用户名: 密码: 验证码:
碳纳米管负载金属催化剂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNT)作为催化材料具有明显不同于传统催化材料的特性和潜力,可望在精细化学品合成、石油化工产品的加工转化及燃料电池等领域发挥其独特的优异性能,受到学术界和工业界的广泛关注。本论文以碳纳米管为催化剂载体,主要考察碳纳米管负载金属催化剂制备过程中有关因素的影响,以及催化反应过程中的有关规律。具体的研究工作主要集中在以下几个方面。
     催化剂的制备方法对催化剂的性能有显著的影响。我们比较了三种方法:浸渍法(IP)、乙二醇液相还原法(EG)、金属有机化学气相沉积法(MOCVD),考察了制备过程主要参数对催化剂性能的影响,在此基础上,优化制备过程,筛选更合适的制备方法。通过比较发现,MOCVD法具有操作灵活、制备过程简单易行、金属担载量高、金属粒子粒径小且尺寸可控等优点;通过调控碳纳米管表面含氧官能团的数量,可以调变金属粒子的担载量;采用1-辛烯的氢甲酰化反应为探针反应,发现用MOCVD法制备的Co/CNT催化剂具有最高的催化活性和C_9-醛的选择性,并发现1-辛烯的氢甲酰化反应性能与金属钴的粒径大小和粒径分布有关。
     通过改进的EG法制备出高分散的碳纳米管负载金属催化剂,并通过物化手段表征了催化剂制备过程中反应体系的变化,从而理解金属胶体的形成及金属胶体与保护剂(乙二酸)相互作用机理。由甲酸在不同金属表面的分解反应的启发,得出金属乙二酸盐的生成热对EG法制备高分散的碳纳米管负载金属催化剂具有决定性的影响。在肉桂醛选择加氢反应中,发现Ag基催化剂的活性尽管较低,但选择性最好。将Ru/CNT催化剂用于苯甲醇氧化反应,发现在85℃氧气气氛下,以水-甲苯为溶剂时,反应的转化率和选择性都可以达到100%。
     针对碳纳米管表面疏水性及比表面积小这一特点,采用KOH高温活化的方法对碳纳米管进行改性处理,并将活化碳纳米管作为载体材料,利用浸渍法制备Co/CNT催化剂。结果表明,KOH高温活化碳纳米管对Co/CNT催化剂1-辛烯氢甲酰化生成醛的活性有较大提高,转化率从57.6%提高到83.7%,C_9-醛的产率从41.5%提高到57.1%。
     此外,还通过均相催化剂固载化法制备碳纳米管固载铑膦配合物催化剂(Rh(acac)(CO)PPh_3/CNT)进行了初步的探索。
Carbon nanotube (CNT) is a novel carbon material with unique structure and properties, and has drawn much attention as a potential catalytic material from a viewpoint of both fundamental research and industrial uses. It has been demonstrated that the use of CNT as catalyst support can improve activity and selectivity in hydrogenation, hydroformylation and electrocatalysis. In this thesis, the effects of the preparation parameters on CNT supported metal catalysts and their catalytic performance were investigated, on the basis of which the synthesis mechanism of CNT supported metal catalysts are addressed.
    The nature and structure, which are significantly influenced by the or/and treatment procedure, are crucial to the performances of catalysts. In this dissertation, CNT supported metal catalysts were prepared using three techniques including impregnation method (IP), metal organic chemical vapor deposition method (MOCVD) and a modified ethylene glycol method (EG). The effects of several preparation variables on the performance of catalysts were studied. The Co/CNT catalyst prepared by MOCVD method has a high and homogeneous dispersion of spherical Co metal particles with a narrow size distribution. The amounts of oxygen-containing functional groups and metal loading on CNT are found to be the key factors in controlling the metal particle size and distribution of the metal particles deposited on the CNT. For the hydroformylation of 1 -octene, the Co/CNT catalyst prepared by MOCVD is superior to those prepared by other methods, and shows significantly higher activity and regioselectivity. The excellent catalytic performance of Co/CNT prepared by MOCVD can be attributed to homogeneous distribution and small size of cobalt metal particles.
    A facile ethylene glycol reduction method has been developed, with which a number of metals including Pt group metals, iron group metals, Au and Ag have been successfully supported onto CNT that feature small particle size and narrow size distributions. The correlation between the activity of each metal catalyst for the decomposition of carboxylic acid and the standard formation enthalpy of each corresponding metal's carboxylates has been found to be the guiding plot for obtaining highly dispersed metallic nanoparticles on CNT supports. This strategy can be realized by the decomposition of formic acids catalyzed by various metals, a reaction that is usually used to illustrate connections
引文
[1] H.W. Kroto, J.R. Heath, S.C.O' Brien, et al. C60: Buckminsterfuilerene. Nature, 1985, 318: 162-163.
    [2] S. Iijima. Helical microtubules ofgraphitic carbon. Nature 1991, 354, 56-58.
    [3] R.H. Baughman, A.A. Zakhidov, W.A. de Heer. Carbon nanotubes-the Route toward applications. Science, 2002, 297: 787-792.
    [4] S.J. Tans, M.H. Devoret, H. Dai, et al. Individual single-wall carbon nanotubes as quantum wires. Nature, 1997, 386: 474-477.[5] W.Z. Li, C.H. Liang, J.S. Qiu, et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon, 2002, 40: 787-803.
    [6] W.Z. Li, C.H. Liang, W.J. Zhou, et al. Preparation and Characterization of Multi-wall Carbon Nanotubes Supported Platinum for Cathode Catalysts of Direct Mehtanol Fuel Cells. J. Phys. Chem. B, 2003, 107: 6292-6299.
    [7] 陈军峰,徐才录,毛宗强,等.碳纳米管表面沉积铂及其质子交换膜燃料电池的性能.中国科学(A辑),2001,31:529-533.
    [8] A.G. Rinzler, J.H. Hafner, P. Nikolaev, et al. Unraveling nanotubes: Field emission from an atomic wire. Science, 1995, 269: 1550-1553.
    [9] P. Poncharal, Z.L. Wang, D. Ugarte, et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science, 1999, 283: 1513-1516.
    [10] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, et al. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 386: 377-379.
    [11] Y. Ye, C.C. Ahn, C. Witham, et al. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett., 1999, 74: 2307-2309.
    [12] 朱宏伟,吴德海,徐才录.碳纳米管.第一版.北京.机械工业出版社,2003,267.
    [13] C. Liu, Y.Y. Fan, M. Liu, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 1999, 286: 1127-1129.
    [14] J.M. Planeix, N. Coustel, B. Coq, et al. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Sot., 1994, 116: 7935-36.
    [15] B. Coq, J.M. Planeix, V. Brotons. Fullerene-based materials as new support media in heterogeneous catalysts by metals. Appl. Catal. A, 1998, 173: 175-183.
    [16] Y. Zhang, H.B. Zhang, G.D. Lin, et al. Preparation, Characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst. Appl.Catal. A, 1999, 187:213-24.
    [17] C.H. Liang, Z.L. Li, J.S. Qiu, et al. Graphitic nanofilaments as novel support of Ru-Ba catalysts for ammonia synthesis. J. Catal., 2002, 211: 278-82.
    [18] H.Z. Zhang, J.S. Qiu, C.H. Liang, et al. A novel approach to Co/CNTs catalyst via chemical vapor deposition of organometallic compounds. Catal. Lett., 2005, 101:211-214.
    [19] K.P. de Jong, J.W. Geus. Carbon nanofibers: catalytic Synthesis and application. Catal. Rev.-Sci. Eng., 2000, 42: 481-510.
    [20] M. Sbahinpoor, K.J. Kim, H.B. Scbreyer, et al., Artificial sarcoma and muscle made with conductive polyacrylonitrile (C-PAN) fiber bundles, Proceedings of SPIE-The International Society for Optical Engineering Smart Structures and Materials, 2000-Electroactive Polymer Actuators.
    [21] W.Q. Han, S.S. Fan, Q.Q. Li, et al. Conversion of nickel coated carbon nanotubes to diamond under high pressure and high temperature. Japanese Journal of Applied Physics, 1998, 37:1085-1086.
    [22] Francisco Rodriguez-Reinoso. The role of carbon materials in heterogeneous catalysis. Carbon, 1998, 36: 159-175.
    [23] P. Serp, M. Corrias, P..Kalck. Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A, 2003, 253: 337-358.[24] C. Pham-Huu, N. Keller, M.J. Ledoux, et al. Carbon nanofiber supported palladium catalyst for liquid-phase reactions. An active and selective catalyst for hydrogenation of C=C bonds. Chem. Commun., 2000, 19: 1871-1872.
    [25] S. Iijima, T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameters. Nature 1993, 363: 603-605.
    [26] N.M. Rodriguez, M.S. Kim, R.T.K. Baker. Carbon nanofibers: A unique catalyst support medium.J. Phys. Chem., 1994, 98:13108-13111.
    [27] R.T.K. Baker, K. Laubemds, A. Wootsch, et al. Pt/graphite nanofiber catalyst in n-hexane test reaction. J. Catal., 2000, 193: 165-167.
    [28] 成会明.纳米碳管——制备、结构、物性及应用.北京.化学工业出版社,2002.
    [29] D.S. Bethune, C.H. Klang, M.S. de Vries, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993, 363: 605-607.
    [30] M. Ouyang, J.L. Huang, C.M. Lieber. Fundamental Electronic Properties and Applications of Single-Wailed Carbon Nanotubes. Acc. Chem. Res., 2002, 35:1018-1025.
    [31] F. Nunzi, F. Mercuri, A. Sgameliotti, et al. The Coordination Chemistry of Carbon Nanotubes: a Density Functional Study through a Cluster Model Approach. J. Phys. Chem. B, 2002, 106:10622-10633.
    [32] R. Saito, M. Fujita, G. Dresselhaus, et al. Electronic structure and growth mechanism of carbon tubules. Materials Science and Engineering, 1993, 19:185-191.
    [33] A. Chambers, T. Nemes, N.M. Rodreguez, et al. Catalytic behavior of graphite nanofiber supported nickel particles, 1. Comparison with other support media. J. Phys. Chem. B, 1998, 102: 2251-2258.
    [34] C. Park, R.T.K Baker. Catalytic behavior of graphite nanofiber supported nickel particles. 2. The influence of the nanofibers structure. J. Phys. Chem. B, 1998, 102:5168-5177.
    [35] C. Park, R.T.K. Baker. Catalytic behavior of graphite nanofiber supported nickel particles. 3. The effect of chemical blocking on the performance of the system. J. Phys. Chem. B, 1999, 103: 2453-2459.
    [36] F. Salman, C. Park, R.T.K. Baker. Hydrogenation ofcrotonaldehyde over graphite nanofiber supported nickel. Catal. Today, 1999, 53: 385-394.
    [37] J. Ma, C. Park, N.M. Rodriguez, et al. Characteristics of copper particles supported on various types of graphite nanofibers. J. Phys. Chem. B, 2001, 105: 11994-12002.
    [38] M. Menon, A.N. Andriotis, G.E. Froudakis. Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls. Chem. Phys. Lett., 2000, 320: 425-434.
    [39] 日本炭素材料学会编 中国金属学会碳材料专业委员会编译 新炭材料入门 2000:1-4.
    [40] 杨全红.纳米碳管的表面、孔隙及其与储氢性能关系,中国科学院金属研究所博士后研究工作报告,2001.
    [41] D. Ugarte, A. Chatelain, W.A. de Heer. Nanocapillarity and chemistry in carbon nanotubes. Science, 1996, 274: 1897-1899.
    [42] K.A. Williams, P.C. Eklund, Monte Carlo simulations of H_2 physisorption in finite-diameter carbon nanotube ropes. Chem. Phys. Lett., 2000, 320: 352-358.
    [43] P. Chen, X. Wu, J. Lin, et al. High H_2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperature. Science, 1999, 285: 91-93.
    [44] A. Chambers, C. Park, R.T.K. Baker, et al. Hydrogen storage in graphite nanofibers. J. Phys. Chem. B, 1998, 102: 4253-4256.[45] S. lnoue, N. Ichikuni, T. Suzuki, et al. Capillary condensation of N_2 on multiwall carbon nanotubes. J. Phys. Chem. B, 1998, 102: 4689-4692.
    [46] M. Eswaramoorthy, R. Sen, C.N.R. Rao. A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors. Chem. Phys. Lett., 1999, 304: 207-210.
    [47] J. Hilding, E.A. Grulke, S.B. Sinnott, et al. Sorption of Butane on Carbon Multiwall Nanotubes at Room Temperature. Langmuir, 2001, 17: 7540-7544.
    [48] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 1996, 381: 678-680.
    [49] M.T. Martinez, M.A. Callejas, A.M. Benito, et al. Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalisation. Carbon, 2003, 41: 2247-2256.
    [50] J.M. Moon, K.H. An, Y.H. Lee, et al. High-Yield Purification Process of Singlewalled Carbon Nanotubes. J. Phys. Chem. B, 2001, 105: 5677-5681.
    [51] 姚蒙正,程侣柏,王加儒.精细化工产品合成原理.第一版.北京:中国石化出版社,1995.80-149.
    [52] C. Pham-Huu, N. keller, G. Ehret, et al. Carbon annofiber supported palladium catalyst for liquid-phase reactions an active and selective catalyst for hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. J. Mol. Catal. A, 2001, 170: 155-163.
    [53] J.M. Nhut, R. Vieira, L. Pesant, et al. Synthesis and catalytic uses of carbon and silicon carbide nanostructures. CataI.Today, 2002, 76:11-32.
    [54] V. Lordi, N. Yao, J. Wei. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater., 2001, 13: 733-737.
    [55] 吕德义,徐铸德,徐丽萍,等.碳纳米管作为载体在邻硝基甲苯多相催化加氢中的应用.浙江工业大学学报,2002,30:464-466.
    [56] 梁长海.Ru-M~(n+)/C催化剂上氨合成反应性能研究:助剂和载体的影响.中国科学院大连化学物理研究所博士学位论文,2001.
    [57] H.B. Chen, J.D. Lin, Y. Cai, et al. Novel multi-walled nanotubes-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure. Appl. Surf. Sci., 2001, 180: 328-335.
    [58] R. Gao, C.D. Tan, R.T.K. Baker. Ethylene hydroformylation on graphite nanofiber supported rhodium catalysts. Catal. Today, 2001, 65: 19-29.
    [59] R. Giordano, P. Serp, P. Kalck, et al. Duvail. Preparation of rhodium catalysts supported on carbon nanpfibers by a surface mediated organometallic reaction. Eur. J. Inorg. Chem., 2003, 610-617.
    [60] 李文震,直接甲醇燃料电池阴极碳载铂基催化剂的研究,中国科学院大连化学物理研究所博士学位论文,2003.
    [61] C.A. Bessel, K. laubemds, N.M. Rodriguez, et al. Graphite Nanofibers as an Electrode for Fuel Cell Applications. J. Phys. Chem. B, 2001, 105, 1115-1118.
    [62] E.S. Steigerwalt, G.A. Deluga, D.E. Cliffel, et al. A Pt-Ru/Graphitic Carbon Nanofiber Nanocomposite Exhibiting High Relative Performance as a Direct-Methanol Fuel Cell Anode Catalyst. J. Phys. Chem. B, 2001, 105: 8097-8101.[63] G.L. Che, B.B. Lakshmi, C.R. Martin, et al. Metal-Nanocluster-Filled Carbon Nanotubes: Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production. Langmuir, 1999, 15: 750-758.
    [64] Z.L. Liu, X.H. Lin, J.Y. Lee, et al. Preparation and Characterization of Platinum-Based Electrocatalysts on Multiwalled Carbon Nanotubes for Proton Exchange Membrane Fuel Cells. Langmuir, 2002, 18: 4054-4060.
    [65] E. van Steen, F.F. Prinsloo. Comparison of preparation methods for carbon nanotubes supported iron Fischer-Tropsch catalysts. Catal. Today, 2002, 71: 327-334.
    [66] 陈为,李家麟,周明华,等.高分散碳纳米管载银催化剂的制备.华中师范大学学报(自然科学版),2003,37:211-214.
    [67] J.M. Nhut, L. Pesant, J.P. Tessonnier, et al. Mesoporous carbon nanotubes for use as support in catalysis and as nanosized reactors for one-dimensional inorganic material synthesis. Appl. Catal. A: Gen., 2003, 254: 345-363.
    [68] Z.J. Liu, Z.Y. Yuan, W.Z. Zhou, et al. Co/carbon-nanotube monometallic system: the effects oxidation by nitric acid. Phys. Chem. Chem. Phys., 2001, 3: 2518-2521.
    [69] S.J. Wang, S.F. Yin, L. Li, et al. Investigation on modification of Ru/CNTs catalyst for the generation of CO_x-free hydrogen from ammonia. Appl. Catal. B Environmental, 2004, 52: 287-299.
    [70] W.D. Wang, P. Serp, P. Kalck, et al. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. Journal of Molecular Catalysis A: Chemical, 2005, 235: 194-199.
    [71] G. Mestl, N.I. maksimova, N. Keller, V.V. Roddatis, R. Schlogl. Carbon Nanofilaments in Heterogeneous Catalysis: An Industrial Application for New Carbon Materials?. Angew. Chem. Int. Ed., 2001, 40: 2066-2068.
    [72] M.F.R. Pereira, J.L. Figueiredo, J.J.M. Orfao, P. Serp, P. Kalck, Y. Kihn. Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene. Carbon, 2004, 42:2807-2813.
    [73] J.Z. Luo, L.Z. Gao, Y.L. ieung and C.T. Au. The decomposition of NO on CNTs and 1 wt% Rh/CNTs. Catal. Lett., 2000, 66:91-97.
    [74] 许越主编,催化剂设计与制备工艺,化学工业出版社,2003.
    [75] M.L. Toebes, J.A. van Dillen, K.P. de Jong. Synthesis of supported palladium catalysts. Journal of Molecular Catalysis A: Chemical, 2001, 173: 75-98.
    [76] R.Q. Yu, L.W. Chen, Q.P. Liu, et al. Platinum Deposition on Carbon Nanotubes via Chemical Modification. Chem. Mater, 1998, 10: 718-722.
    [77] B.L. Mojet, M.S. Hoogenraad, A.J. van Dillen, et al. Coordiation of palladium on carbon fibrils as determined by XAFS spectroscopy. J. Chem. Soc. Faraday Trans., 1997, 93: 4371-4375.
    [78] S. Hermans, J. Sloan, D.S. Shephard, et al. Bimetallic nanoparticles aligned at the tips of carbon nanotubes. Chem. Comm. 2002, 3: 276-277.
    [79] M. Endo, Y.A. Kim, M. Ezaka, et al. Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers. Nano Letters, 2003, 3: 723-726.
    [80] B. Xue, P. Chen, Q. Hong, et al. Growth of Pd, Pt, Ag and Au Nanopartieles on Carbon Nanotubes. J. Mater. Chem., 2001, 11: 2378-2381.[81] J.H. Bitter, M.K. van der Lee, A.G.T. Slotboom, et al. Synthesis of highly loaded highly dispersed nickel on carbon nanofibers by homogeneous deposition-precipition. Catal. Lett., 2003, 89: 139-142.
    [82] M.L. Toebes, F.F. Prinsloo, J.H. Bitter, A.J. van Dillen, K.P. de Jong. Influence of oxygen-containing surface groups on the activity and selectivity of carbon nanofiber-supported ruthenium catalysts in the hydrogenation of cinnamaldehyde. J. Catal., 2003, 214: 78-87.
    [83] M.L. Toebes, Y.H. Zhang, J. Hájek, T.A. Nijhuis, J.H. Bitter, A.J. van Dillen, D.Y. Murzin, D.C. Koningsberger, K.P. de Jong. Support effects in the hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts: characterization and catalysis. J. Catal., 2004, 226: 215-225.
    [84] A. Roucoux, J. Schulz, H. Patin. Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts?. Chem. Rev., 2002, 102: 3757-3778.
    [85] C. Burda, X. B. Chen, R. Narayanan, et al. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev., 2005, 105:1025-1102.
    [86] W.X. Chert, J. Zhao, J.Y. Lee, et al. Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation. Material Chemistry and Physics. 2005, 91:124-129.
    [87] 姜晓霞,沈伟.化学镀理论及实践.第一版.北京.国防工业出版社.2002,2.
    [88] L. Ang, T.S. Andy Hor, G.Q. Xu, et al. Electro less Plating of Metals onto Carbon Nanotubes Activated by a Single-Step Activation Method. Chem. Mater., 1999, 11:2115-2118.
    [89] L. Ang, T.S. Andy Hor, G.Q. Xu, et al. Decoration of activated carbon nanotubes with copper and nickel. Carbon, 2000, 38: 363-372.
    [90] 陈小华,王健雄,邓福铭,等.碳纳米管的化学镀镍研究.新型炭材料,2000,15:39-43.
    [91] P. Serp, P. Kalck, R. Feurer. Chemical Vapor Deposition Methods for the Controlled Preparation of Supported Catalytic Materials. Chem. Rev., 2002, 102:3085-3128.
    [92] H. Bielawa, O. Hinrichsen, A. Birkner, et al. The Ammonia-Synthesis Catalyst of the Next Generation: Barium-Promoted Oxide-Supported Ruthenium. Angew. Chem. Int. Ed., 2001, 40: 1061-1063.
    [93] P. Serp, R. Feurer, Y. Kihn, et al. Controlled-growth of platinum nanoparticles on carbon nanotubes or nanospheres by MOCVD in fluidized bed reactor. Journal de physique, 2002, 12: 29-36.
    [94] C.H. Liang, W. Xia, H. Soltani-Ahmadi, et al. The two-step chemical vapor deposition of Pd(allyl)Cp as an atom-efficient route to synthesize highly dispersed palladium nanoparticles on carbon nanofibers. Chem. Commun. 2005, 2: 282-284.
    [95] 梁娟,王善鋆.催化剂科学与技术——催化剂新材料.第一版.北京.化学工业出版社,1990.182.
    [96] T.G. Ros, A.J. van Dillen, J.W. Geus, et al. Modification of Carbon Nanofibres for the Immobilization of Metal Complexes: A Case Study with Rhodium and Anthranilic Acid. Chemistry-A European Journal, 2002, 8: 2868-2878.
    [97] K.Y. Jiang, A. Eitan, L.S. Schadler, et al. Selective attachment of gold nanoparticles to nitrogen-doped carbon annotubes. Nano Letters, 2003, 3: 275-277.
    [98] H.C. Choi, M. Shim, S. Bangsaruntip, et al. Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. J. Am. Chem. Soc., 2002, 124: 9058-9050.
    [99] L.T. Qu, L.M. Dai. Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes. J. Am. Chem. Sot., 2005, 127: 10806-10807.[100] A.V. Ellis, K. Vijayamohanan, R. Goswami, et al. Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes. Nano Letters, 2003, 3: 279-282.
    [101] 严新焕,徐振元,姚建华,中国专利 02148510.0,2002.
    [102] C.L Sun, L.C. Chert, M.C. Su, et al Ultrafine Platinum Nanoparticles Uniformly Dispersed on Arrayed CNx Nanotubes with High Electrochemical Activity. Chem. Mater., 2005, 17, 3749-3753.[1] 许越主编,催化剂设计与制备工艺,化学工业出版社,2003.
    [2] M.L. Toebes, J.A. van Dillen, K.P. de Jong. Synthesis of supported palladium catalysts. Journal of Molecular Catalysis A: Chemical, 2001, 173: 75-98.
    [3] K.P. de Jong. Synthesis of supported catalysts. Current Opinion in Solid State & Materials Science, 1999, 4: 55-62.
    [4] X. Carrier, J.F. Lambert, M. Che. Ligand-promoted alumina dissolution in the preparation of MoOx/γ-Al2O3 catalysts: evidence for the formation and deposition of an Anderson-type alimino heteropolymolybdate. J. Am. Chem. Soc., 1997, 119: 10137-10146.
    [5] L.M.S. Silva, J.J.M. Orfao, J.L. Figueiredo. Formation of two metal phases in the preparation of activated carbon-supported nickel catalysts. Applied Catalysis A: General, 2001, 209: 145-154.
    [6] M.L. Toebes, F.F. Prinsloo, J.H. Bitter, A.J. van Dillen, K.P. de Jong. Influence of oxygen-containing surface groups on the activity and selectivity of carbon nanofiber-supported ruthenium catalysts in the hydrogenation of cinnamaldehyde. J. Catal., 2003, 214: 78-87.
    [7] G. Ertl, H. Hnozinger, J. Weitkamp. Handbook of heterogeneous catalysis. VCH, 1997.
    [8] B. Coq, J.M. Planeix, V. Brotons. Fullerene-based materials as new support media in heterogeneous catalysts by metals. Appl. Catal. A, 1998, 173: 175-183.
    [9] Francisco Rodriguez-Reinoso. The role of carbon materials in heterogeneous catalysis. Carbon, 1998, 36: 159-175.
    [10] 成会明编著,纳米碳管制备、结构、物性及应用,化学工业出版社,2002.
    [11] E. Dujardin, T.W. Ebbesen, A. Krishnan, M.M.J. Treacy. Purification of single-shell nanotunes. Advanced Materials, 1998, 10:611-613.[12] R.Q. Yu, L.W. Chen, Q.P. Liu, J.Y. Lin, K.L. Tan, S.C. Ng, H.S.O. Chan, G.Q. Xu, and T. S. Andy Hor. Platinum Deposition on Carbon Nanotubes via Chemical Modification. Chem. Mater., 1998, 10: 718-722.
    
    [13] V. Lordi, N. Yao, J. Wei. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater., 2001, 13: 733-737
    
    [14] T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio. Electrical conductivity of individual carbon nanotubes. Nature, 1996, 382,54-56.
    
    [15] S.C. Tsang, Y.K. Chen, J.P.F. Harris, M.L.H. Green. A simple chemical method of opening and filling carbon nanotubes Nature, 1994, 372: 159-163.
    
    [16] T.W. Ebbesen, H. Hiura, M.E. Bisher, M.M. J. Treacy, J.L. Shreeve-Keyer, R.C. Haushalter. Decoration of carbon nanotubes. Advanced Materials, 1996, 8: 155-157.
    
    [17] L.Q. Liu, Y.J. Qin, Z.X. Guo, et al. Reduction of solubilized multi-walled carbon nanotubes. Carbon, 2003,41:331-335.
    
    [18] S.S. Grzegorz, K. Zbigniew, B. Stanislaw, et al. The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon, Carbon, 2002, 40: 2627-2639.
    
    [19] M.L. Toebes, J.M.P. van Heeswijk, J.H. Bitter, et al. The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers. Carbon, 2004,42: 307-315.
    
    [20] C. Pham-Huu, N. Keller, M.J. Ledoux, L.J. Charbonniere, R. Ziessel. Carbon nanofiber supported palladium catalyst for liquid-phase reactions. An active and selective catalyst for hydrogenation of C=C bonds. Chem. Commun., 2000, 19: 1871-1872.
    
    [21] M. Eswaramoorthy, R. Sen, C.N.R. Rao. Chem. Phys. Lett., 1999, 304: 207.
    
    [22] 沈曾民.新型炭材料.化学工业出版社.2003.
    
    [23] P.A. Sinonov, A.V. Romanenko, I.P. prosvirin, E.M. Moroz, A.I. Boronin, A.L. Chuvilin, V.A. Likholobov. On the nature of the interaction of H2PdCl4 with the surface of graphite-like carbon materials. Carbon, 1997,35:73-82.
    
    [24] 赵九生,时其昌,马福善,康慧敏.催化剂生产原理.科学出版社,1986.
    
    [25] C.H. Giles, D. Smith, A. Huitson. A General Treatment and Classification of the Solute Adsorption Isotherm. I. Theoretical. Journal of Colloid Science, 1974, 47: 755-765.
    
    [26] E. Ingier-Stocka. TG and DTA Evaluation of Cobalt Salts and Complexes Mixed with Activated Carbon. Journal of Thermal Analysis and Calorimetry, 2001,65: 561-573.
    
    [27] H.Y. Lin, Y.W. Chen. The mechanism of reduction of cobalt by hydrogen. Materials Chemistry and Physics, 2004, 85: 171-175.
    
    [28] B.L. Mojet, M.S. Hoogenraad, A.J. van Dillen, J.W. Geus, D.C. Koningsberger. Coordiation of palladium on carbon fibrils as determined by XAFS spectroscopy. J. Chem. Soc. Faraday Trans., 1997, 93: 4371-4375.
    
    [29] B. Cornils, W.A. Herrmann, M. Rasch. Otto Roelen, Pioneer in industrial homogeneous catalysis. Angew. Chem. Int. Ed. Engl., 1994,33: 2144-2163.
    
    [30] X.Q. Qiu, N. Tsubaki, S.L. Sun, K. Fujimoto. Promoting effect of noble metals to Co/SiO2 catalysts for hydroformylation of 1-hexene. Catal. Commun. 2001, 2: 75-80.
    [31] L. Huang, Y.D. Xu. Synergy of ruthenium and cobalt in SiO_2-supported catalysts on ethylene hydroformylation. Appl. Catal. A, 2001, 205: 183-193.
    [32] B.T. Li, X.H. Li, K. Asami, K. Fujimoto. Hydroformylation of 1-hexene over rhodium supported on active carbon catalyst. Chem. Lett., 2003, 32: 378-379.
    [33] Y. Zhang, K. Nagasaka, X.Q. Qiu, N. Tsubaki. Low-pressure hydroformylation of 1-hexene over active carbon-supported noble metal catalysts. Appl. Catal. A, 2004, 276:103-111.
    [34] T.A. Kainulainen, M.K. Niemela, A.O.I. Krause. Hydroformylation of 1-hexene on Rh/C and Co/SiO_2 catalysts. J. Mol. Catal. A, 1997, 122: 39-49.
    [35] Y. Zhang, H.B. Zhang, G.D. Lin, P. Chen, Y.Z. Yuan, K.R. Tsai. Preparation, Characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst. Appl.Catal. A, 1999, 187: 213-24.
    [36] 吴指南主编.基本有机化工工艺学.化学工艺出版社.1997,P-262.
    [37] 王锦惠主编.羰基合成.化学工艺出版社.1987,P-30.
    [38] B.T. Li, X.H. Li, K. Asami, K. Fujimoto. Low pressure hydroformylation in the presence of alcohol promoters. Chem. Lett., 2002, 8: 836-837.
    [39] M. lchikawa, A.J. Lang, D.F. Shriver, W.M,H. Sachtler. Selective hydroformylation of ethylene on Rh-Zn/SiO_2 an apparent example of site isolation of Rh and lewis acid promoted CO insertion. J. Am. Chem. Soc., 1985 107: 7216.
    [40] F. Salman, C. Park, R.T.K. Baker. Hydrogenation ofcrotonaldehyde over graphite nanofiber supported nickel. Catal. Today, 1999, 53: 385-394.
    [41] J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc., 1994, 116: 7935-36.
    [42] A. Chambers, T. Nemes, N.M. Rodreguez, R.T.K. Baker, Catalytic behavior of graphite nanofiber supported nickel particles. 1. Comparison with other support media. J. Phys. Chem. B, 1998, 102: 2251-2258.
    [43] C. Park, R.T.K Baker. Catalytic behavior of graphite nanofiber supported nickel particles. 2. The influence of the nanofibers structure. J. Phys. Chem. B, 1998, 102:5168-5177.
    [44] C. Park, R.T.K. Baker, Catalytic behavior of graphite nanofiber supported nickel particles. 3. The effect of chemical blocking on the performance of the system. J. Phys. Chem. B, 1999, 103: 2453-2459.
    [45] H.Z. Zhang, J.S. Qiu, C.H. Liang, Z.L. Li, X.N. Wang, Y.P. Wang, Z.C. Feng, C. Li. A novel approach to Co/CNTs catalyst via chemical vapor deposition of organometallic compounds. Catal. Lett., 2005, 101: 211-214.
    [46] 朱何俊.多相-均相杂合催化剂L-Rh/SiO_2上烯烃氢甲酰化的研究.中国科学院大连化学物理研究所博士论文,2003.
    [47] H.Y. Lin, Y.W. Chen. The mechanism of reduction of cobalt by hydrogen. Materials Chemistry and Physics, 2004, 85: 171-175.
    [48] A. Borgna, B.G. Anderson, A.M. Saib, H. Bluhm, M. Havecker, A.K. Gericke, A.E.T. Kuiper, Y. Tamminga, J.W. Niemantsverdriet. Pt-Co/SiO_2 bimetallic model catalysts for selective hydrogenation of crotonaldehyde. J. Phy. Chem. B, 2004, 108: 17905-17914.[49] B.T. Li, X.H. Li, K. Asami. Low-pressure hydroformylation of middle olefins over Co and Rh supported on active carbon catalysts. Energy &Fuel, 2003, 17: 810-816.
    
    [50] Y.J. Zhang, A. Maroto-Valiente, I. Rodriguez-Ramos, Q. Xin, A. Guerrero-Ruiz. Synthesis and characterization of carbon black supported Pt-Ru alloy as a model catalyst for fuel cells. Catal Today, 2004, 93-95:619-626.
    
    [51] E. Iglesia, S.L. Soled, R.A. Fiato. Bimetallic synergy in cobalt-Ruthenium Fischer-Tropsch synthesis catalysts. J. Catal., 1993, 143: 345-368.
    [1] C. Suryanarayana. Nanocrystalline materials. Inter. Mater. Rev., 1995, 40(2): 41-64.
    [2] X. Wang, J. Zhuang, Q. Peng, et al. A general strategy for nanocrystai synthesis. Nature, 2005, 437: 121-124.
    [3] A. Roucoux, J. Schulz, H. Patin. Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts? Chem. Rev., 2002, 102: 3757-3778.
    [4] C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev., 2005, 105: 1025-1102.
    [5] T.J. Schmidt, M. Noeske, H.A. Gasteiger, R.J. Behm, P. Britz, W. Brijoux, H. Bonnemann. Electroeatalytic Activity of PtRu Alloy Colloids for CO and CO/H2 Electrooxidation: Stripping Voltammetry and Rotating Disk Measurements. Langmuir, 1997, 13:2591-2595.
    [6] M. Chen, J.P. Liu, S.H. Sun. One-Step Synthesis of FePt Nanoparticles with Tunable Size. J. Am. Chem. Soc., 2004, 126: 8394-8395.
    [7] A.C.S. Samia, K. Hyzer, J.A. Schlueter, C.J. Qin, J.S. Jiang, S.D. Bader, X.M. Lin. Ligand Effect on the Growth and the Digestion of Co Nanocrystals.J. Am. Chem. Soc. 2005, 127: 4126-4127.[8] F.B. Zhang, Y.T. Chen, J.Z. Zhao, H.L. Li. Preparation of nanosized nickel particles by hydrothermal method. Chemistry Letters, 2004, 33: 146-147
    
    [9] T.J. Schmidt, M. Noeske, H.A. Gasteiger, RJ. Behm, P. Britz, W. Brijoux, H. Bonnemann. Electrocatalytic activity of PtRu alloy colloids for CO and CO/H2 electrooxidation: stripping voltammetry and rotating disk measurements. Langmuir, 1997, 13: 2591-2595.
    
    [10] H. Bonnemann, N. Waldofner, H. G. Haubold, T. Vad, Chem. Mater. 2002, 14, 1115.
    
    [11] F. Bonet, V. Delmas, S. Grugeon, R.H. Urbina, P.Y. Silvert, K. Tekaia-Elhsissen. Synthesis of monodisperse. Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol. Nanostructured Materials, 1999, 11: 1277-1284.
    
    [12] J. Aldana, N. Lavelle, Y. J. Wang, and X. G. Peng. Size-Dependent dissociation pH of thiolate ligands from Cadmium chalcogenide nanocrtstals. J. Am. Chem. Soc. 2005, 127: 2496-2504.
    
    [13] W.X. Chen, J. Zhao, J.Y. Lee, Z.L. Liu. Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation. Material Chemistry and Physics., 2005, 91: 124-129.
    
    [14] J.L. Zhang, Y. Wang, H. Li, Y.G. Wei, N.Z. Wu, B.J. Zou, Q.L. Wang. Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene. J. Catal., 2005, 229: 114-118.
    
    [15] F. Wen, H. Bonnemann, J. Y. Jiang, D. M. Lu, Y. H. Wang, Z. L. Jin. Evidence of colloidal rhodium formation during the biphasic hydroformylation of 1-octene with thermoregulated phase-transfer phosphine rhodium(I) catalyst. Appl. Organomet. Chem., 2005, 19: 81-89.
    
    [16] W.Z. Li, C.H. Liang W.J. Zhou, J.S. Qiu, Z.H. Zhou, G.Q. Sun, Q. Xin, Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells. J. Phys. Chem. B, 2003, 107: 6292-6299.
    
    [17] C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. macdougall. Size-Selected Synthesis of PtRu Nano-Catalysts: Reaction and Size Control Mechanism. J. Am. Chem. Soc, 2004, 126: 8028-8037.
    
    [18] Y.C. Xing. Synthesis and Electrochemical Characterization of Uniformly-Dispersed High Loading Pt Nanoparticles on Sonochemically-Treated Carbon Nanotubes. J. Phys. Chem. B, 2004, 108: 19255-19259.
    
    [19] M.T. Reetz, M. Lopez, W. Grunert, W. Vogel, F. Mahlendorf. Preparation of Colloidal Nanoparticles of Mixed Metal Oxides Containing Platinum, Ruthenium, Osmium, and Iridium and Their Use as Electrocatalysts. J. Phys. Chem. B, 2003, 107: 7414-7419.
    
    [20] A. V. Ellis, K. Vijayamohanan, R. Goswami, N. Chakrapani, L. S. Ramanathan, P. M. Ajayan, G. Ramanath, Nano Lett. 2003, 3, 279.
    
    [21] Y. Wang, J.W. Ren, K. Deng, L.L. Gui, Y.Q. Tang. Preparation of Tractable Platinum, Rhodium, and Ruthenium nanoclusters with small particle size in organic media. Chem. Mater., 2000, 12: 1622-1627.
    
    [22] J.S. Qiu, H.Z. Zhang, C.H. Liang, J.W. Li, Z.B. Zhao. Co/CNF catalysts tailored by controlling the deposition of metal colloids onto CNFs: preparation and catalytic properties. Chem. Eur. J., 2006, 12: 2147-2151.
    
    [23] W.W. Yu, L.H. Qu, W.Z. Guo, X.G. Peng. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystais. Chem. Mater., 2003, 15: 2854-2860.
    
    [24] D.G. Duff, P. Edwards, B.F.G. Johnson. Formation of a Polymer-Protected Platinum Sol: A New Understanding of the Parameters Controlling Morphology. J. Phys. Chem., 1995, 99: 15934-15944.
    [25] A. Henglein, B.G. Ershov, M. Malow. Absorption Spectrum and Some Chemical Reactions of Colloidal Platinum in Aqueous Solution. J. Phys. Chem., 1995, 99:14129-14136.
    [26] 周振华,直接甲醇燃料电池:高分散高负载铂基电催化剂的制备规律研究,中国科学院大连化学物理研究所,2003.
    [27] Z.S. Pillai, P.V. kamat. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B, 2004, 108: 945-951.
    [28] M.A. Watzky, R.G. Finke. Transition metal nanocluster formation kinetic and mechanistic studies, a new mechanism when hydrogen is the reduction: slow, continuous nucleation and fast autocatalytic surface growth. J. Am. Chem. Soc., 1997, 119: 10382-10400.
    [29] S.H. Im, Y.T. Lee, B. Wiley, Y.N. Xia. Large-Scale synthesis of silver nanocubes: the role of HCI in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed. 2005, 44: 2154-2157.
    [30] 姚允斌等编著.物理化学手册.上海科学技术出版社,1985.
    [31] P.R. Davies, G.J. Hutchings, M.S. Spencer. Surface chemistry and Catalysis, Cardiff University, Cardiff Wales (UK), Kluwer Academic/Plenum Piblishers, New York, 2002.
    [32] E. Iglesia. Structure-Sensitivity and ensemble effects in reaction of strongly adsorbed intermediates. Catalytic.dehydrogenation and dehydration of formic acid on nickel. J. Phys. Chem., 1991, 95:7011-7016.
    [33] M.A. Barteau. Linear free energy relationships for C_1-Oxygenate decomposition on transition metal surfaces. Catal. Lett., 1991, 8:175-182.
    [34] 王桂茹.催化剂与催化作用.大连理工大学出版社,2000.
    [35] K.I. Tanaka, K. Tamaru. A general rule in chemisorption of gases on metals. J. catal., 1963, 2 366-370.
    [36] A.F. Clifford. The prediction of solubility product constants. J. Am. Chem. Soc. 1957, 79, 5404-5407.
    [37] A. F. Clifford. The electronegativity of groups. J. Phys. Chem., 1959, 63, 1227-1231.
    [38] 催化剂手册——按元素分类.化学工业出版社,1982.
    [39] P. Sabatier, Ber. Dtsch. Chem. Ges. 1911,44, 2001;
    [40] W.J.M. Rootsaert, W.H.M. Sachtler, Z. Phys. Chem. 1960, 26, 16.
    [41] V. Lordi, N. Yao, J. Wei. Method for supporting platinum on single-wailed carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater., 2001, 13: 733-737.
    [42] 姚蒙正,程侣柏,王加儒.精细化工产品合成原理.第一版.北京:中国石化出版社,1995.80-149.
    [43] Y. Zhang, K. Nagasakab, X.Q. Qiu, N. Tsubaki. Low-pressure hydroformylation of 1-hexene over active carbon-supported noble metal catalysts. Appl. Catal. A, 2004, 276:103-111.
    [44] 刘百军,杂多酸盐修饰骨架镍和骨架钴催化剂上糠醛和α,β—不饱和醛的选择加氢,大连理工大学博士论文,1997年7月
    [45] Y. Nitta, K. Ueno, T. Imanaka. Selective Hydrogenation of α,β-Unsaturated aldehydes on Cobalt-Silica Catalysts obtained from Cobalt Chrysotile. Appl. Catal., 1989, 56: 9.
    [46] J. Simonik, P. Beranek. Selective Hydrogenation of Crotonaldehyde over Pt-Fe/SiO_2 Catalysts. Coll Czech Chem Commun, 1972, 37: 353.
    [47] R.A. Sheldon, I. W. C. E. Arends, A. Dijksman. New developments in catalytic alcohol oxidations for fine chemicals synthesis. Catal. Today, 2000, 57: 157-166.[48] T. Mallat, A. Baiker. Catalyst potential: a key for controlling alcohol oxidation in multiphase reactors. Catal. Today, 1995, 24: 143-150.
    
    [49] A. Abad, P. Concepcion, A. Corma, et al. A Collaborative Effect between Gold and a Support Induces the Selective Oxidation of Alcohols Angw. Chem. Intt. Ed., 2005, 44: 4066-4069.
    
    [50] T. Matsushita, K. Ebitani, K. Kaneda. Highly efficient oxidation of alcohols and aromatic compounds catalysed by the Ru-Co-AI hydrotalcite in the presence of molecular oxygen. Chem.Comm., 1999, 265-266
    
    [51] K. Ebitani, K. Motokura, T. Mizugaki, et al. Heterotrimetallic RuMnMn Species on a Hydrotalcite Surface as Highly Efficient Heterogeneous Catalysts for Liquid-Phase Oxidation of Alcohols with Molecular Oxygen. Angw. Chem. Intt. Ed.2005, 44: 3423-3426.
    
    [52] T. Mallat, A. Baiker. Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chem. Rev., 2004,104:3037-3058.
    
    [53] S. Narayan, J. Muldoon, M. G. Finn, et al. "On Water": Unique Reactivity of Organic Compounds in Aqueous Suspension. Angew. Chem. Int. Ed. 2005, 44: 3275-3279.
    
    [54] G.J. Brink, I. W. C. E. Arends, M. Hoogenraad, et al. Catalytic Conversions in Water. Part 23: Steric Effects and Increased Substrate Scope in the Palladium-Neocuproine Catalyzed Aerobic Oxidation of Alcohols in Aqueous Solvents. Adv. Synth. Catal., 2003, 345: 1341-1352.
    [1] P. Serp, P. Kalck, R. Feurer. Chemical Vapor Deposition Methods for the Controlled Preparation of Supported Catalytic Materials. Chem. Rev., 2002, 102:3085-3128.
    [2] P. Serp, R. Feurer, Y. Kihn, P. Kalck, et al. Controlled-growth of platinum nanoparticles on carbon nanotubes or nanospheres by MOCVD in fluidized bed reactor. Journal de physique, 2002, 12: 29-36.
    [3] H. Bielawa, O. Hinrichsen, A. Birkner, et al. The Ammonia-Synthesis Catalyst of the Next Generation: Barium-Promoted Oxide-Supported Ruthenium. Angew. Chem. Int. Ed., 2001, 40: 1061-1063.
    [4] C.H. Liang, W. Xia, H. Soltani-Ahmadi, et al. The two-step chemical vapor deposition of Pd(allyl)Cp as an atom-efficient route to synthesize highly dispersed palladium nanoparticles on carbon nanofibers. Chem. Commun. 2005, 2: 282-284.
    [5] H.Z. Zhang, J.S. Qiu, C.H. Liang, et al. A novel approach ta Co/CNTs catalyst via chemical vapor deposition of organometallic compounds. Catal. Lett., 2005, 101: 211-214.
    [6] J.C. Hierso, P. Serp, R. Feurer, et al. MOCVD of rhodium, palladium and platinum complexes on fluidized divided substrates: Novel process for one-step preparation of noble-metal catalysts. Applied Organometallic Chemistry, 1998, 12: 161-172.[7]A.E. Aksoylu, J.L. Faria, M.F.R. Pereira, et al. Highly dispersed activated carbon supported platinum catalysts prepared by OMCVD: a comparison with wet impregnated catalysts. Applied Catalysis A: General, 2003, 243: 357-365.
    
    [8] P. Stone, R.D. Smith, M. Bowkery. The structure and reactivity of anchored nanoparticles on a reducible support. Faraday Discuss., 2004, 125: 379-390.
    
    [9] C. Vahlas, F. Juarez, R. Feurer, et al. Caussat. Fluidization, Spouting, and Metal-Organic CVD of platinum group metals on powders. Chemical Vapor Deposition, 2002, 8: 127-144.
    
    [10] X. Mu, U. Bartmann, M. Guraya, et al. The preparation of Pd/SiO2 catalysts by chemical vapour deposition in a fluidised-bed reactor. Applied Catalysis A: General, 2003, 248: 85-95.
    
    [11] R. Becker, H. Parala, F. Hipler, et al. MOCVD-Loading of Mesoporous Siliceous Matrices with Cu/ZnO: Supported Catalysts for Methanol Synthesis. Angew. Chem. Int. Ed., 2004, 43: 2839-2842.
    
    [12] S. Hermes, M. K. Schroter, R. Schmid, et al. Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew. Chem. Int. Ed., 2005, 44: 6237-6241.
    
    [13] F.L.Y. Lam, X.J. Hu. A new system design for the preparation of copper/activated carbon catalyst by metal-organic chemical vapor deposition method. Chemical Engineering Science, 2003, 58: 687-695.
    
    [14] S. Suvanto, J. Hukkamaki, T.T. Pakkanen, et al. High-cobalt-loaded MCM-41 via the gas-phase method. Langmuir, 2000, 16: 4100-4115.
    
    [15] Y. Iwasawa, M. Yamada. Spectroscopic study on surface transformations of Co2(CO)8 supported on γ-Al2O3 or SiO2. Journal of Molecular Catalysis, 1984, 23: 95-106.
    
    [16] F. Rodriguez-Reinoso. The role of carbon materials in heterogeneous catalysis. Carbon 1998, 36: 159-175.
    
    [17] C.A. Bessel, K. laubernds, N.M. Rodriguez, et al. Graphite Nanofibers as an Electrode for Fuel Cell Applications. J. Phys. Chem. B, 2001, 105, 1115-1118.
    
    [18] R.Q. Yu, L.W. Chen, Q.P. Liu, et al. Platinum Deposition on Carbon Nanotubes via Chemical Modification. Chem. Mater., 1998, 10: 718-722.
    
    [19] L.Q. Liu, Y.J. Qin, Z.X. Guo, et al. Reduction of solubilized multi-walled carbon nanotubes. Carbon, 2003,41:331-335.
    
    [20] Y.C. Xing. Synthesis and Electrochemical Characterization of Uniformly-Dispersed High Loading Pt Nanoparticles on Sonochemically-Treated Carbon Nanotubes. J. Phys. Chem. B, 2004, 108: 19255-19259.
    
    [21] R.L. Schneider, R.F. Howe, K.L. Watters. Interactions of Cobalt carbonyls with oxide surfaces. 3. Dicobalt octacarbonyl and tetracobalt dodecarbonyl in Zeolites. Inorg. Chem., 1984, 23: 4600-4607.
    
    [22] T.A. Kainulainen, M.K. Niemela, A.O.I. Krause. Ethene hydroformylation on Co/SiO2 catalysts. Catalysis Letters, 1998, 53: 97-101.
    
    [23] L. Huang, Y.D. Xu. Surface-mediated reductive carbonylation of SiO2-supported RuCl3 and Ru(NO)(NO3)(3) studied by IR spectroscopy. J. Mol. Catal., 2001, 176: 267-280.
    
    [24] L. Huang, Y.D. Xu. IR spectroscopic study on surface-mediated reductive carbonylation of hydrated SiO2-supported Ru(NO3)(3). Catal. Lette., 2001, 71: 27-30.
    
    [25] L. Huang, Y.D. Xu. SiO2-supported bimetallic Rh-Co catalysts derived from [Rh(CO)(2)Cl](2) and cobalt carbonyls. Catal. Lette., 1998, 53: 177-183.
    [26] Y. Zhang, K. Nagasakab, X.Q. Qiu, et al. Low-pressure hydroformylation of 1-hexene over active carbon-supported noble metal catalysts. Appl. Catal. A, 2004,276: 103-111.
    [1] G.W. Parshall. Homogeneous Catalysis: The Application and Chemistry of Catalysis by Transition Metal Complexes, Wiley, New York, 1980.
    [2] H. Sakagami, N. Ohta, S. Endo, et al. Location of Active Sites for 3-Pentanone Formation during Ethene Hydroformylation on Rh/Active-Carbon Catalysts. J. Catal., 1997, 171: 449-456.
    [3] L. Huang, Y.D. Xu. Synergy of ruthenium and cobalt in SiO_2-supported catalysts on ethylene hydroformylation. Appl. Catal. A, 2001, 205: 183-193.
    [4] X.Q. Qiu, N. Tsubaki, S.L. Sun, K. Fujimoto. Promoting effect of noble metals to Co/SiO_2 catalysts for hydroformylation of 1-hexene. Catal. Commun. 2001, 2: 75-80.
    [5] T.A. Kainulainen, M.K. Niemela, A.O,I. Krause. Ethene hydroformylation on Co/SiO_2 catalysts. Catalysis Letters, 1998, 53: 97-101.
    [6] Y. Zhang, K. Nagasaka, X.Q. Qiu, N. Tsubaki. Low-pressure hydroformylation of 1-hexene over active carbon-supported noble metal catalysts. Appl. Catal. A, 2004, 276:103-111.
    [7] 朱何俊.大连化学物理研究所博士论文.多相-均相杂合催化剂L-Rh/SiO_2上烯烃氢甲酰化的研究,2003.
    [8] 梁娟,王善鋆.催化剂科学与技术——催化剂新材料.第一版.北京.化学工业出版社,1990.182.
    [9] F.R. Hartley. Supported metal complexes. Dordrecht: D. Reidel Publishing Company, 1985.
    [10] C.E. Song, S.G. Lee. Supported chiral catalysts on Inorganic materials. Chemical Reviews, 2002, 102: 3495-3524.
    [11] J.A. Diaz-Aunon, M.C. Roman-Martinez, C. Salinas-Martinez de Lecea_[Rh(μ-Cl)(COD)]_2 supported on activated carbons for the hydroformylation of 1-octene: effects of support surface chemistry and solvent. J. Mol. Catal. A, 2001, 170: 81-93.
    [12] B.T. Li, X.H. Li, K. Asami, et al. Hydroformylation of 1-hexene over rhodium supported on active carbon catalyst. Chem. Lett., 2003, 32: 378-379.
    [13] Y. Zhang, K. Nagasaka, X.Q. Qiu, et al. Low-pressure hydroformylation of 1-hexene over active carbon-supported noble metal catalysts. Appl. Catal. A, 2004, 276:103-111.
    [14] T.A. Kainulainen, M.K. Niemela, A.O.I. Krause. Hydroformylation of 1-hexene on Rh/C and Co/SiO_2 catalysts. J. Mol. Catal. A: Chemical, 1997, 122: 39-49.[15] Y. Zhang, H.B. Zhang, G.D. Lin, P. Chen, Y.Z. Yuan, K.R. Tsai. Preparation, Characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst. Appl.Catal. A, 1999, 187:213-24.
    
    [16] R.Q. Yu, L.W. Chen, Q.P. Liu, et al. Platinum Deposition on Carbon Nanotubes via Chemical Modification. Chem. Mater., 1998, 10: 718-722.
    
    [17] V. Lordi, N. Yao, J. Wei. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater., 2001, 13: 733-737
    
    [18] J. Wrzyszcz, M. Zawadzki, A.M. Trzeciak. Rhodium complexes supported on zinc aluminate spinel as catalysts for hydroformylation and hydrogenation: preparation and activity. J. Mol. Catal. A: Chemical, 2002,189:203-210.
    
    [19] B. Coq, P.S. Kumbhar, C. Moreau, et al. Liquid-phase hydrogenation of cinnamaldehyde over supported ruthenium catalysys-influence of particle-size, bimetallics and nature of support. J. Mol. Catal., 1993,85:215-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700