用户名: 密码: 验证码:
航弹舵机加载测试系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舵机加载系统用于模拟航弹舵系统负载和检测舵机性能,是航弹半实物仿真系统的重要组成部分。随着航弹飞行性能的提高,舵系统的发展,对负载模拟技术提出了更高要求。电动式加载系统是近几年研究的热点,许多问题有待研究。本文正是以电机作为动力设备开展了对舵机加载系统的研究工作。
     论文首先总结了加载技术的进展情况,并指出加载系统中存在的几个基本问题。然后根据系统指标要求,分别从系统结构及模型、分析、控制三个方面对系统进行深入的理论分析和仿真研究。
     论文给出舵机加载系统的基本结构,分析其工作原理,并建立系统数学模型。根据系统局部参数调整的需要,提出在系统结构中加入弹簧杆和惯量盘,并分析了这两部分结构参数在系统性能调节和多余力补偿器实现中的重要作用。
     由于稳定性是系统正常工作的基本要求,机械谐振特性制约着系统加载频宽,论文从机械谐振特性和系统稳定性出发,提出了确定弹簧杆刚度和惯量盘转动惯量的取值范围的方法,并指出在一定条件下系统能够开环稳定工作。针对舵机运动引起的多余力对系统性能的影响,基于结构不变性原理,分别以舵机转速、直流电机转速和舵机控制指令信号为观测量,给出了三种多余力补偿方法。
     由于最优控制具有方法简单、便于工程实现等特点,论文研究了最优控制在舵机加载系统中的应用。针对线性二次型工程近似最优控制中存在的稳态误差问题,提出在最优控制中引入积分控制,并分别用传递函数和状态空间模型实现。针对系统响应速度问题,根据调节时间与极点实部的关系,在二次型性能指标中加入期望衰减度调节系统的响应速度。
     针对舵机加载系统中存在的非线性、参数时变等不确定因素,以及工程近似最优控制中解的近似性和鲁棒性差等不利因素,研究了鲁棒跟踪与干扰抑制方法在加载系统中的应用。该方法专门针对具有确定性扰动的跟踪系统提出来,能使系统渐近跟踪参考输入的同时抑制确定性扰动对系统性能的影响,而且对系统参数变化引起的扰动的抑制能力强,很适合舵机加载系统。论文阐述了该方法的基本原理,并设计了系统控制器。考虑到基于传递函数方法求解的困难性和精确性,提出将鲁棒跟踪与干扰抑制方法在状态空间中实现。根据鲁棒渐进调节器的基本原理,结合最优控制方法,成功地将鲁棒跟踪与干扰抑制方法应用到舵机加载系统中。
     鲁棒跟踪与干扰抑制方法是基于内模原理的,对输入信号的精确性和控制器实现的精度有很高要求,而且控制器参数与输入信号频率相对应,当信号频率发生变化时,控制器参数会改变,给系统设计带来了不便。变结构控制能够利用滑动模态使系统具有对干扰的自适应性,利用到达条件使控制结构灵活多样,为工程设计问题提供更多可能性,是不确定系统常用的方法。论文提出了一种设计变结构加载系统的方法,指出引入积分策略增广系统状态方程后再设计变结构控制律。仿真结果表明了该方法的有效性,抑制了多余力的影响,提高了系统跟踪精度。系统控制律设计时,利用了最终滑动模态构造最优滑模面,并采用指数趋近律使系统渐近稳定。该方法解决了传统的变结构控制方法多余力抑制性能差的问题。而且由于只针对一级滑动模态进行设计,构造的变结构系统并不复杂。
     在实际应用中,由于机械、电气等方面的惯性使理想的开关特性不能满足,变结构控制系统不可避免地会存在抖振问题。考虑到结构不变性原理能有效抑制多余力,同时希望多余力补偿器能够适应系统参数的变化,论文提出一种构造自适应多余力补偿器的方法。这种方法通过构造合适的前馈控制器,结合常规的模型参考自适应控制方法,选取适当的李亚普诺夫函数,运用李亚普诺夫稳定性定理证明了系统的渐进稳定性,得到自适应律,使系统控制器具有自适应性。仿真结果表明,该方法有效抑制了多余力,系统跟踪性能良好。
The actuator loading system used to simulate the aerodynamic load of the aerobomb actuator system and test performance of the actuator is the important part of aerobomb hardware-in-the-loop(HIL) simulation. With the development of aerobomb flight performance and actuator system itself, it becomes more necessary to investigate the actuator loading system to improve its performance. The electronic loading system which is based on the electric driving equipment is widely researched in recent years, but there are still many problems remained to be studied. The dissertation's main task is to explore these problems and give solutions to them.
     The dissertation first gives a summarization to the development of the loading technology, and discusses several basic problems in the loading system. Then, the theory analysis and simulation research of the actuator loading system is made in detail from three aspects of system structure, analysis and control, to meet the demands of the target.
     The basic structure of the actuator loading system is presented, and its working principle is described, then its mathematical model is established. For the convenience of adjusting the local parameters of system, the spring staff and the inertia simulator are added into the structure of system. The great role of these two parts is analyzed, especially in the system performance adjustment and the realization of the extraneous compensator.
     The rigidity range of the spring staff and the inertia range of the inertia simulator are given by means of analyzing system mechanical resonance and stability of the loading channel, considering that the stability is the basic requirement for system to work well and the loading bandwidth of system is restricted by the mechanical resonance. The dissertation indicates that the loading system can work stably in open-loop given some conditions. Confronted with the extraneous torque impacting the system performance, three kinds of compensation methods are provided, based on the structure invariable principle. They are differentiated by observable variables, namely actuator velocity, DC motor velocity and actuator system control signal.
     The optimal control method is applied to the actuator loading system, because of its advantages of simpleness and easy realization in practical engineering. Confronted with the steady-state error in approximate linear quadratic optimal tracking, the integral strategy is presented, and two methods are used to realize it, separately based on the transfer function and the state space. Finally, the decay rate is added to the cost function to improve the response speed, according to the relationship between the selecting time and the real part of pole.
     Considering the uncertainty of nonlinearity and parameter variation in the actuator loading system and the disadvantages of approximate solution and bad robustness in applied optimal control method, the robust tracking and disturbance rejection method is studied. It is brought forward for the systems with certain-form disturbance signals, and applying the control method to the actuator loading system is reasonable, for it can asymptotically track reference input and reject the disturbance, and simultaneously make system be adaptive to parameter variation. Its basic principle is described and applied to the actuator loading system based on its transfer function model. Considering the difficulties in getting exact solution, the dissertation gets the robust tracking and disturbance rejection method to be realized in the state space. By incorporating the optimal control method, based on the basic principle of robust asymptotic regulator, the robust tracking and disturbance rejection method is applied to the actuator loading system successfully.
     The robust tracking and disturbance rejection method is based on the internal mode principle, and has high demands for the accuracy of input and controller realization. Also, the controller is corresponding to the input. When the frequencies of input changes, the controller parameters have to be changed, which brings inconvenience for system design. So, it is necessary to find other robust control methods. The variable structure control is commonly used in systems with uncertainty, for it can not only use sliding mode to make system to be adaptive to disturbance, but also provide many possibilities for engineering design with reaching conditions making control structure flexible and multiple. The dissertation provides a method for constructing the variable structure loading system, and indicates that the variable structure control law should be designed after adopting the integral strategy to enlarge system state space. The simulation results indicate that the method is quite effective in eliminating the extraneous torque and improving the tracking accuracy. In the process of the control law design, the final sliding mode is used to construct the optimal sliding surface, and the exponential reaching law is adopted to make system asymptotically stable. The method solves the problem of bad performance in rejecting the extraneous torque existed in traditional variable structure system. The constructed variable structure controller is simple , because the final sliding mode is just one-order sliding mode.
     In practical application, the ideal switch characteristic which is required by variable control system is impossible to get, so the wobble problem is inevitable, which may impact system performance. Considering the validity of structure invariable principle in eliminating extraneous torque and the requirement of adaption to parameter variation, the dissertation provides a method to make the extraneous torque compensator adaptive. Based on the model reference adaptive control (MRAC) method, by constructing proper feedforward controller and Lyapunov function, and applying Lyapunov stability theorem in proving system asymptotically stability to get adaptive control law, the method constructs an adaptive control system. The actuator loading system with this kind of adaptive control method can get highperformance by numerical simulation.
引文
[1]黄柯棣.系统仿真技术[M].长沙:国防科技大学出版社,1998.
    [2]程云龙.防空导弹自动驾驶仪设计[M].北京:宇航出版社,1993:213-248.
    [3]苏永清.电液负载仿真台的加载性能的研究[D].哈尔滨工业大学博士学位论文,2000.8.
    [4]华清.电液负载模拟器关键技术的研究[D].北京航空航天大学博士学位论文,2001.9.
    [5]郝经佳.电液负载仿真台综合性能的研究[D].哈尔滨工业大学博士学位论文,2001.9.
    [6]王明彦.电动负载模拟技术的研究[D].哈尔滨工业大学博士学位论文,2004.3.
    [7]裴忠才,于慈远.连通孔在电液负载模拟器中的应用[J].机床与液压,1997(3):17-18.
    [8]张立勋,王安敏.位置同步补偿提高飞行器负载模拟器频宽的研究[J].哈尔滨工业大学学报,1995,27(3):123-126.
    [9]于慈远,刘庆和.位置同步补偿克服多余力矩分析[J].机床与液压,1997(6):11-12.
    [10]刘庆和,裴忠才.新型电液负载仿真台的研制[J].机床与液压,1997(5):3-4.
    [11]张立勋,刘庆和.位置同步补偿克服负载模拟器干扰力矩及提高系统频宽的理论与实验[J].宇航学报,1997,18(1):120-123.
    [12]苏东海,吴盛林.利用基于同步补偿的角速度差值克服多余力矩[J].哈尔滨工业大学学报,2000,32(1):78-81,85.
    [13]苏东海,耿心一,谢群.高精度电液负载仿真台的设计[J].机械设计与制造,2003(3):71-72.
    [14]苏永清,岳继光等.提高负载仿真台跟踪性能的方法[J].同济大学学报:自然科学版,2003,31(1):114-117.
    [15]焦宗夏,高俊霞,华清等.基于速度同步控制的电液负载模拟器[J].中国航空学报:英文版,2004,17(1):39-46.
    [16]王经甫,叶正茂,李洪人.双阀并联控制在船舶舵机电液负载模拟器多余力抑制中的研究[J].机械工程学报,2005,41(4):229-233.
    [17]郝经佳.双阀控制在电液负载仿真台中的应用[J].中国机械工程,2002,13(10):814-816.
    [18]裴忠才,单伟.零开口流量阀在电液负载仿真台中的应用[J].机械工程师,1997(5):3-4.
    [19]苏东海,裴忠才.用于被动式电液负载仿真台的一种新型套装组合马达[J].机床与 液压,1997(6):17-17.
    [20]于慈远,杨喜.马达总压力-流量系数对电液负载仿真台的影响分析[J].机械工程师,1998(6):14-15,43.
    [21]裴忠才,吴盛林.连接刚度对电液负载仿真台的影响[J].哈尔滨工业大学学报,1997,29(5):112-114.
    [22]郝经佳,赵克定.一种采用弹簧挠性连接的电液负载仿真台的设计方法[J].机床与液压,2001(1):59-60,106.
    [23]于慈远,于湘珍等.轴系刚度对新型空气动力负载模拟器的影响[J].航空学报,2001,22(2):148-160.
    [24]郝经佳,赵克定等.刚度、惯性负载对电流负荷仿真台性能影响的研究[J].中国机械工程,2002,13(6):458-460.
    [25]袁锐波,赵克定,罗璟等.电液负载模拟器最佳广义连接刚度的分析研究[J].机床与液压,2006(8):108-110,143.
    [26]苏永清,赵克定,吴盛林等.电液负载仿真台中小加载梯度分析[J].机床与液压,2001(2):76-76,118.
    [27]梁利华,张虹,李国斌.减摇鳍电液负载仿真台加载梯度研究分析[J].机械设计与制造,2005(1):54-55.
    [28]郝经佳,许宏光.一种用于电液负载仿真台的前馈补偿方法[J].机床与液压,2000(5):67-68,107.
    [29]阎杰.电液伺服加载系统的自适应PID控制[J].西北工业大学学报,19982.2,16(1):56-60.
    [30]田巨,庞大海.飞机操纵系统负载模拟器的设计和校正方法[J].中国民航飞行学院学报,2001,12(1):23-24.
    [31]梁利华,刘强,赵琳琳.减摇鳍电液负载仿真台前馈补偿解耦控制研究[J].中国机械工程,2007,18(4):439-441.
    [32]邹占江,胡庆超,杨斌等.电液伺服加载系统的自适应控制[J].华中理工大学学报,1991,19(2):37-42.
    [33]杨斌,胡庆超,邹占江.电液伺服被动式加载系统具有给定力函数参考的自适应控制[J].液压气动与密封,1991,(2):57-60.
    [34]陈佳实,王青,祝建伟等.液压加载伺服系统的混合自适应控制[J].广州自动化,1991,(3):1-6.
    [35]关静丽,王占林.位置扰动型电液伺服施力系统的自适应控制[J].北京机械工程学院学报,2001.3,16(1):31-35.
    [36]冯勇建.自适应控制用于消除被动加载系统中多余力[J].机床与液压,2002,(4):53-55.
    [37]沈毅力,李大海,李天石.自适应逆控制及其在电液伺服加载系统中的应用[J].机 床与液压,2003,(1):192-194.
    [38]陈机林.电液加载仿真台的设计与自适应控制[J].机床与液压,2005,(12):124-126.
    [39]袁朝辉,李凌.基于自适应逆控制的无人机负载模拟器复合控制[J].西北工业大学学报,2005,23(2):256-260.
    [40]苏永清,赵克定等.模糊自适应在负载仿真台同步补偿中应用研究[J].机械工程学报,2001,37(7):15-17,36.
    [41]徐本洲.被动式电液力控制系统的干扰抑制与渐进跟踪研究[D].哈尔滨工业大学博士论文,1992.
    [42]蔡永强,裘丽华,王占林.电液力伺服系统的鲁棒预测控制[J].机械工程学报,1999,35(6):81-84.
    [43]孙以泽,赵慧,韩俊伟等.舵机加载系统H∞控制的研究[J].船舶工程,2001(2):40-43.51.
    [44]吴盛林,郑科宇,许宏光.内模控制抑制多余力矩的研究[J].机床与液压,2001(1):28-29.101.
    [45]Yuan R B,Zhao K D,Cao J.Torque Control of Electro-hydraulic Servo System Based on Robust Control Theory[C].In:Proceedings of the Third International Symposium on Instrumentation Science and Technology,Xi an,China,2004,Harbin:Harbin Institute Technology Publishers,2004:1027-1033.
    [46]袁锐波,赵克定,李阁强.电液负载模拟器力矩控制伺服系统不确定性的分析研究[J].机床与液压,2006(2):159-162,193.
    [47]袁锐波,赵克定,李阁强等.基于混合灵敏度方法的负载模拟器的控制研究[J].南京理工大学学报:自然科学版,2006,30(5):537-541.
    [48]罗璟,赵克定,许宏光.基于H∞鲁棒控制的电液负载模拟器的性能研究[J].机床与液压,2006(8):113-116.
    [49]Qiang Fang;Yu Yao;Xiao-Chen Wang.Disturbance observer design for electric aerodynamic load simulator[C].Proceedings of 2005 International Machine Learning and Cybernetics,2005:1316-1321.
    [50]Ruibo Yuan,Jian Cao,Geqiang Li,etc.Torque Control of Electrohydraulic Servo System Based on u-synthesis Theory[C].lst International Symposium on System and Control in Aerospace and Astronautics,ISSCAA2006,2006:1175-1179.
    [51]李阁强,赵克定,袁锐波等.μ理论在电液负载模拟器中的应用[J].航空学报,2007,28(1):228-233.
    [52]何玉彬,闫桂荣,张道立等.电液伺服结构加载系统的神经网络直接自适应输出跟踪控制[J].机床与液压,1997,(2):20-23.
    [53]Wang Mingyan;Guo Ben;Guan Yudong,etc.Design of electric dynamic load simulator based on recurrent neural networks[C].IEEE International Electric Machines and Drives Conference,2003.6,1:207-210.
    [54]Zhao-Hui Yuan;Jian-De Wu;Jiong-Hua Teng.Hybrid control of load simulator for unmanned aerial vehicle based on wavelet networks[C].International Conference on Machine Learning and Cybernetics,2003.11,2:715-719.
    [55]焦宗夏,华清.电液负载模拟器的RBF神经网络控制[J].机械工程学报,2003,39(1):10-14.
    [56]华清,焦宗夏.负载模拟器的DRNN神经网络控制[J].机械工程学报,2003,39(1):15-19.
    [57]王燕山,刘恩朋,刘金甫等.基于小脑模型关节控制器的电液伺服舵机加载系统多余力矩补偿器研究[J].测控技术,2005,24(9):19-21,32.
    [58]袁朝,徐鹏,朱伟等.基于神经网络的无人机负载模拟器的复合控制[J].计算机仿真,2006,23(3):37-40.
    [59]王明彦,郭奔.基于迭代学习控制的电动伺服负载模拟器[J].中国电机工程学报,2003,23(12):123-126.
    [60]叶正茂,李洪人,王经甫.基于CMAC的电液负载模拟器自学习控制[J].控制与决策,2003,18(3):343-347.
    [61]王明彦,俞凯.基于经验数据的学习控制在负载模拟器中的应用[J].自动化技术与应用,2005,24(8):1-4,8.
    [62]Zhang Rong;Chen Jian.Repetitive Control Algorithms for a Real-Time Dynamic Electronic Load Simulator[C].Applied Power Electronics Conference and Exposition,2006.APEC '06.Twenty-First Annual IEEE,2006.3:919-922.
    [63]袁朝辉,吴娟,高亚奎.某型飞机起落架负载模拟系统的非线性控制[J].空军工程大学学报:自然科学版,2004,5(1):10-13.
    [64]叶正茂,李洪人等.基于CMAC的船舶操舵系统负载模拟器复合控制[J].工程设计学报,2002,9(3):147-150.
    [65]陈实如,李殿璞.船用螺旋浆负载动态仿真装置研究[J].哈尔滨工程大学学报,2001,22(2):37-40.
    [66]Betz,R.E.;Penfold,H.B.;Newton,R.W.Local vector control of an AC drive system load simulator.[C].Proceedings of the Third IEEE Conference on Control Applications,1994.8,1:721-726.
    [67]Temeltas,H.;Gokasan,M.;Bogosyan,O.S.A nonlinear load simulator for robot manipulators[C].The 27th Annual Conference of the IEEE Industrial Electronics Society,2001,1:357-362.
    [68]Hyung-Min Ryu;Sung-Jun Kim;Seung-Ki Sul,etc.Dynamic load simulator for high-speed elevator system[C].Power Proceedings of the Conversion Conference,2002.4,2:885-889.
    [69]焦宗夏,华清,王晓东等.负载模拟器的评价指标体系[J].机械工程学报,2002,38(2):26-30.
    [70]Yoonsu Nam,Jinyoung Lee,Sung Kyung Hong.Force control system design for aerodynamic load simulator[C].American Control Conference,2000.6,5:3043-3047.
    [71]Yoonsu Nam.QFT force loop design for the aerodynamic load simulator[J].IEEE Transactions on Aerospace and Electronic Systems.2001.10:1384_1392.
    [72]朱建武.自动加载系统设计[D].西北工业大学硕士学位论文,2000.
    [73]姜佩东,苏东海,高明辉.被动式加载系统多余力分析[J].沈阳工业大学学报,2000,22(3):187-189.
    [74]苏东海,刘峰,王洁.被动式加载系统多余力矩的本质特征分析[J].沈阳工业大学学报,2001,23(6):449-451.
    [75]金勇,云乃彰.被动式加载系统多余力的产生机理及其消除方法的研究[J].直升机技术,2003,(1):18-22.
    [76]李成功,靳红涛,焦宗夏.电动负载模拟器多余力矩产生机理及抑制[J].北京航空航天大学学报,2006,32(2):204-208.
    [77]阎杰,孙力.动态负载仿真系统研制中的关键技术问题[J].航空学报,1997,18(1):22-25.
    [78]于慈远,赵克定.飞行器负载仿真台速度反馈克服多余力矩的仿真研究[J].哈尔滨工业大学学报,1997,29(6):126-129.
    [79]苏东海,刘庆和.电液负载仿真台多余力矩的理论分析及其克服方法的探讨[J].机床与液压,1998(1):14-15.
    [80]刘庆和,裴忠才.电液负载仿真台多余力的产生机理及其多余力消除方法[J].佳木斯大学学报:自然科学版,1999,17(1):8-11.
    [81]李运华.负载模拟器的多余力矩的抑制方法研究[J].机床与液压,1999(2):27-29.
    [82]苏东海,刘庆和.提高电液负载仿真台控制性能的动态补偿及仿真分析[J].中国机械工程,1999,10(1):15-17.
    [83]李运华.抑制电液力矩控制系统的多余力矩的新方法[J].机械工程学报,2000,36(3):4-7.
    [84]裴忠才,刘庆和.电液负载仿真台加载系统的校正与综合[J].机床与液压,2000(3):18-19.
    [85]苏永清,赵克定.消除电液负载仿真台多余力矩的理论分析及实验研究[J].高技术通讯,2000,10(7):82-84。
    [86]常青,阎杰等.电液伺服动态负载仿真系统中多余力矩的测量及抑制[J].机床与液 压,2001(3):16-17.
    [87]焦宗夏,华清等.电液负载模拟器的复合控制[J].机械工程学报,2002,38(12):34-38.
    [88]邹海峰,孙力,阎杰.飞行器舵机电动伺服加载系统研究[J].系统仿真学报,2004,16(4):657-659.
    [89]李阁强,赵克定,曹建等.微力矩导弹舵机负载模拟器的理论研究[J].中国惯性技术学报,2005,13(6):54-57.
    [90]斐忠才,王占林,王立国.电液负载仿真台的理论分析[J].北京航空航天大学学报,2000,26(6):660-662.
    [91]华清,焦宗夏,王晓东等.电液负载模拟器的精确数学模型[J].机械工程学报,2002,38(11):31-35.
    [92]张晓旭.电液负载仿真台数学模型的研究[J].辽宁师专学报:自然科学版,2005,7(4):18-18,20.
    [93]任志婷,焦宗夏.小转矩电动式负载模拟器的设计[J].北京航空航天大学学报,2003,29(1):91-94.
    [94]关静丽.电动式舵机力矩负载模拟器[D].北京航空航天大学硕士学位论文,2001.3.
    [95]任志婷.快速、高精度的电动加载系统[D].北京航空航天大学硕士学位论文,2002.3.
    [96]黄勇,孙力,阎杰.连接刚度对电动负载模拟器性能的影响[J].弹箭与制导学报,2004,24(4):170-173.
    [97]王明彦,郭犇,王金梁.惯量和刚度对电动负载模拟器频宽影响的分析[J].电机与控制学报,2004,8(1):71-74.
    [98]王成,王广怀.负载模拟器多余力抑制的探讨[J].机械工程师,2003.12:38-40.
    [99]胡寿松.自动控制原理(第四版)[M].北京:科学出版社,2001.2.
    [100]刘长年.液压伺服系统优化设计理论[M].北京:冶金工业出版社,1989.8.
    [101]解学书.最优控制-理论与应用[M].北京:清华大学出版社,1986.7.
    [102]胡寿松,王执铨,胡维礼.最优控制理论与系统(第二版)[M].北京:科学出版社,2005.
    [103]Jiao Zongxia,Li Chenggong,Ren Zhiting.The extraneous torque and compensation control on the electric load simulator.Fifth international symposium on instrumentation and control technology,Proc.of SPIE Vol.5253,2003:723-727.
    [104]Chi-Tsong Chen.Linear system theory and design[M].NewYork:Oxford University Press,1999.
    [105]肖建.现代控制系统综合与设计[M].北京:中国铁道出版社,2000.
    [106]高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1990.3.
    [107]姚琼荟,黄继起,吴汉松.变结构控制系统[M].重庆:重庆大学出版社,1997.1.
    [108]张昌凡,何静.滑模变结构的智能控制理论与应用研究[M].北京:科学出版社,2003.1.
    [109]史维,陈文吾,何勤奋.自适应控制导论[M].南京:东南大学出版社,1990.11.
    [110]C.J.哈里斯,S.A.比林斯,李清泉(译).自校正和自适应控制理论与应用[M].北京:科学出版社,1986.9.
    [111]I.D.朗道(著),吴百凡(译).自适应控制模型参考方法[M].北京:国防工业出版社,1985.
    [112]J.S.Tyler.The characteristics of model following systems as synthesized by optimal control.IEEE Trans.Autom.Control,AC-9,1964:485-498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700