用户名: 密码: 验证码:
天然关节软骨的摩擦行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以牛膝关节软骨为研究对象,测定软骨内吸附液体的质量分布和渗透率,观察软骨表面及内部结构,研究软骨不同加载模式的变形特征,讨论软骨滑动和摆动的摩擦行为特征,模拟软骨液体的渗流特征。研究结果为认识天然关节的承载特性与运动机制、揭示天然摩擦副的生物摩擦学机理和研发高性能的人工软骨提供更多的试验和理论依据。
     本文研究了软骨对玻璃和软骨对软骨层的滑动摩擦行为,发现较高的变形量有助于提高固体基质间的接触几率,致使摩擦系数与时间呈增加趋势。软骨的双相特性导致软骨对软骨层的摩擦系数显著低于软骨对玻璃的摩擦系数。
     通过对软骨液体的质量分布和渗透率进行测定,发现液体质量分布随深度呈波动式降低,从最外层的94.2%降低到最底层的78.1%。压强差与软骨渗透率呈负相关,关节软骨的渗透率约为6.482×10-16m4N-1s-1。采用Micromax形貌仪对软骨表面及内部结构进行观察,发现软骨具有不规则的表面轮廓和微孔结构,相邻波峰波谷的差值约在0.05~1.83μm,在微孔分布、孔径和形状等方面具有分形特点,微孔的计盒维数约为1.737。基于Sierpinski的分形图案,重建软骨的浅表层、中间层、深层和截面层的微孔分形结构。
     软骨在线性加载和交变加载的变形曲线表明,线性加载的弹性模量随应变表现为先急剧下降后缓慢增加的过程,快速加载的弹性模量高于慢速加载的弹性模量。交变载荷产生的变形大于定载荷的变形,交变载荷幅值对载荷与变形的幅值比和变形滞后载荷的相位差的影响较小,幅值比和相位差分别约为9.1和0.25。
     基于软骨对软骨、软骨对玻璃和球对软骨的接触配副,对软骨滑动摩擦行为进行研究。结果表明,表面轮廓的几何特征对摩擦副的接触状态和摩擦行为起着重要影响,而外载荷、滑动速率、预压时间、接触区域和润滑液等只改变相应的影响。软骨对软骨的摆动摩擦学特性表明,较大摆动量产生接触载荷的较高波动幅值,较低摆速产生较高的软骨变形量。内旋的摩擦系数显著高于外旋的摩擦系数,但内旋摩擦系数的幅值低于外旋的幅值。摆动试验的相关系数显著高于滑动测试的相关系数,这表明摆动接触软骨摩擦副的接触贴合性更好。
     软骨摩擦副的模拟结果表明,软骨表面的液体渗流特性与接触频率和接触副有关,接触应力、孔隙压力、液体流速和接触位移与时间均呈非线性变化。当软骨表面处于接触区域,其接触应力、孔隙压力有着稳定的变化,流体速率和位移受接触副的影响较大。当软骨表面处于间隔接触,其接触应力、孔隙压力在接触区域附近有着显著的变化,在其余区域均趋于零,而液体的垂直速率及位移均高于水平速率及位移。
In this paper, on the investigative object of the bovine knee articular cartilage, mass distribution of absorption fluid and permeability of natural cartilage were measured, cartilage surface and inner structure were observed, deformation characteristics of different loading pattern were investigated, frictional behavior of sliding and swing pattern were discussed, and fluid characteristics of cartilage interface were simulated. These results are of great importance in understanding the carrying capacity and movement mechanism of natural joints, comprehending biotribological mechanism of natural frictional pairs and developing better artificial cartilages.
     Friction sliding behaviors of cartilage-on-glass and cartilage-on-cartilage layer were investigated. These results showed that higher cartilage deformation helped to improve the contact probability between solid phases of cartilage configurations, which made the coefficient of friction increased with time as a whole. Biphasic Characteristics of natural cartilage led to the following phenomenon. Coefficient of friction from cartilage-on-cartilage layer was significantly lower than that from cartilage-on-glass pairs.
     Absorption fluid distribution and cartilage permeability were measured. It was found that mass percent of cartilage absorption fluid had a wavily descending relation with the depth from 94.4 percent of the outer zone to 78.1 percent of the deepest zone. Pressure difference functioned with a negative correlated with cartilage permeability, and its value was about 6.482×10-16m4N-1s-1. Micro-max morphology instrument was employed to observe the surface morphology and inner structure about cartilage samples. These results indicated that natural cartilage had irregular surface and micro structure, and the difference between the adjacent peaks and troughs was about 0.05~1.83μm. Micro-pore distribution, sizes and shapes all had fractal properties with its box-counting dimension about 1.737. Based on the Sierpinski fractal patterns, the schematics of micro-pore structures were reconstructed about superficial layer, middle layer, deep layer and cross-section layer.
     From the cartilage deformation curves about linear and alternating loads, elastic modulus of linear loads underwent through an initially sharp decline and afterwards slow increase with the strain, and elastic modulus of fast load was higher than that of slow load. The indentation deformation produced by alternating loads was obviously higher than that by constant load, and load magnitude played a less role on the ratio of alternating load to deformation and phase difference of deformation lagging load. The ration and phase difference was about 9.1 and 0.25, respectively.
     Based on the contact pairs of cartilage-on-cartilage, cartilage-on-glass, and ball-on-cartilage, friction behavior in the reciprocating sliding was investigated. These results showed geometric characteristics of surface outlines played an important role on contact state and friction behavior from the cartilage configurations. And exterior load, sliding velocity, preloading time, contact area and lubricated fluid only led to secondary influences. Friction properties of cartilage-on-cartilage swing demonstrated that larger swing offset produced higher wavy magnitude of contact load, and lower swing velocity brought larger cartilage deformation. Coefficient of friction of inner swing was evidently higher than that of outer swing, and its magnitude of inner swing was lower than that of outer swing. Correlative coefficient of swing testing was evidently higher than that of sliding testing,which showed that contact characteristic of cartilage friction configurations in the swing testing was in better state.
     From the simulation about cartilage friction configurations, it was found that fluid flow characteristics on the cartilage surface were related with contact frequency and contact pairs. Contact stress, pore pressure, fluid velocity and contact displacement all functioned as a nonlinear relation with time. When cartilage surface was involved in contact area, corresponding contact stress and pore pressure presented a stale variation, but fluid velocity and contact displacement were both influenced by contact pairs. When contact surface was in the interval contact, corresponding contact stress and pore pressure went through an obvious variation in the vicinity of contact area, and decreased to zero in the other regions, but fluid velocity and contact displacement in the vertical direction were both higher than that in the horizontal direction.
引文
[1] Dowson D, Wright V. The rheology of lubricants[M]. Ed, By Davenport T C, Insititure of Petroleum, 1973: 81-88
    [2]葛世荣,王成焘.人体生物摩擦学的研究现状与展望[J].摩擦学学报, 2005, 25 (2): 186-191
    [3]葛世荣.人体生物摩擦学的基础科学问题[J].中国科学基金, 2005, (2): 74-79
    [4]中华关节网, www.joitsurg.org
    [5]徐磊,赵斌.关节软骨MR成像进展[J].医学影像学杂志, 2004, 14 (1): 11-13
    [6] Disler D G, Recht M P, Mc cauley T R.. MR imaging of articular cartilage[J]. Skeletal radiology, 2000, 29: 367-372
    [7] Cova M, Toffanin R. MR microscopy of hyaline cartilage: current status[J]. European Radiology, 2002, 12: 841-843
    [8] Xu L, Strauch R J, Ateshian G A, et al. Topography of the osteoarthritic thumb carpometacarpal joint and its variations with regard to gender, age, site, and osteoarthritic stage[J]. Journal of Hand Surgery, 1998, 23 (3): 454-464
    [9] Soslowsky L J, Flatow E L, Bigliani L U, et al. Articular geometry of the glenohumeral joint[J]. Clin. Orthop., 1992, 285: 181-190
    [10] Adam C, Eckstein F, Milz S, et al. The distribution of cartilage thickness within the joints of the lower limb of elderly individuals[J]. Journal of Anatomy, 1998, 193: 203-214
    [11] Ateshian G A, Soslowsky L J, Mow V C. Quantitation of articular surface topography and cartilage thickness in knee joints using stereophotogrammetry[J]. Journal of Biomechanics, 1991, 24(8): 761-776
    [12] Rushfeldt P D, Mann R W, Harris W H. Improved techniques for measuring in vitro the geometry and pressure distribution in the human acetabulum-I. Ultrasonic measurement of acetabular surfaces, sphericity and cartilage thickness[J]. Journal of Biomechanics, 1981, 14(4): 253-260
    [13]王野平,王成焘.天然关节及人工关节的润滑机理探讨[J].生物医学工程学杂志, 2001, 18(4): 603-607
    [14]张小红,许增禄.细胞因子对关节软骨基质合成的调节作用[J].解剖学报, 1998, 29(1): 111-112
    [15] Lai W M, Hou J S, Mow V C. A triphasic theory for the swelling and deformational behaviors of articular cartilage[J]. Journal of Biomechanical Engineering, 1991, 113: 245-258
    [16] Gu W Y, Lai W M, Mow V C. A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: Passive transport and swelling behaviours[J]. Journal of Biomechanical Engineering, 1998, 120: 169-180
    [17] Maroudas A. Physicochemical properties of articular cartilage[M]. In: Freeman MAR, Ed. Adult Articular Cartilage, Kent, UK: Pitman Medical 1979: 215-290
    [18] Aydelotte M B, Michal L E, Reid D R, et al. Chondrocytesfrom the articular surface and deep zone express different, but stable phenotypes in alginate gel culture[J]. Orthopaedic Research Society, 1996, 21: 317-321
    [19]孟维春.力学因素对关节软骨影响的实验研究[D].苏州:苏州大学医学院, 2001: 29-33
    [20] Devitt C A. Biocheniistry of articular cartilage nature of proteoglycans and collagen of articular cartilage and their in aging and in osteoarthritis[J]. Ann Rheum Dis, 1973, 32: 364
    [21]朱庆三,杨有赓.正常人关节软骨胶原含量测定的研究[J].中华医学杂志, 1993, 73 (3): 148-150
    [22] Hascall V C. Interaction of with cartilage proteoglycans with hyaluronic acid[J]. Journal of Supramolecular Structure, 1977, 7: 101-120
    [23]曹建中,何玉香,吕维善主编.老年骨内科学第一版[M].北京:人民卫生出版社, 1996: 91-99
    [24] Shapiro E M, Borthakur A, Kaufman J H, et al. Water distribution pat-terns inside bovine articular cartilage as visualized by magnetic resonance imaging[J]. Osteoarthr Cartilage, 2001, 9(6): 533-538
    [25] Lipshitz H, Etheridge R, Glimcher M J. In vitro wear of articular cartilage[J]. Journal of Bone and Joint Surgery, 1975, 57A: 527-534
    [26]金岩.组织工程学原理与技术[M].西安:第四军医大学出版社, 2004: 102-106
    [27] Ateshian G A, Hung C T. The natural synovial joint: properties of cartilage[J]. Proceedings of the I MECH E, Part J Journal of Engineering Tribology, 2006, 220(8): 657-670
    [28] Balazs E A, Watson D, Duff I F, et al. Hyaluronic acid in synovial fluid I: molecular parameters of hyaluronic acid in normal and arthritic human fluids[J]. Arthritis and Rheumatism, 1967, 10(4): 357-376
    [29] Davies D V, Barnett C H, Cochrane W, et al. Electron microcopy of articular cartilage in the young adult rabbit[J]. Ann rheum dis, 1962, 21: 11-23
    [30] Clark J M. The organization of collagen in cryofractured rabbit articular cartilage: a scanning electron microscopic study[J]. Journal of Orthopaedic Research, 1985, 3: 27-29
    [31] Redler L, Zimny M. The ultrastructure and biomechanical significanae of the tidemark [J]. Journal of Bone and Joint Surgery, 1974, 56-A: 857
    [32] Kobayashi S, Yonekubo S, Kurogouchi Y. Cryoscanning electron microscopic study of the surface amorphous layer of articular cartilage[J]. Journal of Anatomy. 1995, 187(2): 429-444
    [33] Graindorge S L, Stachowiak G W. Changes occurring in the surface morphology of articular cartilage during wear[J]. Wear, 2000, 241: 143-150
    [34] Teshima R, Otsuka T, Takasu N, et al. Structure of the most superficial layer of articular cartilage[J]. Journal of Bone and Joint Surgery, 1995, 77: 460-464
    [35] Park S, Costa K D, Ateshian G A. Microscale Frictional Response of Bovine Articular Cartilage from Atomic Force Microscopy[J]. Journal of Biomechanics, 2004, 37: 1679-1687
    [36] Moa-Anderson B J, Costa K D, Hung C T, et al. Bovine articular cartilage surface topography and roughness in fresh versus frozen tissue samples using atomic force microscopy[J]. Proceedings of 2003 Summer Bioengineering Conference, Florida, 2003: 0561
    [37] Benninghoff A. Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion Erste Mitteilung: Die modellierenden und formerhaltenden Faktoren des Knorpelreliefs[J]. Anatomy and Embryology, 1925, 76(1): 43-63
    [38] Jeffery A K, Blunn G W, Archer C W, et al. Three dimensional collagen architecture in bovine articular cartilage[J]. Journal of Bone and Joint Surgery, 1991, 73: 795-801
    [39] Bullough P, Goodfellow J. The significance of the fine structure of articular cartilage[J]. Journal of Bone and Joint Surgery, l968, 50-B: 852-857
    [40] MacConaill M A. The movements of bones and joints: 4. The mechanical structure of articulating cartilage[J]. Journal of Bone and Joint Surgery, 1951, 33-B: 251-257
    [41] Hirsch C. Pathogenesis of chondromalacia of the patella[J]. Acta Chemica Scandinavica, 1944, 83: 1-106
    [42] Sokoloff L. Elasticity of aging cartilage[J]. Federation proceedings, 1966, 25(3): 1089-1095
    [43] Hayes W C, Mockros C F. Viscoelastic properties of human articular cartilage[J]. Applied physiology, 1971, 31: 562-568
    [44] Parson J R, Black J. The viscoelastic shear behavior of normal rabbit articular cartilage[J]. Journal of Biomechanics, 1977, 10: 21-29
    [45] Mow V C, Kuei S C, Lai W M, et al. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments[J]. Journal of Biomechanical Engineering, 1980, 102: 73-84
    [46] Mow V C, Lai W M, Holmes M H. Advanced theoretical and experimental techniques in cartilage research[J]. In Biomechanics: Principles and applications, 1982: 47-74
    [47] Li J T, Armostrong C G, Mow V C. The effect of strain rate on mechanical properties of articular cartilage in tensions[J]. Biomechanics symposium, 1983, 117-120
    [48] Armstrong C G, Lai W M, Mow V C. An analysis of the unconfined compression of articular cartilage[J]. Journal of Biomechanical Engineering, 1984, 106: 165-173
    [49] Spirt A A, Mak A F, Wassell R P. Nonlinear viscoelastic properties of articular cartilage in shear[J]. Journal of Orthopaedic Research, 1989, 7: 43-49
    [50] Zhu W B, Lai W M, Mow V C. Intrinsic quasi-linear viscoelastic behavior of the extracecellular matrix of cartilage[J]. Orthopaedic Research Society, 1986, 11: 407
    [51] Mak A F. Apparent viscoelastic behavior of articular cartilage—contributions from intrinsic matrix viscoelasticity and interstitial fluid flow[J]. Journal of Biomechanical Engineering, 1986, 108: 123-130
    [52] Setton L A, Zhu W B, Mow V C. The biphasic poroviscoelastic behavior of articular cartilage in compression: Role of the surface zone[J]. Journal of biomechanics, 1993, 26: 581-592
    [53] Donzelli P S, Spilker R L, Ateshian G. A, et al. Contact analysis of biphasic transversely isotropic cartilage layer and correlations with tissue failure[J]. Journal of biomechanics, 1999, 32: 1037-1047
    [54] Li L P, J Soulhat, M D Suschmann, et al. Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model[J]. Clinical Biomechanics, 1999, 14: 667-682
    [55] Li L P, Buschmann M D, ShiraziAdl A. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression[J]. Journal of biomechanics, 2000, 33(12): 1533-1541
    [56] Wilson C C, Donkelaar B, Rietbergen H W, et al. A fibril-reinforced poroviscoelastic swelling model for articular cartilage[J]. Journal of biomechanics, 2005, 38: 1195-1204
    [57] Huang C Y, Mow V C, Ateshian G A. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage[J]. Journal of Biomechanical Engineering, 2001, 123(5): 410-417
    [58]张胜.关节软骨在异常应力载荷作用下即时损伤反应及相关材料学性能研究[D].西安:第四军医大学, 2006: 7-9
    [59] Najima H, Oberlin C, Alnot J Y. Anatomical and biomechanical studies of the pathogenesis on trapeziometacarpal degenerative arthritis[J]. Journal of Hand Surgery, 1997, 22(2): 183-188
    [60] Coletti J M, Akeson W I, Woo S I Y. A comparison of the physical behavior of normal articular cartilage and arthroplasty surface[J]. Journal of Bone and Joint Surgery, 1972, 54-A: 147-160
    [61] Pickvance E A, Oegema Jr T R, Thompson J R C. Immunolocalization of selected cytokines and proteases in canine articular cartilage after transarticular loading[J]. Journal of Orthopaedic Research, 1993, 11: 313-323
    [62] Torzilli P A, Grigiene R, Borrelli J, et al. Effect of impact load on articular cartilage: cell metabolism and viability, and matrix water content[J]. Journal of Biomechanical Engineering, 1999, 121: 433-441
    [63]王以进,王介麟.骨科生物力学[M].北京:人民军医出版社, 1989: 209-220
    [64]董启榕,郑祖根,王以进.关节软骨的生物力学特性[J].苏州医学院学报, 1999, 19(3): 244-246
    [65]吴几恺,张均一.关节软骨粘弹性的实验研究[J].中国现代医学杂志, 1995, 12(3): 144-146
    [66] Braidotti P, Bemporad E, Alessio T D, et al. Tensile experiments and SEM fractography on bovine subchondral bone[J]. Journal of Biomechanics, 2000, 33: 1153-1157
    [67]王成学.人体肩髋膝关节软骨粘弹性实验研究[M].白求恩医科大学硕士论文, 1997
    [68] Treppo S, Koepp H, Quan E A, et al. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs[J]. Journal of Orthopaedic Research, 2000, 18(5): 739-748
    [69] Wong M, Ponticiello M, Kovanen V, et al. Volumetric changes of articular cartilage during stress relaxation in unconfined compression[J]. Journal of Biomechanics, 2000, 33(9): 1049-1054
    [70]马乐群,李振宇,马洪顺.人体关节软骨粘弹性的实验研究[J].中国现代医学杂志, 1997,7(12): 24-25
    [71]翁习生,仇建国,张嘉等.髌骨软骨粘弹特性的实验研究[J].中国医学科学院学报, 1999, 21(1): 53-55
    [72] Kuboki T, Shinoda D. Viscoelastic properties of the pig temporomandibular joint articular soft tissues of the condyle and disc[J]. Journal of Dental Research, 1997, 76(11): 1760-1769
    [73] Mizrahi J, Maroudas A. The "instantaneous" deformation of cartilage: effects of collagen fibre orientation and osmotic stress[J]. Biorheology, 1986, 23: 311-330
    [74] Notzli H, Clark J. Deformation of loaded articular cartilage prepared for scanning electron microscope with rapid freezing and freeze-substitution fixation[J]. Journal of Orthopaedic Research, 1997, 15: 76-78
    [75] K??b M J, Keita Ito, Clark J M, et al. Deformation of articular cartilage collagen structure under static and cyclic loading[J]. Journal of Orthopaedic Research, 1998, 16: 743-751
    [76] Johnstone B. The fluid content of human inter-vertebral disc[D]. Spine, 1992, 17(4)
    [77] Maroudas A, Bullough P, Swanson S A V. The permeability of articular cartilage[J]. Journal of Bone and Joint Surgery, 1968, 50b: 166-177
    [78] Lai W M, Mow V C. Drag induced compression of articular cartilage during a permeation experiment[J]. Biorheology, 1980, 17: 111-123
    [79] Torzilli P A, Niver S M, Beaupe S R. Effect of articular surface compression on cartilage deformation[J]. Symposium on tissue engineering, 1989: 79-82
    [80] Dieppe P. Subchondral bone should be the main target for the treatment of pain and disease progression in osteoarthritis[J]. Osteoarthritis Cartilage, 1998, 7(3): 325-326
    [81] Maroudas A, Bullough P. Permeability of articular cartilage[J]. Nature, 1968, 219: 1260-1261
    [82] Buckwalter J A, Lane N E. Aging, sports and osteoarthritis[J]. Sports Med and Arthrosis, 1996, 4: 276-287
    [83] Mansour J M, Mow V C. The permeability of articular cartilage under compressive strain and at high pressures[J]. Journal of Bone and Joint Surgery, 1976, 58(4): 509-516
    [84] Johns R J, Wright V. Relative importance of various tissues in joint stiffness[J]. Journal of Applied Physiology, 1962, 17: 824-828
    [85] Davim J P, Marques N. Dynamical experimental study of friction and wear behaviour of bovine cancellous bone sliding against a metallic counterface in a water lubricated environment[J]. Journal of Materials Processing Technology, 2004, 152: 389-394
    [86] Swanson S A V. Lubrication in: Freeman MAR ed[M]. Adult articular cartilage.1st edn. London, Pitman Medical, 1973, 247-276
    [87] Wang H, Ateshian G A. The normal stress effect and equilibrium friction coefficient of articular cartilage under steady frictional shear[J]. Journal of Biomechanics, 1997, 30: 771-776
    [88] Katta J, Pawaskar S S, Jin Z M, et al. Effect of load variation on the friction properties of articular cartilage[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2007, 221(3): 175-181
    [89] Linn, F C. Lubrication of animal joints[J]. Journal of Bone and Joint Surgery, 1967, 49: 1284-1295
    [90] Forster H, Fisher J. The influence of loading time and lubricant on the friction of articular cartilage[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1996, 210: 109-119
    [91] Stachowiak G W, Batchelor A W, Griffiths L J. Friction and wear changes in synovial joints[J]. Wear, 1994, 171: 135-142
    [92] Merkher Y, Sivan S, Etsion I, et al. A rational human joint friction test using a human cartilage on cartilage arrangement[J]. Tribology Letters, 2006, 22(1): 29-36
    [93] Bell C J, Ingham E, Fisher J. Influence of hyaluronic acid on the time-dependent friction response of articular cartilage under different conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2006, 220(1): 23-31
    [94] Basalo I M, Chen F H, Hung C T, et al . Frictional response of bovine articular cartilage under creep loading following proteoglycan digestion with chondroitinase ABC[J]. Journal of Biomechanical Engineering, 2006, 128(1): 131-134
    [95] Ikeuchi K, Naka M H. Study of hydration lubrication on cartilage surface using evanescent wave[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2006, 220(8): 657-670
    [96] Naka M H, Morita Y , Ikeuchi K. Influence of proteoglycan contents and of tissue hydration on the frictional characteristics of articular cartilage[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2005, 219(3): 175-182
    [97] Ballantine G C, Stachowiak G W. The effects of lipid depletion on osteoarthritic wear[J]. Wear, 2002, 253: 385-393
    [98] Graindorge S, Ferrandez W, Ingham E, et al. The role of the surface amorphous layer of articular cartilage in joint lubrication[J]. 1Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2006, 220(5): 597-607
    [99] Forster H, Fisher J. The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1999, 213(4): 329-345
    [100] Pickard J, Ingham E, Fisher J. Investigation into the effect of proteoglycan molecules on the tribological properties of cartilage joint tissues[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1998, 212(3): 177-182
    [101] Naka M H, Hattori K, Ikeuchi K. Evaluation of the superficial characteristics of articular cartilage using evanescent waves in the friction tests with intermittent sliding and loading[J]. Journal of Biomechanics, 2006, 39(12): 2164-2170
    [102] Forster H. Mixed and boundary lubrication in natural synovial joints[D]. PhD Thesis, Mechanical Engineering, University of Leeds, Leeds, 1996
    [103] Caligaris M, Ateshian G. Migrating articular contact areas promote sustainable low friction coefficients[J]. In 52nd Annual Meeting of the Orthopaedic Research Society, Chicago, 2006: 83
    [104] Jin Z M, Pickard J, Forster H. Fritional behaviour of bovine articular cartilage[J]. Biorheology, 2000, 37: 57-63
    [105] Mabuchi K, Ujihira M, Sasada T. Influence of loading duration on the start-up friction in synovial joints: measurement using a robot system[J]. Clinical Biomechanics, 1998, 13: 492-494
    [106]钱善华,王庆良.牛膝关节软骨的摩擦行为研究[J].摩擦学学报, 2006, 26(5): 397-402
    [107] Ateshian G A. A theoretical formulation for boundary friction in articular cartilage[J]. Journal of Biomechanical Engineering, 1997, 119(1): 81–86
    [108] Ateshian G A, Wang H Q, Lai W M. The role of interstitial fluid pressurization and surface porosities on the boundary friction of articular cartilage[J]. Journal of Tribology, 1998, 120(2): 241-248
    [109] Krishnan R, Mariner E N, Ateshian G A. Effect of dynamic loading on the frictional response of bovine articular cartilage[J]. Journal of Biomechanics, 2005, 38: 1665-1673
    [110] Pawaskar S S, Jin Z M, Fisher J. Modelling of fluid support inside articular cartilage during sliding[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2007, 221(3): 165-174
    [111] Graindorge S, Ferrandez W, Jin Z M, et al. The natural synovial joint: a finite element investigation of biphasic surface amorphous layer lubrication under dynamic loading conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2006, 220(8): 671-681
    [112] Graindorge S, Ferrandez W, Jin Z M, et al. Biphasic surface amorphous layer lubrication of articular cartilage[J]. Medical Engineering Physics, 2005, 27(10): 836-844
    [113]李健,杨膺,顾卡丽等译.微/纳米生物摩擦学-大自然的选择[M].北京:机械工业出版社, 2004
    [114] Dowson D, Wright V. An introduction to the bio-mechanics of joints replacement[M].London, Mechanical Engineering Publication Ltd, 1981: 120-145
    [115] MacConaill M A. The function of intra articular fibro-cartilages with special references to the knee and inferior radio-ulnar joints[J]. Journal of Anatomy, 1932, 66: 210-227
    [116] Jones E S. Joint lubrication[J]. Lancet, 1934, 30 : 1246-1247
    [117] Jones E S. Joint lubrication[J]. Lancet, 1936, 230: 1043-1044
    [118] Charnley J. The lubrication of animal joints. In: symposium on biomechanics[M], Institution of Mechanical Engineers, London, 1959, pp: 12-22.
    [119] Linn F C, Radin E L. Lubrication of animal joints III: The effect of certain chemical alterations of the cartilage and lubrication[J]. Arthritis and Rheumatism,1968(11): 674-682
    [120] Hills B A. Boundary 1ubrioation in vivo[J]. Jouma1 of Engineering in Medicine, 2000, 214(1): 83-92
    [121] Coles J M, Blum J, Jay G D, et al. In situ friction measurement on murine cartilage by atomic force microscopy[J]. Journal of biomechanics, 2008, 41(3): 541-548
    [122] Tanner R L. An alternative mechanism for the lubrication of synovial joints[J]. Physics in Medicine and Biology, 1966, 11: 119
    [123] Dowson D, Jin Z M. Micro-elastohydrodynamic lubrication of synovial joints[J]. Engineering in medicind, 1986, 15: 63-65
    [124] Fein R S. Are synovial joints Squeeze-filmlubricated?[J]. Proceedings of the Institution of Mechanical Engineers, 1966, 181: 125-132
    [125] Mccutchen C W. Sponge-Hydrostatic and Weeping Bearing[J]. Nature, 1959, 184: 1284-1295
    [126] Unsworth A. Recent developments in the tribology of artificial joints[J]. Tribology International, 1995, 28(7): 485-492
    [127] Mansour J M, Mow V C. On the natural lubrication of synovial joints: normal and degenerate[J]. Journal of Lubrication Technology, 1977, 99: 163-173
    [128]王野平,邱部贵,沈继飞.粗糙表面的关节润滑机理研究[J].上海铁道学院学报, 1993, 14(4): 65-72
    [129] Dowson D. Elastohydrodynamic and micro-elastohydrodynamic lubrication[J]. Wear, 1995, 190: 125
    [130]沈继飞,王成焘,王野平.人类天然关节和人工关节润滑机理的探讨[J].上海交通大学学报, 1986, 20(6): 103-118
    [131]王野平,沈继飞.人类关节在非牛顿性态下润滑机理的研究[J].上海铁道学院学报, 1991, 12(4): 53-62
    [132] Mccutchen, C W. The frictional properties of animal joints[J]. Wear, 1962, 5: 1-17
    [133]王济,胡晓编著. MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社, 2006: 73-82
    [134]钱善华.牛膝关节软骨的力学及摩擦学行为研究,硕士学位论文[D].徐州:中国矿业大学, 2006
    [135]杨勇骥.实用生物医学电子显微镜技术[M].上海:第二军医大学出版社, 2003: 174-176
    [136]王晓冬.渗流力学基础[M].北京:石油工业出版社, 2006: 15-21
    [137] Mandelbrot B B. The fractal geometry of nature[M]. San Francisco: Freeman, 1982
    [138]杨书申,邵龙义. MATLAB环境下图像分形维数的计算[J].中国矿业大学学报, 2006, 35(4): 478-482
    [139]李海涛,邓樱. MATLAB程序设计教程[M].北京:高等教育出版社, 2002
    [140]葛世荣,朱华.摩擦学的分形[M].北京:机械工业出版社, 2005
    [141] Mow V C, Huiskes R. Basic Orthopaedic Biomechanics and Mechano-Biology (3rd Edition)[M]. Philadelphia: Lippincott Williams & Wilkins, 2005
    [142]王成焘等著.人体生物摩擦学[M].北京:科学出版社, 2008
    [143]温诗铸,黄平.摩擦学原理(第三版)[M].北京:清华大学出版社, 2008
    [144]杜跃鹏,左秀会. Matlab软件环境下的Sierpinski地毯及Sierpinski海绵的计算机模拟[J].商丘师范学院学报, 2002, 18(2): 57-59
    [145]刘淑芳,李莹辉,徐团才.骨性关节炎的生化及病理变化[J].中国临床康复, 2004, 8(5): 938-939
    [146]向川,杜靖远,卫小春. IX型胶原与骨性关节炎[J].国外医学:骨科学分册, 2003, 24(1): 60
    [147] Qian S H, Ge S R. Friction behavior of coupling motion for natural articular cartilage by reciprocating rotation[J]. Chinese Science Bulletin, 2009, 54(4): 576-583
    [148] Ewen N, John F. A multi-directional in vitro investigation into friction, damage and wear of innovative chondroplasty materials against articular cartilage[J]. Clinical Biomechanics, 2007, 22: 834-842
    [149] Pawaskar S S. Contact mechanics modelling of articular cartilage and applications. Master of Science Thesis, University of Leeds, Leeds, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700