用户名: 密码: 验证码:
单细胞分析的新方法和肾上腺素细胞传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章对单细胞分析技术及其在生命科学研究上的应用性进行了综述。分别对毛细管电泳检测的理论和技术,2003年之后毛细管电泳检测方法在分析单细胞上的应用,微流控芯片在细胞培养、细胞操作和细胞内组分测定等方面的应用,影像学单细胞分析方法(包括荧光显微术、共聚焦激光扫描显微术、全内反射荧光显微术)在单细胞分析上的应用进行了简单介绍及综述。
     第二章中我们建立了未见报道的微流控芯片电泳/柱端安培法检测单个细胞中化学组分的方法。在这个方法中,我们在双T型微流控芯片上实现了单个细胞的电动进样、转移和破膜,并使用安置在双T型微流控芯片的末端电化学检测器对单个细胞中的物质进行了检测。通过在微流控芯片的多通道体系中调整电压,完成了单个原生质体的电压控制进样,并通过施加一个220 V/cm的直流电压将细胞在芯片内溶膜。细胞溶膜后,细胞中要检测的物质在微流控芯片的分离通道中进行电泳分离,并在末端由电化学方法检测。用这个方法测定了单个小麦(Cha9)愈伤组织细胞中的抗坏血酸。
     第三章中我们设计了利用荧光共振能量转移(FRET)原理检测CEA mRNA含量的方法。在这个方法中,将两种荧光染料标记的核酸探针与目标mRNA杂交,杂交后两种荧光染料的距离满足产生FRET的条件,通过检测核酸杂交后FRET的强度,可以测定目标mRNA的含量。我们用这种方法测定了MGC 803胃癌细胞提取液中CEA mRNA的含量。
     第四章中我们将第三章所研究的FRET测定mRNA的原理应用到测定单个细胞内mRNA的含量。在至今所有报道的定量测定单细胞中化学组分分析的论文,细胞都是溶膜后再进行测定。在这种情况下,检测过程中细胞都已死亡。在绝大多数单细胞中化学组分定量分析的论文中,细胞是一个一个分析的,分析速度较慢,从细胞取样到测到信号通常需要十几分钟到几十分钟,即分析通量很低。在本章中我们研究成功了一种高通量定量测定活细胞中mRNA的方法。在这个方法中,首先用毛地黄皂苷将细胞膜蚀孔,使荧光核酸探针能够自由扩散进入细胞并同细胞内的mRNA杂交,荧光探针与mRNA杂交后在激光的照射下产生FRET。使用高灵敏CCD同时获取大量单个MGC 803细胞的FRET荧光图像,
In chapter one of this thesis, the techniques of single-cell analysis were reviewed briefly. These techniques were capillary electrophoresis (CE) over the past two years, microfluidic chip including the cell-culture, cell manipulation and detection of trance material in single cells and image analysis such as fluorescence microscopy, laser scanning confocal microscopy (LSCM) and total internal reflection fluorescence microscopy (TIRFM).In chapter two, an electrochemical method with a microfluidic device was developed for analysis of single cells. In this method, cell injection, loading and cell lysis, and electrokinetic transportation and detection of intercellular species were integrated in a microfluidic chip with a double-T injector coupled with an end-channel amperometric detector. A single cell was loaded at the double-T injector on the microfluidic chip by using electrical field. Then, the docked cell was lysed by a direct current electric field of 220 V/cm. The analyte of interest inside the cell was electrokinetically transported to the detection end of separation channel and was electrochemically detected. External standardization was used to quantify the analyte of interest in individual cells. Ascorbic acid (AA) in single wheat callus cells was chosen as the model compound. AA could be directly detected at a carbon fiber disk bundle electrode. The selectivity of electrochemical detection made the electropherogram simple. The technique described here could, in principle, be applied to a variety of electroactive species within single cells.In chapter three, determination of mRNA was carried out by fluorescence resonance energy transfer (FRET). In this method, two fluorescence nucleic acid probes were hybridized with target mRNA and the FRET between the two probes was detected. The concentration of the target mRNA could be determined through measuring the fluorescence intensity of FRET. The method investigated here was applied to determine mRNA in the extracts of MGC 803 cells.In chapter four, high-throughput single-cell analysis of mRNA was developed based on FRET. In this method, cells were first perforated with digitonin to improve
    permeability. In this case, the probes could diffuse into cells easily. After the probes were hybridizui with target mRXT \, the FRET image was taken. The fluorescence intensity of FRET of individual cells was obtained using software MetaMorph. Based on the fluorescence intensity, the mRNA amount in single cells could be acquired. Since the FRET images of thirty cells could be taken simultaneously, the analysis throughput was high. This method was applied to determine CEA mRNA in single MGC 803 cells.In chapter five, a method for determination of glucose in individual cells was developed based on double enzymes reaction. In this method, a single cell was loaded in a capillary and then a solution containing 10 mmol/L (SDS), glucose oxidase (GOD), horseradish peroxidase (HRP) and 10-Acetyl-3,7-dihydroxy- phenoxazine (ADHP) was introduced into the capillary. After the cell was lysed by SDS, oxygen was reduced to H2O2 by GOD in the presence of glucose released from the lysed cell. At the same time, ADHP was converted to fluorescent resorufin by HRP. The amount of glucose in the cell could be obtained through detecting the fluorescence intensity of resorufin. This method was used to determine glucose amount in single MGC 803 cells.In chapter six, we investigated the cell sensor of epinephrine based on the cell signaling transduction. The principle is: After epinephrine combined with adrenergic receptor on the cell surface, the stimulated G protein within cells causes the signaling transduction to generate glucose. The generated glucose is released from the cells into the solution. The glucose in the solution is then detected using the method described in chapter five. The amount of epinephrine can be measured through determining glucose concentration. Since the glucose concentration is higher than the epinephrine concentration, implying amplification of the signal. It was found that the signal was amplified 38 times. This cell sensor was used to determine epinephrine.
引文
1. Woods, L. A.;Roddy, T. P.;Ewing, A. G., Capillary electrophoresis of single mammalian cells. Electrophoresis 2004, 25, (9), 1181-7.
    2. Stuart, J. N.;Sweedler, J. V., Single-cell analysis by capillary electrophoresis. Anal Bioanal Chem 2003, 375, (1), 28-9.
    3.程介克;庞代文;黄卫华;鲁馨,21世纪单细胞分析发展.大学化学 2003,第18卷,(第4期),1-10.
    4.肖玉秀;冯钰铸;达世禄,单细胞毛细管电泳分析研究进展.化学进展 2004,第16卷,(第4期),543-553.
    5.翁前锋,单细胞分析.山东大学博士论文 2000,第一章 1-31.
    6.孙雪梅,毛细管电泳安培检测酶及在单细胞中的应用.山东大学博士论文 2003,第一章,1-25.
    7.张华,单细胞中氨基酸及γ干扰素的分析.山东大学博士论文 2004,第一章,1-30.
    8. Wallingford, R. A.;Ewing, A. G, Capillary zone electrophoresis with electrochemical detection in 12.7.mu.m diameter columns. Anal. Chem. 1988, 60, 1972-1975.
    9. Sun, X.;Jin, W.;Li, D.;Bai, Z., Measurement of alkaline phosphatase isoenzymes in individual mouse bone marrow fibroblast cells based on capillary electrophoresis with on-capillary enzyme-catalyzed reaction and electrochemical detection. Electrophoresis 2004, 25, (12), 1860-6.
    10. Sun, X.;Jin, W., Catalysis-electrochemical determination of zeptomole enzyme and its application for single-cell analysis. Anal Chem 2003, 75, (22), 6050-5.
    11. Hu, S.;Zhang, L.;Krylov, S.;Dovichi, N. J., Cell Cycle-Dependent Protein Fingerprint from a Single Cancer Cell: Image Cytometry Coupled with Single-Cell Capillary Sieving Electrophoresis. Anal. Chem. 2003, 75, 3495-3501.
    12. Zhang, H.;Jin, W., Determination of different forms of human interferon-gamma in single natural killer cells by capillary electrophoresis with on-capillary immunoreaction and laser-induced fluorescence detection. Electrophoresis 2004, 25, (7-8), 1090-5.
    13. Wang, Z. J.;Zhang, H.;Chen, X. L.;Jin, W. R.;Cong, Y. Q.;Hun, B.;Gu, Y., [Detection of IFN-gamma level in single CD8+T cell]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2005, 21, (1), 72-5.
    14. Zhang, H.;Jin, W., Analysis of amino acids in individual human erythrocytes by capillary electrophoresis with electroporation for intraceilular derivatization and laser-induced fluorescence detection. Electrophoresis 2004, 25, (3), 480-6.
    15. Liu, X.;Ma, L.;Zhang, J.-F.;Lu, Y.-T., Determination of singie-cell gene expression in Arabidopsis by capillary electrophoresis with laser induced fluorescence detection. Journal of Chromatography B 2004, 808, (2), 241-247.
    16. Zabzdyr, J. L.;Lillard, S. J., A qualitative look at multiplex gene expression of single ceils using capillary electrophoresis. Electropheresis 2005, 26, (1), 137-145.
    17. Malek, A. H.;Khaledi, M. G., Monitoring liposome-mediated delivery and fate of an antisense drug in cell extracts and in single cells by capillary electrophoresis with laser-induced fluorescence. Electrophoresis 2003, 24, (6), 1054-1062.
    18. Tabuchi, M.;Baba, Y., Self-contained on-chip cell culture and pretreatment system. J. Proteome Res. 2004, 3, 871-877.
    19. Inoue, I.;wakamoto, Y.;moriguchi, H.;Okano, K.;Yasuda, K., On-chip culture system for observation of isolated individual cells. Lab Chip 2001, 1, 50-55.
    20. Peng, X. Y.;Li, P. C. H., A Three-Dimensional Flow Control Concept for Single-Cell Experiments on a Microchip. I. Cell Selection, Cell P(?)ntion, Cell Culture, Cell Balancing, and Cell Scanning. Anal. Chem. 2004, 76, 5273-5281.
    21. Yang, J.;Li, C. W.;Yang, M. S., Hydrodynamic simulation of cell docking in microfluidic channels with different dam structures. Lab Chip 2004, 4, 53-59.
    22. Wheeler, A. R.;Throndeset, W. R.;Whelan, A. M.;Leachi, R. N.;Zare, Y.;Liao, H.;Farrell, K.;Manger, I. D.;Daridon, A., Microfluidic Device for Single-Cell Analysis. Anal. Chem. 2003, 75, 3581-3586.
    23. Li, P.;Harrion, J., Transport, Manipulation, and Reaction of Biological Cells On-Chip Using Electrokinetic Effects. Anal. Chem. 1997, 69, 1564-1568.
    24. Huang, Y.;Rubinsky, B., Flow-through micro-electroporation chip for high efficiency single-cell genetic manipulation. Sens. Actuators A. 2003, 104, 205-212.
    25. Huang, Y.;Rubinsky, B., Micro-electroporation: improving the efficiency and understanding of electrical permeabilization of cells. Biomed. Microdev. 2000, 3, 145-150.
    26. Huang, Y.;Rubinsky, B., Microfabricated electroporation chip for single cell membrane permeabilization. Sens. Actuators A. 2001, 89, 242-249.
    27. Seger, U.;Gawad, S.;Johann, R.;Bertsch, A.;Renaud, P., Cell immersion and cell dipping in microfluidic devices. Lab. Chip 2004, 4, 148-151.
    28. Gao, J.;Yin, X. F.;Fang, Z. L., Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab Chip 2004, 4, 47-52.
    29. Li, P. C.;Camprieu, L. d.;Cai, J.;Sanger, M., Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips. Lab. Chip 2004, 4, 174-180.
    30. Wakamoto, Y.;Umehara, S.;Matsumura, K.;Inoue, I.;Yasuda, K., Development of non-destructive, non-contact single-cell based diffcrential cell assay using on-chip microcultivation and optical tweezers. Sens. Actuators B. 2003, 96, 697-700.
    31. Arai, F.;Ichikawa, A.;Ogawa, M.;Fukuda, T., Horio, K.;Itoigawa, K., High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis. Ele(?)phoresis 2001, 22, 283-288.
    32. Schilling, E. A.;Karnholz, A. E;Yager, P., Cell Lysis and Protein Extraction in a Microfluidic Device with Detection by a Fluorogenic Enzyme Assay. Anal Chem. 2002, 74, 1798-1804.
    33. Sohn, L. L.;Saleh, O. A.;Facer, G. R.;Beavis, A. J.;Allan, R. S.;Notterman, D. A., Capacitance cytometry: Measuring biological cells one by one. Proc. Natl. Acad. Sci. 2000, 97, 10687-10690.
    34. Wu, H. K.;Wheeler, A.;Zare, R. N., Chemical eytometry on a picoliter-scale integrated microfluidic chip. Proc. Natl. Acad. Sci. 2004, 101, 12809-12813.
    35. Huang, W. H.;Chen, W.;Pnag, D. W.;Wang, L. Z.;Cheng, J. K., A Method for the Fabrication of Low-Noise Carbon Fiber Nanoelectrodes. Anal. Chem. 2004, 73, 1048-1052.
    36. Irimia, D.;Tompkins, R. G.;Toner, M., Single-cell chemical lysis in picoliter-scale closed volumes using a microfabricated device. Anal Chem. 2004, 76, 6137-6143.
    37. McClain, M. A.;Culbertson, C. T.;Jacobson, S. C.;Allbritton, N. L.;Simes, C. E.;Ramsey, R. M., Microfluidic Devices for the High-Throughput Chemical Analysis of Cells. Anal Chem. 2003, 75, 5646-5655.
    38. Kimura, H.;Mukaida, M.;Kitamori, T.;al., e., Assay of spherical cell surface molecules by thermal lens microscopy and its application to blood cell substances. Anal. Chem. 2001, 73, 4333-4337.
    39. Tan, W.;Parpura, t. V., Haydon, P., Yetang, E. S., Neurotransmitter Imaging in Living Cells Based on Native Fluorescence Detection. Anal. Chem. 1995, 67, 2575-2579.
    40. Biran, I.;Wait, D. R., Optical Imaging Fiber-Based Single Live Cell Arrays: A High-Density Cell Assay Platform. Anal, Chem. 2002, 74, 3046-3054.
    41. Hogg, B. D.;Dutta, P. K.;Long, J. F., In Vitro Interaction of Zeolite Fibers with Individual Cells (Macrophages NR8383): Measurement of Intracellular Oxidative Burst. Anal. Chem. 1996, 68, 2309-2312.
    42. Dubsertert, B., Skourides, P.;Norris, D. J.;Noireaux, V.;Brivanlou, A. M.;Libchaber, A., Science 2002, 298, 1759.
    43. Byassee, T. A.;Chan, W. C. W.;Nie, S., Probing Single Molecules in Single Living Cells. Anal. Chem. 2000, 72, 5606-5611.
    44. Zenisek, H.;Steyer, J. A.;Almers, W., Transport, capture and exocytosis of single synapt(?)sicles at active zones. Nature 2000, 406, 849-854.
    45. Schutz, G.;Trabesinger, W.;Schmidt, T., Direct observation of ligand colocalization on individual receptor molecules. Biophys. J.. 1998, 74, 2223-2226.
    46. F. Chan;K, M.;Siegel, R. M.;Zacharias, D.;Swofford, Ruth;Holmes, K. L.;Tsien, R. Y.;Lenardo, M. J., Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the Green Fluores(?)ence Protein. Cytometry 2001, 44, 361-368.
    47. Tyagi, S.;Kramer, F. R., Mo lecular Beacons: P robes that F luo resce Upon Hybridization. Nat. Biotechnol 1996, 14, 303-308.
    48. Matsuo, T., In situ visualization of messenger RNA for basic fibroblast growth factor in (?)g cells. Biochin. Biophys Acta 1998, 1379, 178-184.
    49. Perlette, J.;Tan, W., Real-Time Monitoring of Intracellular mRNA Hybridiz(?)tion Inside Single Living Cells. Anal. Chem. 2001, 73, 5544-5550.
    50. Sokol, D.;Zhang, X. L.;Lu, P., Real time detection of DNA-RNA hybridization in living cells. Proc. Natl. Acad. Sci. 1998, 95, 11538-11543.
    51. Santangelo, P. J.;Nix, B., Tsourkas, A.;Bao, G, Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Research, 2004, 32, e57-66.
    52. Seisenberger, G;Ried, M. U.;Endre, T.;Buning, H.;Hallek, M.;Brauchlc, C., Real-time single-molecule imaging of the infection pathway of an Adeno-associatcd Virus. Science 2001, 294, 1929-1932.
    53. 郗昕;姜泗长;方耀云,激光扫描共聚焦显微镜的原理与生物学应用.中国体视学与图像分析1996,1,74-79.
    54. Qian, W. -J.;Gee, K. R.;Kennedy, R. T., Imaging of Zn2+ Release from Pancreatic (?)-Cells at the Level of Single Exocytotic Events. Anal. Chem. 2003, 75, 3468-3475.
    55. Gee, K. R.;Zhou, Z. -L.;Qian, W. -J.;Kennedy, R., Detection and Imaging of Zinc Secretion from Pancreatic -Cells Using a New Fluorescent Zinc Indicator. J. Am. Chem. Soc. 2002, 124, 776-778.
    56. Fuller, K. M.;Arriaga, E. A., Analysis of Individual Acidic Organelles by Capillary Electrophoresis with Laser-Induced Fluorescence Detection Facilitated by the Endocytosis of Fiuorescently Labeled Microspheres. AnaL Chem. 2003, 75, 2123-2130.
    57. Jaiswal, J. (?), Mattoussi, H.;Mauro, J. M.;Simon, S. M., Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnology 2003, 21, 47-51.
    58. Song, H.;Stevens, C. F., Astroglia induce neurogenesis from adult neural stem cells. Nature 2002, 417, 39-44.
    59. Peviasamy, A.;Skoglund, P.;Noakes, C.;Keller, R., An evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in xenopus morphogenesis. Microscopy Res. Tech. 1999, 47, 172-181.
    60. Bousso, P.;Bhakta, N. R.;Lewis, R. S.;Robey, E., Dynamics of Thymocyte-Stromai Cell Interactions Visualized by Two-Photon Microscopy. Science 2002, 296, 1876-1880.
    61. Miller, M. J.;Wei, S. H.;Cahalan, M. D.;Parker, I., Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. PNAS 2003, 100, 2604-2609.
    62. Zhang, C. Y.;Ma, H.;Nie, S. M.;Ding, Y.;Jin, L.;Chen, D. Y., Quantum dot-labeled trichosanthin. Analyst 2000, 125, 1029-1031.
    63. Trachtenberg, J. T.;Gan, B. E.;Knott, G. W., Feng, G. P.;Saned, J. R.;Welker, E.;Svoboda, K., (?)g-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 2002, 420, 788-794.
    64. Grutzendler. J.;Kastheeri, N.;Gan, W. B., Long-term dendritic spine stability in the adult cortex. Nature 2002, 420, 812-816.
    65. 王琛;王桂英;徐至展,全内反射荧光显微术.物理学进展2002,22,406-415.
    66. Funatsu, T.;Harada, Y.;Tokunaga, M.;Saito, K.;Yanagida, T., Imaging of single fluorescent molecules and individual ATP turnovers by single myesin molecules in aqueous solution. Nature 1995, 374, 555-559.
    67. Kawano, Y.;Enders, R. G., Total internal refection fluoresce(?) (?)croscopy. Application (?)1999, 11, 28-30.
    68. Tokunaga, M.;K, K. K.;Saito, K.;Iwane, A. H.;Yanagida, T., Single molecule imaging of fluorophores and enzymatic reactions achived by objective-type total internal reflection fluorescence microscopy. Biochem. Biophys. Res. Commun. 1997, 235, 4753.
    69. Vale, R. D.;F(?)natsu, T.;Yanagida, T., Direct observation of singie kinesin molecules moving along microtubules. Nature 1996, 380, 451-453.
    70. Yasuda, R.;Noji, H.;Kin(?)sita, J. K.;Yoshida, M., F1-ATPase is a highly efficient molecular motor that rotates with discrete 120°steps. Cell 1998, 93, 1117-1124.
    71. Lino, R.;Koyama, I.;Kusumi, A., ingle molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophysical Journal 2001, 80, 2667-2677.
    72. Jamora, C.;Damanuj, R.;Kocieniewski, P.;Fuchs, E., Links between signal transduction, transcription and adhesion in epithelial bud devolopment. Nature 2003, 422, 317-326.
    73. Sako, Y.;Minoguchi, S.;Yanagida, T., Single-molecule imaging of EGFR signaling on the surface of living cells. Nature Cell Biology 2000, 2, 168-172.
    74. Jin, T.;Zhang, N.;Long, Y.;Parent, C. A.;Devreotes, P. N., Localization of the protein βγ complex in living cells during chemotaxis. Science 2000, 287, 1034-1036.
    75. Ueda, M.;Sako, Y.;Tanaka, T.;Devreotes, P.;Yanagida, T., Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science 2001, 294, 864-867.
    76. Schutz, G. J., Gerald, K.;Pastuchenko, V. P.;Schindler, H., Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBOJ. 2000, 19, 892-901.
    77. Schmoranzer, J.;Coulian, M.;Axelrod, D.;Simon, S. M., Imaging constitutive exocytosis with total internal reflection fluorescence mi(?)oscopy. The Journal of Cell Biology 2000, 149, 23-31.
    78. Steyer, J. A.;Almers, W., Tracking single secretory granules in live Chromaffin by evanescent-field fluorescence microscopy. Biophysical Journal 1999, 76, 2262-2271.
    79. Steyer, (?). A.;Horstmann, H.;Almers, W., Transport, docking and cxocytosis of single secretory gran(?)es in live chromaffin cells. Nature 1997, 388, 474-478.
    80. Kitamori, T.;Tokeshi, M.;Hibara, A.;Sate, K., Thermal Lens Microscopy and Microchip Chemistry. Anal. Chem. 2004, 76, (?)A-60A.
    81. Tamaki, E.;Sate, K.;Tokeshi, M.;Sato, K.;Aihara, M.;Kitamori, T., Single-Cell Analysis by a Scanning Thermal Lens Microscope with a Microchip: Direct Monitoring of Cytochrome c Distribution during Apoptosis Process. Anal. Chem. 2002, 74, 1560-1564.
    82. Harris, C. M., Liquid array single-handedly detects bounty of BW agents. Anal. Chem. 2003, 75, 202A-202A.
    83. Betzig, E.;Tranlman, J., Microscopy, spectroscopy and surface modification beyond the diffraction limit. Science 1992, 257, 189-196.
    84.梅二文;顾文芳,近场扫描光学显微图象与光谱技术.分析科学学报1999,15,79-86.
    85. Garcia-Parajo, M. E;Segers-Nolten, G. M.;Veerman, J. A.;Greve, J.;Hulst, N. E V., Real-time light-driven dynamics of the fluorescence emission in single green fluorescent protein molec(?)les. Prec. Natl. Acad, Sci. 2000, 97, 7237-7242.
    86. Enderle, T.;Ha, T.;Ogletree, D. F.;Chemla, D. S.;Magowan, C.;Weiss, S., Membrane specific mapping and colocaliz(?)tion of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dual-color near-field scanning optical microscopy. Prec. Natl. Aead. Sci. 1997, 94, 520-525.
    87. Bard, A. J.;Fan, F. -R. F.;Kwak, J.;Lev, O., Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 1989, 61, 132-138.
    88. Kwak, J.;Bard, A. J., Scanning electrochemical microscopy. Theory of the feedback mode.Anal. Chem. 1989, 61, 1221-1227.
    89. Kwak, J.;Bard, A. J., Scanning electrochemical microscopy. Apparatus and (?)o-dimensional scans of conductive and insulating substrates.. Anal. Chem. 1989, 61, 1794-1799.
    90. Lee, C.;Kwak, J.;Bard, A. J., Application of Scanning Electrochemical Microscopy to Biological Samples. Prec. Natl. Acad Sci. 1970, 87, 1740-1743.
    91. Tsionsky, M.;Cardon, Z. G.;Bard, A. J., Photosynthetic Electron Transport in Single Guard Cells as Measured by Scanning Electrochemical Microscopy. Plant Physiol. 1997, 113, 895-901.
    92. Yasukawa, T.;Kondo, Y.;Uchida, I.;Matsue., T., Imaging of Cellular Activity of Single Cultured Cells by Scanning Electrochemical Microscopy. Chem. Lett. 1998, 8, 767-768.
    93. Yasukawa, T.;Kaya, T.;Matsue, T., Dual Imaging of Topography and Photosynthetic Activity of a Single Protoplast by Scanning Electrochemical Microscopy. Anal, Chem. 1999, 71, 4637-4641.
    94. Kaya, T.;Nishizawa, M.;Yasukawa, T.;Nishiguchi, M.;Onouchi, T., Matsue, T., A microbial chip combined with scanning electrochemical microscopy. Biotechnol. Bioeng. 2001, 76, 391-394.
    95. Shiku, H.;Shiraishi, T.;Ohya, H.;Matsue, T., Abe, H., Hoshi, H.;Kobayashi, M., Oxygen Consumption of Single Bovine Embryos Probed by Scanning Electrochemical Microscopy. Anal, Chem. 2001, 73, 3751-3758.
    96. Torisawa, Y.;Kaya, T.;Oyamatsu, D.;Nishizawa, M.;Matsue, T., Scanning Electrochemical Microscopy-Based Drug Sensitivity Test for a Cell Culture Integrated in Silicon Microstructures. Anal Chem. 2003, 75, 2154-2158.
    97. Liu, B.;Rotenberg, S. A.;Mirkin, M. V., Scanning electrochemical microscopy of living cells: Different redox activities of nonmetastatie and metastatic human breast cells. Proc. Natl. Acad. Sci. 2000, 97, 9855-9860.
    98. Liu, B.;Cheng, W.;Rotenberg, S. A.;Mirkin, M. V., Scanning Electrochemical Microscopy of Living Cells. 2. Imaging Redox Reactivities. J. Electroanal. Chem. 2001, 500, 590-597.
    99. Cai, C. C., Liu, B.;Mirkin, M. V.;Frank, H. A.;Rusling, J. F., Scanning Electrochemical Microscopy of Living Cells. 3. Rhodobacter sphaeroides. Anal. Chem. 2002, 74, 114-119.
    100. Liu, B.;Rotenberg, S. A.;Mirkin, M. V., Scanning Electrochemical Microscopy of Living Cells. 4. Mechanistic Study of Charge Transfer Reactions in Human Breast Cells. Anal. Chem. 2002, 74, 6340-6348.
    101. Feng, W.;Rotenberg, S. A.;Mirkin, M. V., Scanning Electrochemical Microscopy of Living Cells. 5. Imaging of Fields of Normal and Metastatic Human Breast Cells. Anal, Chem. 2003, 75, 4148-4154.
    102. Hengstenberg, A.;Blochl, A.;Dietzel, I. D.;Schuhmann, W., Spatially Resolved Detection of Neurotransmitter Secretion from Individual Cells by Means of Scanning Electrochemical Microscopy. Angew. Chem. Int. Ed. 2001, 40, 905-908.
    103. Liebetrau, J. M.;Miller, H. M.;Baur, J. E.;Takacs, S. A.;Anupunpisit, V.;Garris, P. A.;Wipf, D. O., Scanning Electrochemical Microscopy of Model Neurons: Imaging and Real-Time Detection of Morphological Changes. Anal. Chem. 2003, 75, 563-571.
    104. Henderson, E.;Haydon, P. G.;Sakaguchi, D. S., Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science 1992, 257, 1944-1946.
    105. Umehara, S.;Wakamoto, Y.;Inoue, I.;Yasuda, K., On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells. Biochem Biophys Res Commun 2003, 305, 534-540.
    106. Cricenti, A.;Stasio, G. D.;Generosi, R.;Scarselli, M. A.;Perfetti, P.;Ciotti, M. T.;Mercanti, D., Atomic force microscopy observation of native neurons and modifications induced by glutamate. J. Vac Sci Technol B 1996, 14, 1395-1398.
    107.黄益民;李稼;刘丹晶,原子力显微镜对自由基损伤的红细胞膜表面精细结构的研究.北京生物医学工程1999,18,18-23.
    108.汪尔康;等,分析化学新进展.科学出版社:北京,2002;p41.
    109.袁倬斌;李向军;李瑁;张君,单细胞成像观测研究进展.分析实验室2004,23,(4),86-92.
    110. Chandra, S.;Smith, D. R.;Morrison, G. H., Subcellular Imaging by Dynamic SIMS Ion Microscopy. Anal. Chem. 2000, 72, 104A-114A.
    111. Colliver, T. L.;Ewing, A. G;Winograd, N.;al., e., Atomic and Molecular Imaging at the Single-Cell Level with TOF-SIMS. Anal. Chem. 1997, 69, 2225-2231.
    112. Roddy, T. P.;Winograd, N.;Ewing, A. G, Imaging of Freeze-Fractured Cells with in Situ Fluorescence and Time-of-Flight Secondary Ion Mass Spectrometry. Anal. Chem. 2002, 74, 4011-4019.
    113. Sjovall, P.;Lausman, J.;Nygren, H.;Corisson, L., Imaging of Membrane Lipids in Single Cells by Imprint-Imaging Time-of-Flight Secondary Ion Mass Spectrometry. Anal. Chem. 2003, 75, 3429-3434.
    114. Rubakhin, T. S.;Greenough, W. T.;Sweedler, J. V., Spatial Profiling with MALDI MS: Distribution of Neuropeptides within Single Neurons. Anal. Chem. 2003, 75, 5374-5380.
    115.程介克;庞代文;黄卫华;鲁馨,21世纪单细胞分析发展.大学化学2003,18,1-10.
    116.黄卫华;张丽瑶;程伟;庞代文;王宗礼;程介克,纳米电极时空分辨监测单个PC12细胞多巴胺量子释放.高等学校化学学报2003,24,425-427.
    117. Chen, R. S.;Wang, W. H.;Tong, H.;Wang, Z. L.;Cheng, J. K., Carbon Fiber Nanoelectrodes Modified by Single-Walled Carbon Nanotubes. Anal. Chem. 2003, 75, 6341-6345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700