用户名: 密码: 验证码:
高密度永磁电机永磁体防退磁技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁电机具有高效率、高密度、调速范围广等优点,在电动汽车、航空航天、工业机器人等领域得到了广泛应用。高密度永磁电机体积小、电枢反应强、热流密度高,使用环境温度变化大,使得电机内永磁体存在不可逆退磁风险,导致电机性能下降甚至完全失去驱动能力。高密度永磁电机系统防退磁技术已成为高密度永磁电机系统亟待解决的关键技术之一。论文在此背景下,结合国家“十二五”电动汽车关键技术与系统集成项目“车用高性价比永磁驱动电机及其控制系统规模产业化技术攻关”(No.2011AA11A236)课题、“电机系统关键共性技术与评价体系研究”(No.2011AA11A238)课题以及工业机器人工程化产品及自动化生产线项目“工业机器人伺服驱动器和电机工程化研究”(No.2011AA04A105)课题,基于高密度永磁电机设计和运行控制的防退磁技术需求,从电机设计着手,开展永磁体退磁模型与多目标优化设计研究,直到电机运行的永磁体状态观测与在线控制等方面研究。
     本论文的主要研究内容及贡献如下:
     1.高密度永磁电机退磁机理与退磁模型研究
     永磁电机永磁体的退磁通常由多个因素共同作用产生,各因素之间相互影响;同时,已有的各种退磁模型分析永磁体退磁效应的结果不尽相同,给永磁体的退磁效应分析和状态估计带来困惑。
     本文基于永磁体磁学理论,结合车用电机的应用特点,依据钕铁硼永磁体磁畴壁钉扎理论对永磁体温度、电枢反应磁场、化学、振动与时效的退磁效应进行显著性分析,得出温度变化与电枢反应强度是车用高密度永磁电机退磁的主要因子,并归纳分析出各种退磁模型的适用范围及其局限性。
     2.具有温度参数的永磁电机双向磁网络退磁模型研究
     传统的永磁电机磁路法设计分析快速简便,但不具备永磁体防退磁的分析评估能力;有限元计算法精度高,采用温度场和磁场耦合仿真分析验证永磁电机防退磁性能非常耗时,也无法直观反映设计参数与永磁体防退磁能力之间的相互关系,有效地实现永磁电机的防退磁设计。
     本文依据温度和磁场分布是永磁体退磁的主要因子及其显著效应,在Matlab/Simulink仿真平台上建立了具有温度参数的永磁电机双向磁网络退磁模型及其永磁体温度参数数据库,可快速评估永磁电机的基本设计参数与永磁体防退磁能力。提出的永磁电机双向磁网络模型,同时计及了电机径向与周向的磁力线分布,以提高永磁电机磁网络模型的计算精度。
     3.具有永磁电机防退磁的多目标优化设计研究
     在永磁电机防退磁设计研究基础上,开展具有永磁电机防退磁的多目标优化设计研究。多目标主要关注:永磁体防退磁能力、永磁体用量和成本分析、转矩脉动、铁芯损耗。这些目标需求和设计参数之间互为制约并呈非线性关系,难以以显式函数表达,给多目标优化设计的分析求解带来困难。
     本文设计多参数电机方案的有限元仿真计算试验,并对永磁体等关键部位进行精细化的仿真计算试验,由此依据仿真试验数据建立电机的多目标回归模型,该模型可决系数超过0.96,拟合优度较高,解决了多目标优化设计求解的模型难题。在此基础上,应用遗传算法对回归模型进行多目标寻优,实现快速有效的寻找全局最优解。
     4.电机运行的永磁体状态观测器
     永磁体温度、电枢反应强度与分布是电机运行过程中永磁体退磁的两个主要因子,本文基于永磁电机热网络模型和损耗模型协同解决转子永磁体温度观测的难题,依据永磁体温度、d轴和q轴定子电流,建立电机运行的永磁体状态观测器,实现电机运行过程具有温度参数的永磁体状态观测。
     5.基于永磁体状态观测器的电机矢量控制系统及实验验证
     在具有温度参数的永磁体状态观测和电流矢量控制策略的基础上,设计与构建基于永磁体观测器的电机矢量控制系统与实验平台。以国家电动汽车重大专项课题项目为载体,设计制作了同步永磁电机及其驱动装置和控制系统样机,进行了一系列实验验证。通过样机电磁性能实验、温度观测实验及防退磁控制策略实验,验证了设计方法及防退磁控制系统的可行性。
With advantages of high efficiency, high density, wide speed range, permanentmagnet motors have widely used in electric automobile, aerospace, robotics andother fields. But because of small volume, strong armature reaction, high heatdensity and large change of environmental temperature, high density permanentmagnet motors have the risk of performance decline, even complete loss of drivingability result from irreversible demagnetization. Anti-demagnetization technology ofhigh density permanent magnet motor has become the key technology in highdensity permanent magnet motor system. On this background, combined with thenational project of "Research of industrialization technology of permanent drivemotor and its control system with high cost-effective"(No.2011AA11A236),"Research of motor system key technology and evaluation system"(No.2011AA11A238), and project of "Research of industrial robot servo drive motorand Engineering"(No.2011AA04A105), based on the need of anti-demagnetizationin design and control of high density permanent magnet motor, this thesis carry onthe research of demagnetization model, multi-objective optimization design ofpermanent magnet motor and the state observation and control online and so on.
     The main contents and contributions are as follows:
     1. Research of demagnetization mechanism and model of high densitypermanent magnet motor.
     Demagnetization of permanent magnet motors usually are due to multiplefactors that affect each other. At the same time, different analytic results ofpermanent magnet demagnetization effect using existing model cause confusion ineffect analysis and state estimation of permanent magnet demagnetization.
     Based on permanent magnet magnetic theory, combined with the applicationfeatures of the vehicle motor; on the basis of magnetic domain wall pinning theory of permanent magnet, this thesis analyze remarkable demagnetization effect oftemperature, armature reaction, chemical, vibration and aging, obtain the conclusionthat the temperature and armature reaction is main factor of demagnetization in highdensity permanent magnet motor, and induces application and limitation of variousof demagnetization model.
     2. Research of bidirectional magnetic network model of demagnetization withtemperature parameter
     Using traditional magnetic circuit, the design of permanent magnet motor is fastand simple, but has not ability of analysis and evaluation of demagnetization. Finiteelement method has high accuracy, but the demagnetization analysis using couplingsimulation of temperature field and the magnetic field is time consuming, alsocannot reflect relation between the design parameters and capability ofanti-demagnetization to effectively guide design of anti-demagnetization.
     Based on the conclusion that temperature and magnetic field are the main andsignificant factor in magnet demagnetization, this thesis establish bidirectionalmagnetic network model and temperature parameters database of permanent magnetin Matlab/Simulink simulation platform to rapidly assess the basic design parametersand ability of anti-demagnetization of motor. The bidirectional magnetic networkmodel can simultaneous calculate radial and circumferential magnetic fielddistribution of permanent magnet motor, in order to improve the calculationprecision of the magnetic network model.
     3Research of multi-objective optimum design with anti-demagnetization ofpermanent magnet motor
     Based on research of anti-demagnetization design, this thesis carry onmulti-objective optimum design of permanent magnet motor. Multiple objectivesinclude: anti-demagnetization ability, quantity of permanent magnet and costanalysis, torque ripple, iron core loss. These objectives and design parameters aremutual restriction and difficult to express using explicit function that give difficulty to the multi objective optimal design.
     This thesis carry on finite element simulation test with multi-parameters, and dorefined simulation test in the key parts of motor. Based on the simulation data tobuild multi-objective regression model that and its definitely coefficient exceeds0.96, with high fitting degree. It solves the model of multi-objective optimizationproblem. On this basis, this thesis search multi-objective optimization result usinggenetic algorithm that can achieve fast and efficiently global optimal solution.
     4. Research of state observer of permanent magnet in running state
     A permanent magnet armature reaction temperature, intensity and distribution isthe operation process of the motor permanent magnet demagnetization of the twomain factors, based on permanent magnet motor thermal network model and lossmodel solving rotor permanent magnet temperature observation problem, on thebasis of the permanent magnet temperature, shaft and Zhou Dingzi current, establishthe permanent magnet motor running state observer, implementation when the motoris running with the temperature parameters of the permanent magnet stateobservation.
     5. Research of vector control system and its experimental verification with stateobserver of permanent magnet
     Based on the research of state observer of permanent magnet and current vectorcontrol strategy, this thesis design motor control system and and experimentalplatform with state observer of permanent magnet. As the carrier of national projectelectric vehicle special issue we construct the permanent magnet motor, its drivingdevice and control system, and carry out a series of experiments that containelectromagnetic properties of prototype experiment, temperature observationexperiment and anti-demagnetization control strategy to verify the feasibility of themethod of design and anti-demagnetization control system.
引文
【1】. N. Bianchi&T. M. Jahns: Design, Analysis, and Control of Interior PM SynchronousMachines [C]. IEEE Industry Applications Socirty Annual Meeting, Seattle, USA,2004:631-635.
    【2】. T. Klockow.永久磁体励磁的牵引电动机[J].变流技术与电力牵引,2003(4):37-44.
    【3】. Keiichiro Kondo, Minoru Kondo. Design of the Parameters of Permanent MagnetSynchronous Motors for Railway Vehicle Traction[C]. The Fifth International PowerElectronics and Drive System. Singapore IEEE Industrial Electronics Society,2003:992-997.
    【4】.唐任远.稀土永磁电机的现状与发展[C].第十届中国小电机技术研讨会论文集,2005:1-4.
    【5】.钟文定.铁磁学(中册)[M].北京:科学出版社,1987.
    【6】. Wang Zhenxi. Rare-earth permanent magnet industry in China[C].The5thInternational conference on rare-earth development and application,Beijing,China,August,2007:18-23.
    【7】. KANEKO YUJI. Recent Development in High Performance Permanent Magnets andTheir Applications-2Toward the Theoretical Value of Nd-Fe-B Sintered Magnets [J].Journal of the Institute of Electrical Engineers of Japan.2004,124(11):695-698.
    【8】. Sam Liu, Lee Don. Research and development of bulk anisotropic nanograincomposite rare earth permanent magnets[C]. Proc of19th International workshop onREPM and their applications, Beijing,China,2006:123-135.
    【9】.唐任远.稀土永磁电机的关键技术与高性能电机开发[J].沈阳工业大学学报,2005,27(2):162-170.
    【10】. Liu Z M,Han X Y,Zhao Q, et al. Transverse flux permanent magnet machine withinterior magnets [C]. Proceedings of International Conference on Electrical Machinesand Systems (ICEMS2004). Jeju Island,Korea,2004.
    【11】.王秀和.永磁电机[M].北京:中国电力出版社,2011.
    【12】. Strnat K, Olson J C, Hofer G. Coercivity of mischmetal-cobalt alloy powders[J]. J.Appl.Phys.,1968,39(1):1263-1264.
    【13】.易健宏,彭元东.217型SmCo稀土永磁材料的研究现状与趋势[J].稀有金属材料与工程,2003,33(4):337-342.
    【14】. Sagawa M, Fujimura S, Togawa M, et al. New materials for permanent magnets on abase of Nd and Fe[J].J.Appl.Phys.,1984,55(4):2083-2087.
    【15】.张守民. NdFeB稀土永磁材料研究进展[J].稀土,2001,22(1):45-49.
    【16】.邹欣伟,张敏刚,孙刚等.稀土永磁材料的研究进展[J].科技情报开发与经济,2008,18(12):113-116.
    【17】.林河成.稀土永磁材料的现状及发展[J].粉末冶金工业,2010,20(2):47-52.
    【18】.杨应昌.新型各向异性稀土永磁材料产业化开发进展[J].新材料进展,2011(2):40-43.
    【19】.林河成.稀土永磁材料的现状及发展[J].四川有色金属,2010(10):1-9.
    【20】.李波.中国稀土永磁材料的发展概要[J].四川稀土,2009(4):15-21.
    【21】.张洪亮.基于场路结合磁网络法的凸极同步电机数学模型研究[D].哈尔滨:哈尔滨理工大学硕士论文,2005.
    【22】. A. Boucherit, S. Srairi, A. Djerdir, and A. Miraoui. Analytical and numerical modelingof demagnetization phenomenon in a permanent magnet motor[C].ICEM, Krakow,Poland, Sep.2004:766-769.
    【23】. F. G. Jacek and J. P. Zbigniview. Linear synchronous motors: Transportation andAutomation Systems [M].. Boca Raton, CRC:2000.
    【24】. J. Farooq, A. Djerdir, S. Srairi1. Use of Permeance Network Method in theDemagnetization Phenomenon Modeling in a Permanent Magnet Motor [J]. IEEETrans. on Magnetics,2006,42(4):1295-1298.
    【25】. Kyu-Yun Hwang, Sang-Bong Rhee, Jae-Sung Lee, Byung-Il Kwon. ShapeOptimization of Rotor Pole in Spoke type Permanent Magnet Motor for ReducingPartial Demagnetization effect and Cogging Torque [C]. Proceeding of InternationalConference on Electrical Machines and Systems,Seoul, Korea2007:8~11.
    【26】. Ki-Chan Kim, Kwangsoo Kim, Hee Jun Kim, and Ju Lee. Demagnetization Analysis ofPermanent Magnets According to Rotor Types of Interior Permanent MagnetSynchronous Motor [J]. IEEE Trans. on Magnetics,2009,45(6):2799-2802.
    【27】. K. C. Kim, S. B. Lim, D. H. Koo, and J. Lee. The shape design of permanent magnetfor permanent magnet synchronous motor considering partial demagnetization[J]. IIEEE Trans. on Magnetics,2006,42(10):3485–3487.
    【28】. Guoxin Zhao, Lijian Tian, Qiping Shen, Renyuan Tang. Demagnetization Analysis ofPermanent Magnet Synchronous Machines Under Short Circuit Fault [C]. Power andEnergy Engineering Conference (APPEEC),2010Asia-Pacific:1-4
    【29】. Jae-Woo Jung, Jung-Pyo Hong Sang-Ho Lee, Hyoung-Jun Cho. Optimum Design forEddy Current Reduction in Permanent Magnet to Prevent Irreversible Demagnetization
    [C]. Proceeding of International Conference on Electrical Machines andSystems,Seoul, Korea,2007:8-11.
    【30】. Yoshihiro Kawase, Tomohiro Ota, and Hiromu Fukunaga.3-D Eddy Current Analysisin Permanent Magnet of Interior Permanent Magnet Motors[J]. IEEE transaction onMagnetics,2000,36(4):1863-1866.
    【31】. Yasuaki Aoyama, Koji Miyata, and Ken Ohashi. Simulations and Experiments on EddyCurrent in Nd–Fe–B Magnet[J]. IEEE transaction on Magnetics,2005,41(10):3790-3792.
    【32】. Katsumi Yamazaki. Loss Analysis of Interior Permanent Magnet Motors ConsideringCarrier Harmonics and Magnet Eddy Currents Using3-D FEM[C]. Electric Machines&Drives Conference,2007:904-909.
    【33】. Katsumi Yamazaki, Masayuki Shina, Masashi Miwa, and Jun Hagiwara. Investigationof Eddy Current Loss in Divided Nd–Fe–B Sintered Magnets for Synchronous MotorsDue to Insulation Resistance and Frequency[J]. IEEE transaction on Magnetics,2008,44(11):4269-4272.
    【34】. Katsumi Yamazaki, Yu Fukushima, and Makoto Sato. Loss Analysis of PermanentMagnet Motors with Concentrated Windings Variation of Magnet Eddy Current LossDue to Stator and Rotor Shapes[C]. Industry Applications Society Annual Meeting,2008:1-8.
    【35】. Norio Takahashi, Hirofumi Shinagawa, Daisuke Miyagi, Yuhito. Analysis of EddyCurrent Losses of Segmented Nd–Fe–B Sintered Magnets Considering ContactResistance[J]. IEEE transaction on Magnetics,2009,45(3):1234-1237
    【36】. Katsumi Yamazaki. Loss Investigation of Interior Permanent-Magnet MotorsConsidering Carrier Harmonics and Magnet Eddy Currents[J]. IEEE transaction onIndustry Applications,2009,45(2):659-665
    【37】. Hyung-Gyu Kim, Jin-Hur, Byeong-Woo Kim. Irreversible Demagnetization Analysisof IPM type BLDC Motor Considering the Circulating Current by Stator Turn fault [C].Electromagnetic Field Computation (CEFC),201014th Biennial IEEE Conference onDigital Object Identifier:1-1.
    【38】. A. Khoobroo, B. Fahimi, S. Pekarek. ANew field reconstruction method for permanentmagnet synchronous machines[C]. Int. Conf. on Ind. Electron,2008:2009-2013.
    【39】. A. Khoobroo, B. Fahimi. A new method of fault detection and treatment in five phasepermanent magnet synchronous machine using field reconstruction method[C]. IEEEInt. Conf. on Electric machines and Drives,2009:682-688.
    【40】. W. Zhu, B. Fahimi, S. Pekarek. A field reconstruction method for optimal excitation ofpermanent magnet synchronous machines[J]. IEEE Trans. on Energy Conversion,2006,21(2).305-313.
    【41】. B. Fahimi. Qualitative approach to electromechanical energy conversion: Reinventingthe art of design in adjustable speed drives[C]. Int. Conf. on Electrical machines andSystems,2007:432-439.
    【42】. W. Zhu, B. Fahimi, S. Pekarek,. Optimal excitation of permanent magnet synchronousmachines via direct computation of electromagnetic force components[C]. IEEE Int.Conf. on Electrical machines and Drives,2005:918-925.
    【43】. A. Kioumarsi, M. Moallem, B. Fahimi. Mitigation of Torque Ripple in InteriorPermanent Magnet Motors by Optimal Shape Design[J]. IEEE Trans. on Magnetics,2006,42(11):3706-3711.
    【44】. W. Jiang, M. Moallem, B. Fahimi, S. Pekarek. Qualitative Investigation of ForceDensity Components in Electromechanical Energy Conversion Process[C]. IEEE Conf.on Ind. Electron. Nov.2006:1113-1118.
    【45】. J. Wang, W. Wang, K. Atallah, and D. Howe. Demagnetization Assessment forThree-Phase Tubular Brushless Permanent-Magnet Machines [J].. IEEE Trans. onMagnetics,2008,44(9):2195-2203.
    【46】. A. Khoobroo,Babak Fahimi.ANovel method for Permanent Magnet DemagnetizationFault Detection and Treatment in Permanent Magnet Synchronous Machines[C].Applied Power Electronics Conference and Exposition (APEC),2010Twenty-FifthAnnual IEEE2010:2231-2237.
    【47】. Sami Ruoho, Jere Kolehmainen, Jouni Ik heimo, and Antero Arkkio. Interdependenceof Demagnetization, Loading, and Temperature Rise in a Permanent-MagnetSynchronous Motor [J]. IEEE Trans. on Magnetics,2010,46(3):949-953.
    【48】. Junqiang Xing, Fengxiang Wang, Tianyu Wang, and Yingbo Zhang. Study onAnti-Demagnetization of Magnet for High Speed Permanent Magnet Machine [J].IEEE transaction on Industry Applications,2010,20(3):856-860.
    【49】. Cristian Ruschetti, Guillermo Bossio, Cristian De Angelo, etc. Effects of Partial RotorDemagnetization on Permanent Magnet Synchronous Machines [C]. IndustrialTechnology (ICIT),2010IEEE International Conference on Digital Object Identifier2010:1233–1238
    【50】. J. Royo, R. Segui, A. Pardina, etc. Machine current signature analysis as a way forfault detection in permanent magnet motors in elevators[C]. In The18th InternationalConference on Electrical Machines (ICEM2008),2008:1–6.
    【51】. W. Le Roux, R. G. Harley, and T. G. Habetler. Detecting faults in rotors of PM drives[J].IEEE transaction on Industry Applications,2008,14(2):23–31.
    【52】. K. Ki-Chan, L. Seung-Bin, J. Ki-Bong, etc. Analysis on the direct-driven high powerpermanent magnet generator for wind turbine[C]. In Proceedings of the EighthInternational Conference on Electrical Machines and Systems (ICEMS)2005:243–247.
    【53】. J. A. Rosero, J. Cusido, A. Garcia, etc. Study on the Permanent MagnetDemagnetization Fault in Permanent Magnet Synchronous Machines[C]. IEEEIndustrial Electronics, IECON-32nd Annual Conference,2006:879-884.
    【54】. J. Rosero, L. Romeral, J. Cusido, etc. Fault detection by means of wavelet transform ina PMSMW under demagnetization Motion Control and Industrial ApplicationsGroup[C]. The33rd Annual Conference of the IEEE Industrial Electronics Society(IECON) Taipei, Taiwan,2007:1149-1154.
    【55】. J.Rosero, L. Romeral, J. A. Ortega, etc. Demagnetization Fault Detection by means ofHilbert Huang Transform of the stator current Decomposition in PMSM [C]. IndustrialElectronics, IEEE International Symposium2008:172-177.
    【56】. J. R. Riba Ruiz, J. A. Rosero, A. Garcia Espinosa, etc. Detection of DemagnetizationFaults in Permanent-Magnet Synchronous Motors Under Non-stationary Condition[J].IEEE Trans. on Magnetics,2009,45(7):2961-2969.
    【57】. Shinji Shinnaka.New“D-state-observer”-based vector control for sensorless drive ofpermanent-magnet synchronous motors[J].IEEE Trans.on Industry Applications,2005,41(3):825-833.
    【58】. H. Obana, Y. Ota; I. Miki.A position sensorless control method of interior permanentmagnet synchronous motor [C].Proceedings of the Eighth International Conference onElectrical Machines and Systems,2005(1):215-220.
    【59】.肖曦,张猛,李永东.永磁同步电机永磁体状况在线监测[J].中国电机工程学报,2007,27(24):43-47.
    【60】.周寿增,董清飞.超强永磁体—稀土铁系永磁材料[M].北京:冶金工业出版社,2004.
    【61】. Jubb G,M cCurrie R. Hysteresis and magnetic viscosity in a Nd-Fe-B permanentmagnet [J]. IEEE Trans on Magnetics,1987,23(5):1801-1805.
    【62】.林岩.钕铁硼永磁电机防高温失磁技术的研究[D].沈阳工业大学,2006.
    【63】.姚丙雷,林岩,刘秀芹.钕铁硼永磁材料热性能的分析[J].电机与控制应用,2008,35(4).
    【64】.黄浩,柴建云,姜忠良,等.钕铁硼稀土永磁材料交流失磁[J].清华大学学报(自然科学版),2004,44(6):721-724.
    【65】.冒爱琴,沙菲. Ni-P化学镀层对Nd-Fe-B永磁材料耐腐蚀性的改善[J].腐蚀与防护,2009,30(12):896-898.
    【66】.王胤龙.稀土永磁电机振动故障诊断系统研究[D].沈阳工业大学,2008.
    【67】. Clegg A G,Coulson I M,Hilton G,et. The temperature stability of Nd-Fe-B andNd-Fe-B-Co magnets[J] IEEE Trans on Magnetics,1990,26(5):1942-1944.
    【68】.刘国征,夏宁,赵明静,等.永磁材料长期稳定性研究进展[J].稀土,2010,31(2):40-44.
    【69】.陈致初,符敏利,彭俊.永磁牵引电动机的失磁故障分析及预防措施[J].大功率变流技术,2010,3:42-45,55
    【70】. M. Enokizono, S. Takahashi, and T. Kiyohara. Magnetic field analysis of permanentmagnet motor with magnet-anisotropic materials Nd-Fe-B[J]. IEEE Trans. onMagnetics,2003,(39)3:1373–1376..
    【71】. J. Saitz. Magnetic field analysis of electric machines taking ferromagnetic hysteresisinto account[D]. Ph.D. thesis, Acta Polytechnica Scandinavica,2001.
    【72】. M. Rosu, J. Saitz, and A. Arkkio,. Hysteresis model for finite-element analysis ofpermanent-magnet demagnetization in a large synchronous motor under a faultcondition[J]. IEEE Trans. on Magnetics,2005,41(6):2118–2123.
    【73】. D. Xie, W. Zhang, B. Bai, etc. Finite element analysis of permanent magnet assemblywith high field strength using Preisach theory[J]. IEEE Trans. on Magnetics,2007,43(4):1393–1396.
    【74】. E. Dlala, J. Saitz, and A. Arkkio. Hysteresis modeling based on symmetric minorloops[J]. IEEE Trans. on Magnetics,2005,41(8):2343–2348.
    【75】. P. Kis, M.Kuczmann, J. Fuzi, etc. Hysteresis measurement in LabView[J]. J. Phys B:Condens. Matter,2004,343(4):357-363.
    【76】. E. Dlala, J. Saitz, and A. Arkkio. Inverted and forward preisach models for numericalanalysis of electromagnetic field problems[J]. IEEE Trans. on Magnetics,2006,42(8):1963–1973.
    【77】. S. E. Zirka, Y. Moroz, P. Marketos, etc. Congruency-based hysteresis models fortransient simulation[J]. IEEE Trans. On Magnetics,2004,40(2):390-399.
    【78】. Sami Ruoho, Emad Dlala, Antero Arkkio. Comparison of Demagnetization Models forFinite-Element Analysis of Permanent-Magnet Synchronous Machines[J]. IEEE Trans.on Magnetics,2007,43(11):3964-3968.
    【79】.周洁,谢卫,汪国梁.用等效磁网络法与有限元法计算永磁电机参数的比较[J].西安交通大学学报,1998,32(4):23-26.
    【80】. B. Sheikh-Ghalavand, S. Vaez-Zadeh, A. Hassanpour Isfahani. An Improved MagneticEquivalent Circuit Model for Iron-Core Linear Permanent-Magnet Synchronousmotors[J]. IEEE Trans on Magnetics,2010,46(1):112-120.
    【81】.代颖,王立欣,崔淑梅.电动车用永磁同步电机评述[J].微电机,2005,38(9):84-86.
    【82】.王鑫,李伟力,程树康.永磁同步电动机发展展望[J].微电机,2007,40(5):69-72.
    【83】. Surong Huang,Metin Aydin,Thomas A.Lipo,Torque quality assessment and sizingoptimization for surface mounted permanent magnet machines[C]. IEEE IndustryApplications Conference,Thirty-Sixth IAS Annual Meeting,2001(3):1603-1610
    【84】.黄苏融,马睿,张琪,等.现代车用无刷永磁电机研究[J],微特电机,2006(2):5-7.
    【85】. Surong Hang,J Luo, F.Leonardi,etc. A general approach to sizing and power densityequations for comparison of electrical machines [J]. IEEE, Industry Application,1998,34(1):92-97.
    【86】. S.Huang, M.Aydin, T.A.Lipo. A direct approach to electrical machine performanceevaluation: torque density assessment and sizing optimization[C].5th InternationalConference on Electrical Machines,2002(8):26-28.
    【87】. Bianchi N,Bolognani S.Design techniques for reducing the cogging torque insurface-mounted PM motors[J].IEEE Trans. on Industry applications,2002,38(5):1259-1265.
    【88】.王秀和,杨玉波,丁婷婷,等.基于极弧系数选择的实心转子永磁同步电动机齿槽转矩削弱方法研究[J].中国电机工程学报,2005,25(15):146-149.
    【89】. Jarmo Perho. Reluctance Network for Analyzing Induction Machines[D]. Finland:Helsinki University of Technology.
    【90】. Zhe Ren, Xu Fang, Shuhong Wang, etc. Design Optimization of an Interior-typePermanent Magnet BLDC Motor using PSO and Improved MEC [C]. Proceeding ofInternational Conference on Electrical Machines and Systems, Seoul Korea,2007(8):8-11.
    【91】.董超奎.交流电动机转子漏磁导数值积分计算[J].微电机,1991,24(3):12-14.
    【92】.张洪亮.基于场路结合磁网络法的凸极同步电机数学模型研究[D].哈尔滨工业大学,2005.
    【93】.刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析[M].北京:北京电子工业出版社,2005.
    【94】.肖晓伟,肖迪,林锦国,等.多目标优化问题的研究概述[J].计算机应用研究,2011,28(3):805-808.9.
    【95】.马小姝,李宇龙,严浪.传统多目标优化方法和多目标遗传算法的比较综述[J].电气传动自动化,2010,32(3):48-50
    【96】.耿玉磊,张翔.多目标优化的求解方法与发展[J].制造及自动化,105-108
    【97】.谢宇.回归分析[M].北京:社会科学文献出版社,2010.
    【98】.崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2008.
    【99】.刘荣华.电动机的过热保护及测温元件[J].电机与控制应用,2008,35(3):39-40.
    【100】.施惠昌,陈泉林,冯玉田,等.一种新的转子电流及温度在线监测装置研究[J].电工技术学报,2001,16(6):91-94.
    【101】.黄劭刚,阙善材,夏永洪.发电机转子温度的射频检测装置[J].电机与控制应用,2006,33(12):57-60.
    【102】.冯建勤,袁超,魏云冰,等.基于短信技术的电机转子温度在线监测(Ⅰ)[J].电力自动化设备,2008,28(10):103-106.
    【103】.印新达,叶嘉雄,李宇航,等.一种新型发电机转子温度检测系统的研究[J].中国电机工程学报,1999,19(1):75-77.
    【104】.陈宜林,乔栋,李玉龙,等.大型电机转子温度红外监控系统的研制[J].中国电力,2003,36(7):76-78.
    【105】.吴桂珍,孟大伟,许明宇.高能量密度水冷电机冷却系统设计与热力计算[J].防爆电机,2008,43(3):1-3.
    【106】.赵镇南.传热学[M].北京:高等教育出版社,2008.
    【107】.王爱元,黄苏融,贡俊.应用集中参数热模型的高密度IPM电机运行过程的热仿真[J].微特电机,2004,32(8):13-15.
    【108】.杨菲.永磁电机温升计算及冷却系统设计[D].沈阳:沈阳工业大学,2007.
    【109】.刑军强.高速永磁电机转子损耗及通风散热研究[D].沈阳:沈阳工业大学,2011.
    【110】.赵海森,杨亚秋.电机铁耗的有限元计算方法研究进展及有待解决的问题[J].电机与控制应用,2010,37(12):1-6.
    【111】.罗应立,赵海森,姚丙雷,等.交流电机铁耗的工程计算方法分析[J].电机与控制应用,2010,37(11):1-6.
    【112】.张琪,王凯立,黄苏融,等.轴向磁场调制型磁力齿轮的设计方法研究[J].电机与控制应用,2011,38(11):6-10.
    【113】. SKF. SKF轴承综合型录[M].2006.
    【114】.徐云龙.高速永磁电机损耗计算与热分析[D].沈阳:沈阳工业大学,2009.
    【115】.张舟云.电动汽车用高密度永磁无刷电机控制系统研究[D].上海:同济大学,2006.
    【116】.唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,2010.
    【117】.黄苏融,曾凤,洪文成,等.混合动力汽车用起动发电一体化永磁同步电机控制系统设计与仿真矢量控制系统[J].电机与控制应用,2007,34(11):11-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700