyst growth and optical properties of novel SnO_2 fishbone-like nanoribbons. Chem. Phys. Lett., 2003, 372: 758-762.
    [233] Y.J. Zhang, C. Wang, Z.Q. Mao, N.F. Wang. Preparation of nanometer-sized SnO_2 by the fusion method. Mater Lett., 2007, 61: 1205-1209.
    [234] J.H. Ba, J. Polleux, M. Antonietti, M. Niederberger. Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures, Adv. Mater, 2005, 17: 2509-2512.
    [235] H.L. Zhu, D.R. Yang, G.X. Yu, H. Zhang, K.H. Yao. A simple hydrothermal route for synthesizing SnO_2 quantum dots. Nanotechnology, 2006, 17: 2386-2389.
    [236] X.W. Lou, C.L. Yuan, L.A. Archer. Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: cavity size tuning and functionalization, small, 2007, 3: 261-265.
    [237] M.B. Zheng, J.M. Cao, X. Chang, J. Wang, J.S. Liu, X.J. Ma. Preparation of oxide hollow spheres by colloidal carbon spheres. Mater. Lett., 2006, 60: 2991-2993.
    [238] X.W. Lou, Y. Wang, C.L. Yuan, J.Y. Lee, L.A. Archer. Template-free synthesis of SnO_2 hollow nanostructures with high lithium storage capacity, Adv. Mater, 2006, 18: 2325-2329.
    [239] M. Epifani, R. Diaz, J. Arbiol, E. Comini, N. Sergent, T. Pagnier, P. Siciliano, G. Faglia, J.R. Morante. Nanocrystalline metal oxides from the injection of metal oxide sols in coordinating solutions: synthesis, characterization, thermal stabilization, device processing, and gas-sensing properties. Adv. Funct. Mater, 2006, 16: 1488-1498.
    [240] Q.R. Zhao, Y. Gao, X. Bai, C.Z. Wu, Y. Xie, Facile synthesis of SnO_2 hollow nanospheres and applications in gas sensors and electrocatalysts. Eur J. Inorg. Chem., 2006, 1643-1648.
    [241] A. Beltran, J. Andres, E. Longo, and E. R. Leite. Thermodynamic argument about SnO_2 nanoribbon growth. Appl. Phys. Lett., 2003, 83: 635-637.
    [242] Y.S. Zhang, K. Yua, G.D. Li, D.Y. Peng, Q.X. Zhang, F. Xu, W. Bai, S.X. Ouyang, Z.Q. Zhu. Synthesis and field emission of patterned SnO_2 nanoflowers. Mater Lett., 2006, 60:3109-3112.
    [243] Q.R. Zhao, Z.Q. Li, C.Z. Wu, X. Bai, Y. Xie. Facile synthesis and optical property of SnO_2 flower-like architectures, J. Nanopart. Res., 2006, 8: 1065-1069.
    [244] Q.R. Zhao, Z.G. Zhang, T. Dong, Y. Xie. Facile synthesis and catalytic property of porous tin dioxide nanostructures, J. Phys. Chem. B, 2006, 110: 15152-15156.
    [245] J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, T. Kunitake. Nanotubular SnO_2 templated by cellulose fibers: synthesis and gas sensing. Chem. Mater, 2005, 17:3513-3518.
    [246] Y. Wang, J.Y. Lee, H.C. Zeng. Polycrystalline SnO_2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater, 2005, 17: 3899-3903.
    [247] L.S.Huang, L. Pu, Y. Shi, R. Zhang, B.X. Gu, Y.W. Du. Controlled growth of well-faceted zigzag tin oxide mesostructures. Appl. Phys. Lett., 2005, 87:163124-163126.
    [248] C. Ling, W.Z. Qian, F. Wei. Gas-flow assisted bulksynthesis of V-type SnO_2 nanowires. J. Cryst. Growth, 2005, 285: 49-53.
    [249] W.T. Dong, C.S. Zhu. Use of ethylene oxide in the sol-gel synthesis of α-Fe_2O_3 nanoparticles from Fe(Ⅲ) salts. J. Mater Chem., 2002, 12:1676-1683.
    [250] P. Li, D.E. Miser, S. Rabiei, R.T. Yadav, M.R. Hajaligol. The removal of carbon monoxide by iron oxide nanoparticles. Appl. Catal. B Environ., 2003, 43: 151-162.
    [251] J. Chen, L. Xu, W. Li, X. Gou. α-Fe_2O_3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications. Adv. Mater., 2005, 17: 582-586.
    [252] H. ltoh, T. Sugimoto. Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J. Colloid lnterf Sci., 2003, 265: 283-295.
    [253] X.M. Liu, S.Y. Fu, H.M. Xiao, C.J. Huang. Preparation and,characterization of shuttle-like α-Fe_2O_3 nanoparticles by supermolecular template. J. Solid State Chem., 2005, 178: 2798-2803.
    [254] A.T. Ngo, M.P. Pileni. Cigar-shaped ferrite nanocrystals: Orientation of the easy magnetic axes. J. Appl. Phys., 2002, 92: 4649-4652.
    [255] C. Pascal, J.L. Pascal, F. Favier, M.L.E. Moubtassim, C. Payen. Electrochemical synthesis for the control of γ-Fe_2O_3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem. Mater, 1999, 11: 141-147.
    [256] Y. Fu, J. Chen, H. Zhang. Synthesis of Fe_2O_3 nanowires by oxidation of iron. Chem. Phys. Lett., 2001, 350: 491-494.
    [257] Y. Fu, R. Wang, J. Xu, J. Chen, Y. Yan, A. Narlikar, H. Zhang. Synthesis of large arrays of aligned α-Fe_2O_3 nanowires. Chem. Phys. Lett., 2003, 379: 373-379.
    [258] X.Y. Chen, Z.J. Zhang, Z.G. Qiu, C.W. Shi, X.L. Li. A facile biomolecule-assisted approach for fabricating α-Fe_2O_3 nanowires in solution. Solid State Commun., 2006, 140: 267-269.
    [259] X.G. Wen, S.H. Wang, Y. Ding, Z.L. Wang, S.H. Yang. Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe_2O_3 nanobelts and nanowires. J. Phys. Chem. B, 2005, 109: 215-220.
    [260] Y.Y. Fu, J. Chen, H. Zhang, Synthesis of Fe_2O_3 nanowires by oxidation of iron, Chem. Phys. Lett., 2001, 350: 491-494.
    [261] S.Lian, E.Wang, Z.Kang, Y. Bai, L. Gao,M. Jiang, C. Hu, L.Xu. Synthesis of magnetite nanorods and porous hematite nanorods. Solid State Commun., 2004, 129: 485-490.
    [262] Z. Jing and S. Wu. Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach. Mater. Lett., 2004, 58: 3637-3640.
    [263] Z.Y. Zhong, M.Lin, V. Ng, G.X.B. Ng, Y. Foo, A. Gedanken. A versatile wet-chemical method for synthesis of one-dimensional ferric and other transition metal oxides. Chem. Mater, 2006, 18:6031-6036.
    [264] Y.M. Zhao, Y.H. Li, R.Z. Ma, M.J. Roe, D.G. McCartney, Y.Q. Zhu. Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron-water reaction, small, 2006, 2: 422-427.
    [265] X.G. Wen, S.H. Wang, Y. Ding, Z.L. Wang, S.H. Yang. Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe_2O_3 nanobelts and nanowires. J. Phys. Chem. B, 2005, 109:215-220.
    [266] L. Liu, H.Z. Kou, W.L. Mo, H.J. Liu, Y.Q. Wang. Surfactant-sssisted synthesis of α-Fe_2O_3 nanotubes and nanorods with shape-dependent magnetic properties. J. Phys. Chem. B, 2006, 110:15218-15223.
    [267] B. Hou, Y.S. Wu, L.L. Wu, Y.C. Shi, K. Zou, H.D. Gai. Hydrothermal synthesis of cubic ferric oxide particles. Mater Lett., 2006, 60:3188-3191.
    [268] X. Liang, X. Wang, J. Zhuang, Y.T. Chen, D.S. Wang, Y.D. Li. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv. Funct. Mater, 2006, 16:1805-1813.
    [269] L.P. Zhu, H.M. Xiao, S.Y. Fu. Template-free synthesis of monodispersed and single-crystalline cantaloupe-like Fe_2O_3 superstructures. Cryst. Growth Des., 2007, 7: 177-182.
    [270] C. Jia, Y. Cheng, F. Bao, D.Q. Chen, Y.S. Wang. pH value-dependant growth of a-Fe_2O_3 hierarchical nanostructures. J. Cryst. Growth, 2006, 294: 353-357.
    [271] L.S. Zhong, J.S. Hu, H.P. Liang, A.M. Cao, W.G. Song, L.J. Wan. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater., 2006, 18: 2426-2431.
    [272] M.H. Cao, T.F. Liu, S. Gao, G.B. Sun, X.L. Wu, C.W. Hu, Z.L. Wang. Single-crystal dendritic micro-pines of magnetic α-Fe_2O_3: Large-scale synthesis, formation mechanism, and properties. Angew. Chem. Int. Ed., 2005, 44:4197-4201
    [273] Z.T. Liu, T.X. Fan, W. Zhang, D. Zhang. The synthesis of hierarchical porous iron oxide with wood templates. Micropor. Mesop.Mat., 2005, 85: 82-88.
    [274] S.Z. Li, H. Zhang, J.B. Wu, X.Y. Ma, D.R. Yang. Shape-control fabrication and xharacterization of the airplane-like FeO(OH) and Fe_2O_3 nanostructures, Cryst.Growth Des., 2006, 6:351-353.
    [275] L.P. Zhu, H.M. Xiao, X.M. Liu, S.Y. Fu. Template-free synthesis and characterization of novel 3D urchin-like a-Fe_2O_3 superstructures. J. Mater. Chem., 2006, 16:1794-1797.
    [276] J. Lu, D.R. Chen, X.L. Jiao. Fabrication, characterization, and formation mechanism of hollow spindle-like hematite via a solvothermal process. J. Colloid lnterf Sci., 2006, 303: 437-443.
    [277] C. Zhang, Z.H. Kang, E.H. Shen, E.B. Wang, L. Gao, F. Luo, C.G. Tian, C.L. Wang, Y. Lan, J.X. Li, X.J. Cao. Synthesis and evolution of PbS nanocrystals through a surfactant-assisted solvothermal route. J. Phys. Chem. B, 2006, 110: 184-189.
    [278] S.M. Lee, Y.W. Jun, S.N. Cho, J. Cheon. Single-crystalline star-shaped nanocrystals and their evolution: Programming the geometry of nano-building blocks. J. Am. Chem. Soc., 2002, 124: 11244-22245.
    [279] S.A. McDonald, G. Konstantatos, S.G. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, E.H. Sargent. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater., 2005, 4: 138-U14.
    [280] L. Levina, W. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D.P. Bazett-Jones, E.H. Sargent. Efficient infrared-emitting PbS quantum dots grown on DNA and stable in aqueous solution and blood plasma. Adv. Mater., 2005, 17:1854-.
    [281] K.R. Choudhury, Y. Sahoo, S.J. Jang, P.N. Prasad. Efficient photosensitization and high optical gain in a novel quantum-dot-sensitized hybrid photorefractive nanocomposite at a telecommunications wavelength. Adv. Funct. Mater., 2005, 15: 751-756.
    [282] J.P. Ge, J. Wang, H.X. Zhang, X. Wang, Q. Peng, Y.D. Li. Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior. Chem. Eur. J., 2005, 11:1889-1894.
    [283] D. Kuang, A. Xu, Y. Fang, H. Liu, C. Frommen, D. Fenske. Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process. Adv. Mater., 2003, 15: 1747-1750.
    [284] R. J. Eilingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, A.L. Efros. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano. Lett., 2005, 5: 865-871.
    [285] T. Schneider, M. Haase, A. Kornowski, S. Naused, H. Weller, S. Forster, M. Antonitti. Synthesis and characterization of PbS nanoparticles in block copolymer micelles. Ber. Bunsen-Ges. Phys. Chem., 1997, 101: 1654-1656.
    [286] N.N. Parvathy, G.M. Pajonk, A.V. Rao. Synthesis and study of quantum size effect, XRD and IR spectral properties of PbS nanocrystals doped in SiO_2 xerogel matrix. J. Cryst. Growth, 1997, 179: 249-257.
    [287] A.A. Lipovskii, V.E. Kolobkova, A. Olkhovets, V. Petrikov, F. Wise. Synthesis of monodisperse PbS quantum dots in phosphate glass. Phys. E, 1999, 5: 157-160.
    [288] L. Konopny, M. Berfeld, R.P. Biro, I. Weissbuch, L. Leiserowitz, M. Lahav. Phase transitions and stabilization of the organized hybrid Langmuir-Blodgett films of alkanoic Acids/CdS and PbS Q-Particles. Adv. Mater, 2001, 13: 580-584.
    [289] A.K. Dutta, T.T. Ho, L.Q. Zhang, P. Stroeve. Nucleation and growth of lead sulfide nano-and microcrystallites in supramolecular polymer assemblies. Chem. Mater, 2000, 12:1042-1048.
    [290] T. Trindade, P. OBrien, X. Zhang, M. Motevalli. Synthesis of PbS nanocrystallites using a novel single molecule precursors approach: X-ray single-crystal structure of Pb(S_2CNEtPri)_2. J. Mater Chem., 1997, 7: 1011-1016.
    [291] C. Zhang, Z.H. Kang, E.H. Shen, E.B. Wang, L. Gao, F. Luo, C.G. Tian, C.L. Wang, Y. Lan, J.X. Li, X.J. Cao. Synthesis and evolution of PbS nanocrystals through a surfactant-sssisted solvothermal route, J. Phys. Chem. B, 2006, 110: 184-189.
    [292] J.X. Wan, X.Y. Chen, Z.H. Wang, W.C. Yu, Y.T. Qian. Synthesis of uniform PbS nanorod bundles via a surfactant-assisted interface reaction route. Mater Chem. Phys., 2004, 88:217-220.
    [293] N.N. Zhao, L.M. Qi. Low-Temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants. Adv. Mater, 2006, 18: 359-362.
    [294] S.M. Lee, Y.W. Jun, S.N. Cho, J. Cheon. Single-crystalline star-shaped nanocrystals and their evolution:programming the geometry of nano-building blocks. J. Am. Chem. Soc., 2002, 124:11244-11245.
    [295] G.J. Zhou, M.K. Lu, Z.L. Xiu, S.F. Wang, H.P. Zhang, Y.Y. Zhou, S.M. Wang. Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their Shape evolution process, J. Phys. Chem. B, 2006, 110: 6543-6548.
    [296] J.P. Ge, J. Wang, H.X. Zhang, X. Wang, Q. Peng, Y.D. Li. Orthogonal PbS nanowire arrays and networks and their raman scattering behavior. Chem. Eur J., 2005, 11: 1889-1894.
    [297] S.F. Wang, F. Gu, M.K. Lu. Sonochemical synthesis of hollow PbS nanospheres. Langmuir, 2006, 22: 398-401.
    [298] D. Wang,; C.M. Lieber. Inorganic materials-Nanocrystals branch out. Nat. Mater, 2003, 2: 355-356.
    [299] L. Manna, D.J. Milliron, A. Meisei, E.C. Scher, A.P. Alivisatos. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater, 2003, 2: 382-385.
    [300] A.G. Kanaras, C. Sonnichsen, H.T. Liu, A.P. Alivisatos. Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. Nano. Lett., 2005, 5:2164-2167.
    [301] D.L. Wang, F. Qian, C. Yang, Z.H. Zhong, C.M. Lieber. Rational growth of branched and hyperbranched nanowire structures, Nano. Lett., 2004, 4: 871-874.
    [302] X. Wang, Y.D. Li. Rational synthesis of α-MnO_2 single-crystal nanorods. Chem. Commun., 2002, 2: 764∽765.
    [303] X. Wang, Y.D. Li. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem. Eur J, 2003, 9: 300-306.
    [304] J.Yang, J.H. Zeng, S.H. Yu, L. Yang, G.E. Zhou, Y.T. Qian. Formation process of CdS nanorods via soivothermal route. Chem. Mater, 2000, 12: 3259-3263.
    [305] Y.H. Ni, H.J. Liu, F. Wang, Y.Y. Liang, J.M. Hong, X. Ma, Z. Xu. Shape controllable preparation of PbS crystals by a simple aqueous phase route. Cryst. Growth Des., 2004, 4: 759-764.
    [306] 靳正国,郭瑞松,师春生,侯信,郭新权:材料科学基础,天津大学出版社,2005.
    [307] J.E Xu, W.Ji. Characterization of ZnS nanoparticles prepared by new route. J. Mater Sci. Lett., 1999, 18: 115-117.
    [308] L.Sun, C.Liu, C.Liao, C.Yan. ZnS nanoparticles doped with Cu(I) by controlling coordination and precipitation in aqueous solution. J. Mater. Chem.,1999, 9, 1655-1657.
    [309] T.V. Prevenslik. Acoustoluminescence and sonoluminescence. J. Lumin., 2000, 87:1210-1212.
    [310] P. Calandra, M. Goffredi, V.T. Liveri. Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy. Colloid.Surface A, 1999, 160:9-13.
    [311] G.Z. Shen, Y. Bando, D.Golberg. Self-assembled three-dimensional structures of single-crystalline ZnS submicrotubes formed by coalescence of ZnS nanowires. Appl. Phys. Lett., 2006, 88, 1231071-1231073.
    [312] A.A. Shama, H.M. Zeyada. Electronic dielectric constants of thermally evaporated SnS thin films. Opt. Mater., 2003, 24:555-561
    [313] N. Sato, M. Ichimura, E. Arai, Y. Yamazaki. Characterization of electrical properties and photosensitivity of SnS thin films prepared by the electrochemical deposition method. Sol. Energy Mater. Sol. Cells, 2005, 85: 153-165.
    [314] B. Subramanian, C. Sanjeeviraja, M. Jayachandran. Photoelectrochemical characteristics of brush plated tin sulfide thin films. Sol. Energy Mater. Sol. Cells, 2003, 79: 57-65.
    [315] N.K. Reddy, K.T.R. Reddy. SnS films for photovoltaic applications physical investigations on sprayed SnxSy films. Phys. B, 2005, 368:25-31.
    [316] M. jayalakshmi, M.M. Rao, B.M. Choudary. Identifying nano SnS as a new electrode material for electrochemical capacitors in aqueous solutions. Electrochem. Commun., 2004, 6:1119-1122.
    [317] X.L. Gou, J. Chen, P.W. Shen. Synthesis, characterization and application of SnSx(x=1,2) nanoparticles. Mater Chem. Phys., 2005, 93: 557-566.
    [318] T. Brousse, S.M. Lee, L. Pasquereau, D. Derives, D.M. Schleich. Composite negative electrode for lithium ion cells. Solid State Ionics, 1998, 113-115:51-56.
    [319] T. Momma, N. Shiraishi, A. Yoshizawa, T. Osaka, A. Gedanken, J. Zhu, L. Sominski. SnS_2 anode for rechargeable lithium batteries. J. Power Sources, 2003, 119-121: 198-200.
    [320] H. Mukaibo, A. Yoshizawa, T. Momma, T. Osaka. Particle size and performance of SnS_2 anode for rechargeable lithium batteries. J. Power Sources, 2003, 119-121: 198-200.
    [321] W.U. Huynh, J.J. Dittmer, A.P. Alivisatos. Hybrid nanorod-polymer solar cells, Science, 2002, 295: 2425-2427.
    [322] S. Coe, W.K. Woo, M. Bawendi, V. Bulovic. Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature, 2002, 420: 800-803.
    [323] L.L. Beecroft, C.K. Ober. Nanocomposite materials for optical applications. Chem. Mater, 1997, 9: 1302-1307.
    [324] X.F. Duan, Y. Huang, R. Agarwai, C.M. Lieber. Single-nanowire electrically driven lasers. Nature, 2003, 421: 241-245.
    [325] J.E.G.J. Wijnhoven, W.L. Vos. Preparation ofphotonic crystals made of air spheres in titania. Science, 1998, 281: 802-804.
    [326] F. Caruso. Nanoengineering of Particle Surfaces. Adv. Mater, 2001, 13:11-22.
    [327] P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.H. Johannes, W. Kowaisky, T. Riedl. Towards See-Through Displays: Fully Transparent Thin-Film Transistors Driving Transparent Organic Light-Emitting Diodes. Adv. Mater., 2005, 18: 738-743.
    [328] F. Meiser, C. Cortez, E Caruso. Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticles. Angew. Chem. Int. Ed., 2004, 43: 5954-5957.
    [329] Y.N. Xia, B. Gates, Y.D. Yin, Y. Lu. Monodispersed colloidal spheres: old materials with new applications. Adv. Mater, 2000, 12:693-731.
    [330] D.J. Norris, Y.A. Vlasov. Chemical Approaches to Three-Dimensional Semiconductor Photonic Crystals. Adv. Mater, 2001, 13: 371-376.
    [331] B.T. Holland, C.F. Blanford, A. Stein. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science, 1998, 281: 538-540.
    [332] S.A. Johnson, P.J. Olliver, T.E. Mallouk. Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science, 1999, 283: 963-965.
    [333] Y.W. Wang, L.D. Zhang, C.H. Liang, G.Z. Wang, X.S. Peng. Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chem. Phys. Lett., 2002, 357:314-318.
    [334] Y. Jiang, X.M. Meng, J. Liu, Z.R. Hong, C.S. Lee, S.T. Lee. ZnS nanowires with wurtzite polytype modulated structure. Adv. Mater, 2003, 15:1195-1198.
    [335] S. Kar, S. Biswas, S. Chaudhuri. Catalytic growth and photoluminescence properties of ZnS nanowires. Nanotechnology, 2005, 16: 737-740.
    [336] Q.H. Xiong, G. Chen, J.D. Acord, X. Liu, J.J. Zengel, H.R. Gutierrez, J.M. Redwing, L.C. Voon, B. Lassen, P.C. Eklund. Optical properties of rectangular cross-sectional ZnS nanowires. Nano. Lett., 2004, 4, 1663-1668.
    [337] D.F. Moore, Y. Ding, Z.L. Wang. Crystal orientation-ordered ZnS nanowire bundles. J. Am. Chem. Soc., 2004, 126: 14372-14373.
    [338] J.Q. Hu,Y. Bando,J.H. Zhan,D. Golberg. Sn-filled single-crystalline Wurtzite-type ZnS nanotubes. Angew. Chem., Int. Ed., 2004, 43: 4606-4609.
    [339] L.W. Yin, Y. Bando, J.H. Zhan, M.S. Li, D. Golberg. Self-assembled highly faceted wurtzite-type ZnS single-crystalline nanotubes with hexagonal cross-sections. Adv. Mater, 2005, 17:1972-1977.
    [340] X.D. Wang, P.X. Gao, J. Li, C.J. Summers, Z.L. Wang. Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes. Adv. Mater, 2002, 14: 1732-1735.
    [341] Y.C. Zhu, Y. Bando, Y. Uemura. ZnS-Zn nanocables and ZnS nanotubes. Chem. Commun., 2003, 836-837.
    [342] C.C. Chen, C.Y. Chao, Z.H. Lang. Simple solution-phase synthesis of soluble CdS and CdSe nanorods. Chem. Mater., 2000, 12: 1516-1518.
    [343] P. Yan, Y. Xie, Y. Qian, X.M. Liu. A cluster growth route to quantum-confined CdS nanowires. Chem. Commun., 1999, 1293-1294.
    [344] X. Fu, D. Wang, J. Wang, H. Shi, C. Song. High aspect ratio CdS nanowires synthesized in microemulsion system. Mater. Res. Bull., 2004, 39:1869-1874.
    [345] L. Li, P.D. Ya, S.W. Qing. Simultaneously inducing synthesis of semiconductor CdS nanotubes and nanospheres through living bio-membrane bi-template. Chinese Sci. Bull,, 2006, 51: 791-795.
    [346] H. Zhang, X.Y. Ma, J. Xu, D.R. Yang. Synthesis of CdS nanotubes by chemical bath deposition. J. Cryst. Growth, 2004, 263: 372-376.
    [347] T.Y. Peng, H.P. Yang, K. Dai, X.L. Pu, K. Hirao, Fabrication and characterization of CdS nanotube arrays in porous anodic aluminum oxide templates. Chem. Phys. Lett., 2003, 379: 432-436.
    [348] C. Elva, R. Sullivan, J.I.W. Anthony. The use of associated surfactant media for the synthesis of fine particles: preparation of iron oxides. J. Colloid Interf Sci., 1991, 146: 582-585.
    [349] C. Rath, K.K. Sahu, S.D. Kulkarni. Microstructrue-dependent coercivity in monodispersed hematite particles, Appl. Phys. Lett., 1999, 75: 4171-4173.
    [350] M. Ocana, M.P. Morales, C.J. Serna. The growth mechanism of α-Fe_2O_3 ellipsoidal particles in solution. J. Colloidlnterf Sci., 1995, 171: 85-91.
    [351] 都有为,罗河烈.磁记录材料.北京:电子工业出版社,1992.
    [352] X.O. Wang, L.S. Gao, H.G.. Zheng, M.R. Ji, T. Shen, Z. Zhang. Fabrication and electrochemical properties of α-Fe_2O_3 nanoparticles. J. Cryst. Growth, 2004, 269: 489-492.
    [353] Z.H. Jing, S.H. Wu, S.M. Zhang, W.P. Huang. Hydrothermal fabrication of various morphological α-Fe_2O_3 nanoparticles modified by surfactants. Mater. Res. Bull., 2004, 39: 2057-2064.
    [354] K.K Sahu, C. Rath, N.C. MISHRA, S. Anand, R.P. Das. Microstructural and magnetic studies on hydrothermally prepared hematite. J. Colloid Interf Sci., 1997, 185: 402-410.
    [355] C. Rath, K.K. Sahu, S.D. Kulkarni, S. Anand, S.K. Date, R.P. Das, N.C. Mishra. Microstructure-dependent coercivity in monodispersed hematite particles. AppL Phys. Lett., 1999, 75: 4171-4173.
    [356] Y. Wei, H. Liu. Preparation of nano-needle hematite particles in solution. Mater. Res. Bull., 1999, 34: 1227-1231.
    [357] T. Ishikawa, E. Matijevic. Formation of monodispersed pure and coated spindle-type iron particles, Langmuir, 1988, 4:26-31.
    [358] Sugimoto T, Sakata K. Preparation of monodisperse peanuttyped ferric oxide partides from condensed ferric hydroxide gel. J. Colloid Interface Sci., 1993, 70:167-169.
    [359] 姜继森,高濂,杨燮龙,郭景坤.α-Fe_2O_3纳米微粒的制备及其Mssbauer谱研究.物理化学学报, 2000.16:312-316.
    [360] 邱春喜,姜继森,赵振杰,杨燮龙.固相法制备α-Fe_2O_3纳米粒子.无机材料学报,2001,16:957-960.
    [361] 张秀丽,刘辉,魏雨,马子川.纺锤形α-Fe_2O_3粒子的溶液催化合成,化学学报,2005,12:1141-1146.
    [362] R. Zboril, M. Mashlan, D. Petridis. Iron(Ⅲ) oxides from thermal processes-synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization, and applications, Chem. Mater., 2002, 14: 969-982,.
    [363] H. Itoh, T. Sugimoto. Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J. Colloid Interf Sci., 2003, 265: 283-295.
    [364] 李巧玲,魏雨,李琳.纺锤形α-Fe_2O_3成核前水解机理的研究,无机材料学报,2000,15,1093-1096.
    [365] 魏雨,郑学忠,邵素霞.水热合成针形α-Fe_2O_3与表征,应用科学学报,1997,15,242-248.
    [366] Y. Wei, H. Liu. Preparation of nano-needle hematite particles in solution. Mater. Res. Bull., 1999, 34: 1227-1231.
    [367] X. Wang, L. S. Gao, H. G. Zheng. Fabrication and electrochemical properties of α-Fe_2O_3 nanoparticles. J. Cryst. Growth, 2004, 269: 489-492.
    [368] A. Jitianu, M. Crisan, A. Meghea. Influence of the silica based matrix on the formation of iron oxide nanoparticles in the Fe_2O_3-SiO_2 system, obtained by sol-gel method. J. Mater. Chem., 2002, 12: 1401-1407.
    [369] Y. W. Jun, Y. Y. Jung, J. Cheon. Architectural control of magnetic semiconductor nanocrystals. J. Am. Chem. Soc, 2002, 124: 615-619.
    [370] Z. A. Peng, X. G. Peng. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc, 2002, 124: 3343-3353.
    [371] Y. Ke, Y. S. Zhang, R. L. Xu, S. X. Ouyang, D. M. Li, L. Q. Luo, Z. Q. Zhu, J. Ma, S. J. Xie, S. H. Hart, H. R. Geng. Efficient field emission from tetrapod-like zinc oxide nanoneedles. Mater. Lett., 2005, 59: 1866-1870.
    [372] A. G. Kanaras, C. Sonnichson, H. T. Liu, A. P. Alivisatos. Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. Nano. Lett, 2005, 5: 2164-2167.
    [373] S. Chen, Z. L. Wang, J. Ballato, S. H. Foulger, D. L. Carroll. Monopod, bipod, tripod, and tetrapod gold nanocrystals. J. Am. Chem. Soc., 2003, 125: 16186-16187.
    [374] F. Guo, Q. Y. Lu, S. H. Xie, D. Y. Zhao. A simple route for the synthesis of multi-armed CdS nanorod-based materials. Adv. Mater, 2002, 14: 1537-1540.
    [375] F. A. Al-Sagheer, M. I. Zaki. Surface properties of sol-gel synthesized delta-MnO_2 as assessed by N_2 sorptometry, electron microscopy, and X-ray photoelectron spectroscopy. Colloid Surf A, 2000, 173: 193-204.
    [376] T. Kanasaku, K. Amezawa, N. Yamamoto. Hydrothermal synthesis and electrochemical properties of Li-Mn-spinel. Solid State Ion, 2000, 133: 51-56.
    [377] X. D Sun, C. L. Ma, Y. D. Wang. Preparation and characterization of MnOOH and beta-MnO2 whiskers. Inorg. Chem. Commun., 2002, 5: 747-750.
    [378] Z. H Yang, Y. C. Zhang, W. X. Zhang, X. Wang, Y. T. Qian, X. G. Wen, S. H. Yang. Nanorods of manganese oxides: Synthesis, characterization and catalytic application. J. Solid State Chem., 2006, 179: 679-684.
    [379] G.. C Xi, Y. Y. Peng, Y. C. Zhu, L. Q. Xu, W. Q. Zhang, W. C. Yu, Y. T. Qian. Mater. Res. Bull, 2004, 39: 1641-1648.
    [380] W. X. Zhang, Z. H. Yang, Y. Liu, S. P. Tang, X. Z. Han, M. Chen. Controlled synthesis of Mn_3O_4 nanocrystallites and MnOOH nanorods by a solvothermal method. J. Cryst. Growth, 2004, 263: 394-399.
    [381] B. Folch, J. Larionova, Y. Guari, C. Guerin, C. Reibel. Synthesis of MnOOH nanorods by cluster growth route from [Mn_(12)O_(12)(RCOO)_((16))(H_2O_((n))] (R=CH_3, C_2H_5). Rational conversion of MnOOH into Mn_3O_4 or MnO_2 nanorods. J. Solid State Chem., 2005, 78: 2368-2375.
    [382] Y. G. Zhang, Y. Liu, F. Guo, Y. H. Hu, X. Z. Liu, Y. T. Qian, Single-crystal growth of MnOOH and beta-MnO2 microrods at lower temperatures. Solid State Commun., 2005, 134: 523-527.
    [383] C. Y. Zhang, T. Qiao, X. Y. Hu, W. D. Zhou. Simple hydrothermal preparation of γ-MnOOH nanowires and their low-temperature thermal conversion to β-MnO_2 nanowires. J. Cryst. Growth, 2005, 280: 652-657.
    [384] Z. David, P. Nicola, F. Nathalie, C. Belin. Single crystal manganese oxide multipods by oriented attachment. J. Am. Chem. Soc., 2005, 127: 15034-15035
    [385] X. H. Zhong, R. G. Xue, L. T. Sun, I. Lieberwirth, W. Knoll. Synthesis of dumbbell-shaped manganese oxide nanocrystals, et al. J. Phys. Chem. B, 2006, 110: 2-4.
    [386] Y. H. Zheng, Y. Cheng, F. Bao, Y. S. Wang, Y. Qin. Multiple branched alpha-MnO_2 nanofibers: A two-step epitaxial growth. J. Cryst. Growth, 2006, 286: 156-161.
    [387] 董喜燕,张兴堂,程纲.化学学报,2004,62:2441-2143.
    [388] P. K. Sharma, M. S. Whittingham. The role of tetraethyl ammonium hydroxide on the phase determination and electrical properties of gamma-MnOOH synthesized by hydrothermal. Mater. Lett, 2001, 48: 319-323.
    [389] X. Wang, Y. D. Li. Rational synthesis of alpha-MnO_2 single-crystal nanorods. Chem. Commun., 2002, 2: 764-765.
    [390] X. Wang, Y. D. Li. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem. Eur. J, 2003, 9: 300-306.
    [391] J. Yang, J. H. Zeng, S. H. Yu, L. Yang, G. E. Zhou, Y. T. Qian. Formation process of CdS nanorods via solvothermal route. Chem. Mater., 2000, 12: 3259-3263.
    [392] Peng Z, Peng X. Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes: Nucleation and Growth. J. Am. Chem. Soc., 2002, 124: 3343-3353.
    [393] L. Manna, E. Scher, A. P. Alivisatos. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc., 2000, 122: 12700-12706.
    [394] J. Yang, J. H. Zeng, S. H. Yu, L. Yang, G. E. Zhou, Y. T. Qian. Formation process of CdS nanorods via solvothermal route. Chem. Mater., 2000, 12: 3259-3263.
    [395] K. Ballerat-Busserolles, L. Menunier, A. H. Roux, G. Roux-Desgranges. Polymer-surfactant interactions: Thermodynamics of some polypropylene glycols in sodium dodecylsulfate aqueous solutions at 298. 15 K. Comparison with cationic CTAB aqueous solutions. Phys. Chem. Chem. Phys., 2001, 3: 2872-2878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700