用户名: 密码: 验证码:
过表达人α-synuclein的PC12细胞中蛋白酶体和自噬途径的作用及其交互联系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分自噬和蛋白酶体降解途径在过表达人α-synuclein细胞凋亡中的作用
     目的利用建立好的转染过表达野生型(WT)及突变型A53T、A30Pα-synuclein的大鼠嗜铬细胞瘤(PC12)细胞株,探讨自噬和泛素-蛋白酶体通路在细胞凋亡途径中的具体作用。
     方法以蛋白酶体抑制剂环氧酶素(epoxomicin,EPO)和/或大自噬抑制剂3-甲基腺嘌呤(3-methyladenine,3-MA)、大自噬诱导剂雷帕霉素(rapamycin,RAP)分别处理各株细胞,然后通过MTT法检测细胞活力,光镜观察活细胞一般形态学变化,流式细胞仪检测各组细胞凋亡率,并测定caspase 3蛋白表达,采用透射电镜方法观察细胞超微结构改变。
     结果(1)过表达WT、A30P、A53Tα-synuclein PC12细胞经3-MA、环氧酶素、环氧酶素+3-MA和环氧酶素+雷帕霉素处理24小时后细胞活力降低,雷帕霉素组处理细胞24小时后,细胞活力显著高于其余用药组;(2)3-MA、环氧酶素、环氧酶素+3-MA作用24小时后细胞的凋亡百分率显著增高,而雷帕霉素可降低环氧酶素导致的凋亡率增加;(3)Caspase 3活性片段蛋白检测发现3-MA组、环氧酶素组和环氧酶素+3-MA组条带较为明显;(4)各组细胞超微结构显示环氧酶素处理WT、A30P、A53Tα-突触核蛋白PC12细胞的细胞内自噬体和凋亡现象增多;3-MA处理后,WT、A30P、A53T组细胞可见各种凋亡改变,并且自噬囊泡减少;雷帕霉素可使细胞自噬增加,无明显凋亡改变。
     结论过表达WT、A30P、A53Tα-synuclein PC12细胞内大自噬和蛋白酶体途径障碍促进了凋亡发生,诱导自噬可抑制凋亡的发生。
     第二部分过表达人α-synuclein细胞中不同自噬途径间及其和蛋白酶体途径之间的交互联系
     目的研究过表达人野生型及致病突变A53T、A30P的α-synuclein的PC12细胞中不同自噬形式和蛋白酶体途径间的关系,并了解它们在α-synuclein代谢中的作用。
     方法Western blot检测α-synuclein、LC3、lamp-2a、E1和E2酶蛋白表达水平;激光共聚焦显微镜下观察各组PC12细胞株α-synuclein与LC3的免疫荧光表达;多功能酶标仪检测药物干预后各组细胞蛋白酶体活性。
     结果蛋白酶体抑制剂环氧酶素(epoxomicin)和大自噬抑制剂3-MA都可导致α-突触核蛋白的降解减少,大自噬刺激剂雷帕霉素(rapamycin)和环氧酶素合用可缓解环氧酶素导致的α-synuclein降解减少;蛋白酶体抑制剂环氧酶素增加了细胞大自噬特异标志物微管相关蛋白轻链3(microtubule-associated protein light chain 3,LC3)的表达;同时3-MA、环氧酶素和雷帕霉素均可增加分子伴侣介导的自噬中的关键限速酶溶酶体相关膜蛋白-2a(lysosome-associated membrane protein-2a,lamp-2a)的表达。大自噬抑制剂3-MA降低了糜蛋白酶样蛋白酶体活性,而雷帕霉素却有使糜蛋白酶样蛋白酶体活性增加的趋势。检测蛋白酶体途径中E1活化酶、E2结合酶的表达提示3-MA和环氧酶素可使E2酶的表达增加。
     结论抑制蛋白酶体和大自噬途径都可导致α-synuclein的代谢异常,同时抑制蛋白酶体可激活大自噬和CMA途径,而抑制大自噬途径可导致CMA的激活但却下调了蛋白酶体活性,诱导大自噬同时可上调CMA并可能增加蛋白酶体活性。
     第三部分蛋白酶体和自噬途径缺陷时过表达A30P、A53T和WTα-synuclein PC12细胞氧化应激状态
     目的观察蛋白酶体功能和自噬缺陷时过表达人野生型及致病突变A30P、A53Tα-synuclein的PC12细胞的氧化应激反应。
     方法选择特异性蛋白酶体抑制剂和大自噬抑制剂及诱导剂作用于稳定转染的野生型(WT)、A30P、A53T细胞株,并以检测试剂盒测定细胞培养液中一氧化氮(Nitric oxide,NO)、超氧化物歧化酶(superoxide dismutase,SOD)的活力和Western blot法检测细胞内热休克蛋白70(heat shock protein 70,hsp70)及过氧化氢酶(catalase,CAT)蛋白表达。
     结果抑制蛋白酶体途径可增加A30P、A53T细胞细胞培养液中NO水平;同时抑制蛋白酶体途径和诱导大自噬增加了三株细胞的细胞培养液中超氧化物歧化酶(SOD)的活力;而大自噬抑制剂处理后细胞SOD活力低于对照组。Hsp70和CAT的蛋白表达研究亦显示抑制蛋白酶体途径导致hsp70和CAT蛋白含量明显高于对照组。
     结论与自噬途径相比,蛋白酶体途径和氧化应激的关系更紧密,也就是说干预蛋白酶体通路比干预自噬对氧化应激状态的影响更大,作为PD发病机制之一的氧化应激在蛋白酶体途径障碍时的作用比自噬缺陷时显得更为重要。
PartⅠRole of autophagy and proteasome degradation pathways in apoptosis of PC12 cells overexpressing humanα-synuclein
     Objective Parkinson's disease is a common neurodegenerative disease in the aged people. Its causative agent and mechanisms are not clearly understood by now. Ubiquitin-proteasome and autophagy pathways play important roles in the pathology of Parkinson's disease. We aimed to study the different roles of the proteasome and autophagy pathways in apoptosis.
     Methods In this study, a specific proteasome inhibitor and macroautophagy inhibitor and stimulator were selected to investigate pheochromocytoma (PC12) cell lines transfected with human mutant (A30P and A53T) and wild-type (WT)α-synuclein. Cell viability was measured by means of MTT methods. The apoptosis ratio was assessed by flow cytometry. Caspase 3 expression in cell culture were determined by western blot. The hallmarks of apoptosis and autophagy were assessed with transmission electron microscopy.
     Results We found that the proteasome inhibitor epoxomicin and the macroautophagy inhibitor 3-MA significantly impaired cell viability. Compared to the control group or the rapamycin (autophagy stimulator) group, the apoptosis ratio in A30P, A53T and WT cells was significantly higher after treatment with inhibitors of the proteasome and macroautophagy. The results of western blots for caspase 3 expression were similar to those of flow cytometry; The hallmarks of apoptosis and autophagy in our cell lines using electron microscopy after 24 h drug treatment also showed that the proteasome inhibitor epoxomicin increased apoptosis and autophagy and the macroautophagy inhibitor also increased apoptosis.
     Conclusion These findings show that inhibition of the proteasome and autophagy promotes apoptosis, and the macroautophagy stimulator rapamycin reduces the apoptosis ratio.
     PartⅡCrosstalk between proteasome system and autophagy in PC12 cells overexpressing humanα-synuclein
     Objective Parkinson's disease (PD) is a common degenerative disorder of the central nervous system; the pathology includes the loss and degeneration of dopaminergic neurons and the formation of Lewy bodies in neurons. Recent studies found thatα-synuclein is the main component of Lewy bodies. Ubiquitin-proteasome and autophagy pathways play important roles in the degradation ofα-synuclein. So we aimed to study the different roles of the proteasome and autophagy pathways in the degradation ofα-synuclein, and the crosstalk between these proteasome and autophagy pathways.
     Methods In this study, PC12 cells, in which exogenous human wild-type or A30P, A53Tα-synuclein were overexpressed, were treated with a proteasome inhibitor and/or a autophagy inhibitor or a stimulator.
     Results We measured an increase inα-synuclein levels after treatment with the proteasome or autophagy inhibitors in all cell lines. The combination of epoxomicin with rapamycin decreased theα-synuclein accumulation induced by epoxomicin alone. In the presence of proteasome inhibitors, levels of LC3-II in cells were higher. We confirmed that the increase in lamp-2a was related to the inhibition of proteasome or macroautophagy. Interestingly, compared with the control, cells grown in medium with rapamycin also had an increased lamp-2a/β-actin ratio. The macroautophagy inhibitor 3-MA decreased chymotrypsin-like proteasome activity compared with control, and rapamycin tended to increase chymotrypsin-like proteasome activity. E1 enzyme expression did not change in both types of cells. 3-MA and epoxomicin increased E2 enzyme expression, especially when used together.
     Conclusion Proteasomal inhibitor and macroautophagy inhibitor decreaseα-synuclein clearance, and proteasomal inhibition results in compensatory activation of macroautophagy and chaperone-mediated autophagy(CMA). Our findings also suggest that macroautophagy inhibitor increase the expression of lamp-2a, then CMA is likely activated by inhibition of macroautophagy. In addition, in cells with macroautophagy inhibited, proteasome activity was down-regulated. Our results demonstrate the existence of crosstalk between different forms of autophagy and between autophagy and the proteasome pathway.
     PartⅢOxidative stress in PC12 cells overexpressing human wild type, A30P and A53Tα-synuclein
     Objective To study the changes of oxidative stress in cells subjected to impairment of the proteasome pathway and macroautophagy.
     Methods At 24h after drug treatment, the supernatant was collected and NO and SOD activity measured with a NO or SOD determination kits. And, western blot determined hsp70 and catalase expression.
     Results We found that the proteasome inhibitor epoxomicin increased NO levels in A30P and A53T cells, but the levels in WT cells did not changed with proteasome and autophagy drugs. And we also found that the proteasome inhibitor epoxomicin increased SOD levels in A30P, A53T and WT cells. High levels of hsp70 protein expression occurred in groups of cells treated with the proteasome inhibitor epoxomicin for 24 h. And the proteasome inhibitor epoxomicin increased the levels of CAT in cells. We did not find a significant change of CAT and hsp70 in cells after treatment with a macroautophagy inhibitor and a stimulator, but the effect of macroautophagy inhibition and stimulation slightly differed with the type of cell.
     Conclusion All these data indicate that the proteasome system is more tightly related to oxidative stress than autophagy. Oxidative stress as a mechanisms of PD during inhibition of the proteasome was more important than it during inhibition of autophagy.
引文
1. Narhi L, Wood SJ, Steavenson S, et al. Both familial Parkinson's disease mutations accelerate alpha-synuclein aggregation. J Biol Chem, 1999, 274(14): 9843–9846.
    2. Kahle PJ, Haass C, Kretzschmer HA, et al. Structure/function of alpha-synuclein in health and disease: rational development of animal models for Parkinson’s and related diseases. J Neurochem, 2002, 82(3): 449–457.
    3. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in theα-synuclein gene identified in families with Parkinson's disease. Science, 1997, 276(5321): 2045–2047.
    4. Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet, 1998, 18(2): 106–108.
    5. Feany MB., Bender WW. A Drosophila model of Parkinson’s disease. Nature, 2000, 404(6776): 394–398.
    6. Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science, 2000, 287(5456): 1265–1269.
    7. Polymeropoulos MH, Higgins JJ, Golbe LI, et al. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science, 1996, 274(5290): 1197–1199.
    8. Lev N, Melamed E, Offen D. Apoptosis and Parkinson′s disease. Prog Neurop sychopharmacol Biol Psychiatry, 2003, 27(2): 245–250
    9. Blandini F, Mangiagalli A, Cosentino M, et al. Peripheral markers of apoptosis in Parkinson′s disease: the effect of dopaminergic drugs. Ann NY Acad Sci, 2003, 1010: 675–678.
    10. Petersen A, Larsen KE, Behr GG, et al. Expanded CAG repeats in exon 1 of the Huntington’s disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum Mol Genet, 2001, 10(12): 1243–1254.
    11. Gomez-Santos C, Ferrer I, Santidrian AF, et al. Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells. J Neurosci Res, 2003, 73(3): 341–350.
    12. Qin ZH, Wang Y, Sapp E, et al. Huntingtin bodies sequester vesicle-associated proteins by a polyproline-dependent interaction. J Neurosci, 2004, 24(1): 269–281.
    13. Larsen KE, Sulzer D. Autophagy in neurons: a review. Histol Histopathol, 2002, 17(3): 897–908.
    14. Chung KK, Dawson VL, Dawson TM. The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. Trends Neurosci, 2001, 24(Suppl 11): S7–14.
    15. Bence NF , Sampat RM , Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science, 2001, 292(5521): 1552–1555.
    16. Webb JL, Ravikumar B, Atkins J, et al. Alpha-synuclein is degraded by both autophagy and the proteasome. J Biol Chem, 2003, 278(27): 25009–25013.
    17. Naujokat C, Hoffmann S. Role and function of the 26S proteasome in proliferation and apoptosis. Lab Invest, 2002, 82(8): 965–980.
    18. Rubinsztein DC, DiFiglia M, Heintz N, et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy, 2005, 1(1): 11–22.
    19. Cuervo AM, Stefanis L, Fredenburg R, et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science, 2004, 305(5688): 1292–1295.
    20. Harrington KA, Augood SJ, Kingsbury AE, et al. Dopamine transporter (DAT) and synaptic vesicle amine transporter (VMAT2) gene expression in the substantia nigra of control and Parkinson’s disease. Brain Res. Mol. Brain Res, 1996, 36(1):157–162.
    21. Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA, 1976, 73(7):2424–2428.
    22. Rebois RV, Reynolds EE, Toll L, et al. Storage of dopamine and acetylcholine in granules of PC12, a clonal pheochromocytoma cell line. Biochemistry, 1980, 19(6):1240–1248.
    23. Hatanaka H. Nerve growth factor-mediated stimulation of tyrosine hydroxylase activity in a clonal rat pheochromocytoma cell line. Brain Res, 1981, 222(2):225–233.
    1. Mortimore GE, Poso AR. Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr, 1987, 7: 539–564.
    2. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science, 2000, 290(5497): 1717–1721.
    3. Furuya D, Tsuji N, Yagihashi A, et al. Beclin 1 augmented cis-diamminedichloroplatinum induced apoptosis via enhancing caspase-9 activity. Exp Cell Res, 2005, 307(1): 26–40.
    4. Boya P, Gonzalez-Polo RA, Casares N, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol, 2005, 25(3): 1025–1040.
    5. Yu L, Alva A, Su H, et al. Regulation of an ATG7-Beclin 1 program of autophagic cell death by caspase-8. Science, 2004, 304(5676): 1500–1502.
    6. McNaught KS, Jenner P. Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett, 2001, 297(3): 191–194.
    7. McNaught KS, Belizaire R, Isacson O, et al. Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol, 2003, 179(1): 38–46.
    8. Naujokat C, Hoffmann S. Role and function of the 26S proteasome in proliferation and apoptosis. Lab Invest, 2002, 82(8): 965–980.
    9. Kahle PJ, Haass C, Kretzschmer HA, et al. Structure/function of alpha-synuclein in health and disease: rational development of animal models for Parkinson’s and related diseases. J Neurochem, 2002, 82(3): 449–457.
    10. Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet, 1998, 18(2): 106–108.
    11. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in theα-synuclein gene identified in families with Parkinson's disease. Science, 1997, 276(5321): 2045–2047.
    12. Webb JL, Ravikumar B, Atkins J, et al. Alpha-synuclein is degraded by bothautophagy and the proteasome. J Biol Chem, 2003, 278: 25009–25013.
    13. Gomez-Santos C, Ferrer I, Santidrian AF, et al. Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells. J Neurosci Res, 2003, 73(3): 341–350.
    14. McNaught KS, Olanow CW. Protein aggregation in the pathogenesis of familial and sporadic Parkinson’s disease. Neurobiol Aging, 2006, 27(4): 530–545.
    15. Rubinsztein DC, DiFiglia M, Heintz N, et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy, 2005, 1(1): 11–22.
    16. Massey AC, Kaushik S, Sovak G, et al. Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci USA, 2006, 103 (15): 5805–5810.
    17. Schulz JB. Update on the pathogenesis of Parkinson's disease. J Neurol, 2008, 255(Suppl 5): 3-7.
    18. Blandini F, Mangiagalli A, Cosentino M, et al. Peripheral markers of apoptosis in Parkinson′s disease: the effect of dopaminergic drugs. Ann NY Acad Sci, 2003, 1010: 675–678.
    19. Hengartner MO. The biochemistry of apoptosis. Nature, 2000, 407(6805): 770–776.
    20. Lev N, Melamed E, Offen D. Apoptosis and Parkinson′s disease. Prog Neuropsychopharmacol Biol Psychiatry, 2003, 27(2): 245–250.
    21. Moretti L, Cha YI, Niermann KJ, et al. Switch between apoptosis and autophagy: radiation-induced endoplasmic reticulum stress? Cell Cycle, 2007, 6(7): 793–798.
    22. Br?ker LE, Kruyt FA, Giaccone G. Cell death independent of caspases: a review. Clin Cancer Res, 2005, 11(9): 3155-3162.
    23. Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl), 1990, 181(3): 195-213.
    24. Pilar G, Landmesser L. Ultrastructural differences during embryonic cell death in normal and peripherally deprived ciliary ganglia. J Cell Biol, 1976, 68(2): 339-356.
    25. Schmitz I, Kirchhoff S, Krammer PH. Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol, 2000, 32: 1123-1136.
    26. Adams JM. Ways of dying:multiple pathways to apoptosis. Genes Dev, 2003, 17: 2481-2495.
    27. Shintani T,Klionky DJ. Autophagy in health and disease: a double-edged sword. Science, 2004, 306(5698): 990-995.
    28. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 2004, 6(4): 463-477.
    29. Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 2006, 441(7095): 880-884.
    30. Stefanis L. Caspase-dependent and -independent neuronal death: two distinct pathways to neuronal injury. Neuroscientist, 2005, 11(1): 50-62.
    31. Mizushima1 N. Autophagy: process and function. Genes Dev, 2007, 21(22): 2861-2873.
    32. Gustafsson AB, Gottlieb RA. Recycle or die: The role of autophagy in cardioprotection. J Mol Cell Cardiol, 2008, 44(4): 654-661.
    33. Maiuri MC, Zalckvar E, Kimchi A, et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol, 2007, 8(9): 741–752.
    34. Chu CT. Autophagic stress in neuronal injury and disease. J Neuropathol Exp Neurol, 2006, 65(5): 423-432.
    35. Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest, 2005, 115(10): 2679-2688.
    36. Tanaka Y, Guhde G, Suter A, et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2 deficient mice. Nature, 2000, 406(6798): 902-906.
    37. Xue L, Fletcher GC, Tolkovsky AM. Autophagy is activated by apoptotic signaling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci, 1999, 14(3):180-198.
    38. Harada M, Strnad P, Toivola DM, et al. Autophagy modulates keratin-containing inclusion formation and apoptosis in cell culture in a context-dependent fashion. Expl Cell Res, 2008, 314(8): 1753–1764.
    39. Cheng Y, Qiu F, Huang J, et al. Apoptosis-suppressing and autophagy-promoting effects of calpain on oridonin-induced L929 cell death. Arch Biochem Biophys, 2008, 475(2): 148–155.
    40. Gonzalez-Polo RA, Boya P, Pauleau AL, et al. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci, 2005, 118: 3091–3102.
    41. Hartmann A, Hunot S, Michel PP, et al. Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson′s disease. Proc Natl Acad Sci USA, 2000, 97(6): 2875–2880.
    42.Narhi L, Wood SJ, Steavenson S, et al. Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem, 1999, 274(14): 9843-9846.
    43. Maiuri MC, Zalckvar E, Kimchi A, et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol, 2007, 8(9): 741–752.
    44. Kroemer G, Jaattela M. Lysosomes and autophagy in cell death control. Nat Rev. Cancer, 2005, 5(11): 886–897.
    45. Lum JJ, DeBerardinis RJ, Thompson CB. Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol, 2005, 6(6): 439–448.
    46. Rubinsztein DC, Gestwicki JE, Murphy LO, et al. Potential therapeutic applications of autophagy. Nat Rev Drug Discov, 2007, 6 (4): 304–312.
    47. Nutt LK, Margolis SS, Jensen M, et al. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell, 2005, 123(1): 89–103.
    48. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev, 2007, 87(1): 99–163.
    1.Hardy J, Cai H, Cookson MR, et al. Genetics of Parkinson's disease and parkinsonism. Ann Neurol, 2006, 60(4): 389-398.
    2.McNaught KS, Jenner P. Proteasomal function is impaired in substantia nigra in Parkinson's disease, 2001, 297(3): 191-194.
    3.McNaught KS, Belizaire R, Isacson O, et al. Altered proteasomal function in sporadic Parkinson's disease. Exp Neurol, 2003, 179(1): 38-46.
    4. Kahle PJ, Haass C, Kretzschmer HA, et al. Structure/function of alpha-synuclein in health and disease: rational development of animal models for Parkinson’s and related disease. J Neurochem, 2002, 82(3): 449–457.
    5. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science, 1997, 276(5321): 2045–2047.
    6. Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet, 1998, 18(2): 106–108.
    7. Cuervo AM, Stefanis L, Fredenburg R, et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science, 2004, 305(5688): 1292–1295.
    8. Feany MB, Bender WW. A Drosophila model of Parkinson's disease. Nature, 2000,404(6776): 394–398.
    9. Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation inα-synuclein mice: Implications for neurodegenerative disorders. Science, 2000, 287(5456): 1265–1269.
    10. Chung KK, Dawson VL, Dawson TM. The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. Trends Neurosci, 2001, 24(Suppl 11): S7–14.
    11. Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science, 2001, 292(5521): 1552–1555.
    12. Webb JL, Ravikumar B, Atkins J, et al. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem, 2003, 278(27): 25009–25013.
    13. Ii K, Ito H, Tanaka K, et al. Immunocytochemical co-localization of the proteasome in ubiquitinated structures in neurodegenerative diseases and the elderly. J Neuropathol Exp Neurol, 1997, 56(2): 125–131.
    14. Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet, 2002, 11(9): 1107–1117.
    15. Lemasters JJ, Qian T, He L, et al. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal, 2002, 4(5): 769–781.
    16. Bellu AR, Kiel JA. Selective degradation of peroxisomes in yeasts. Microsc Res Tech, 2003, 61(2): 161–170.
    17. Roberts P, Moshitch-Moshkovitz S, Kvam E, et al. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol Biol Cell, 2003, 14(1): 129–141.
    18. Reggiori F, Klionsky DJ. Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol, 2005, 17(4): 415–422.
    19. Crotzer VL, Blum JS. Autophagy and intracellular surveillance: Modulating MHC class II antigen presentation with stress. Proc Natl Acad Sci USA, 2005, 102 (22): 7779–7780.
    20. Dice JF. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci, 1990, 15(8): 305–309.
    21. Berger Z, Ravikumar B, Menzies FM, et al. Rapamycin alleviates toxicity of differentaggregate-prone proteins. Hum Mol Genet, 2006, 15(3): 433–442.
    22. Bandhyopadhyay U, Cuervo AM. Chaperone-mediated autophagy in aging and neurodegeneration: Lessons from alpha-synuclein. Exp Gerontol, 2007, 42(1-2): 120–128.
    23. Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies. Nature, 1997, 388(6645): 839-840.
    24. Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science, 2000, 287(5456): 1265-1269.
    25. Giasson BI, Duda JE, Murray IV, et al. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science, 2000, 290(5493): 985-989.
    26. Kabeya Y, Mizushima N, Yamamoto A, et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci, 2004, 117(pt13): 2805-2812.
    27. Zhang C, Cuervo AM. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med, 2008, 14(9), 959– 965.
    28. Ciechanover A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin–proteasome system and onto human diseases and drug targeting. Cell Death Differ, 2005, 12(9): 1178–1190.
    29. Cookson MR, van der Brug M. Cell system and the toxic mechanism(s) ofα-synuclein. Exp Neurol, 2008, 209(1): 5-11.
    30. Liu H, Wang XZ. Alpha-synuclein and Parkinson disease. Neural Regen Res, 2007, 2(4): 239-243.
    31. Li HT, Du HN, Tang L, et al. Structural transformation and aggregation of human alpha-synuclein in trifluoroethanol: non-amyloid component sequence is essential and beta-sheet formation is prerequisite to aggregation. Biopolymers, 2002, 64(4): 221-226.
    32. Shacka JJ, Roth KA, Zhang J. The autophagy-lysosomal degradation pathway: role in neurodegenerative disease and therapy. Front Biosci, 2008, 13: 718-736.
    33. Pan T, Kondo S, Le W, et al. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain, 2008, 131(pt8): 1969-1978.
    34. Yasuda T, Miyachi S, Kitagawa R, et al. Neuronal specificity ofα-synclein toxicity and effect of Parkin co-expression in primates. Neuroscience, 2007, 144: 743-753.
    35. Bennett MC, Bishop JF, Leng Y, et al. Degradation of alpha-synuclein by proteasome. J Biol Chem, 1999, 274(48): 33855–33858.
    36. McNaught KS, Mytilineou C, Jnobaptiste R, et al. Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem, 2002, 81(2): 301–306.
    37. Rideout HJ, Larsen KE, Sulzer D, et al. Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive inclusions in PC12 cells. J Neurochem, 2001, 78(4): 899–908.
    38. Ancolio K, Alves da Costa C, Ueda K, et al. Alpha–Synuclein and the Parkinson’s disease-related mutant Ala53Thr-α-Synuclein do no undergo proteasomal degradation in HEK293 cells and neuronal cells. Neurosci Lett, 2000, 285(2): 79–82.
    39. Noda T, Suzuki K, Ohsumi Y. Yeast autophagosomes: de novo formation of a membrane structure. Trends Cell Biol, 2002, 12(5): 231-235.
    40. Dunn WA Jr. Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol, 1990, 110(6): 1923-1933.
    41. Kiffin R, Christian C, Knecht E, et al. Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell, 2004, 15(11): 4829–4840.
    42. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1): 27-42.
    43. Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 2006, 441(7095): 880-884.
    44. Sarkar S, Davies J, Huang Z, et al. Trehalose, a noval mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin andα-synuclein. Biol.Chem, 2007, 282(8): 5641-5652.
    45. Sarkar S, Floto RA, Berger Z, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol, 2005, 170(7): 1101-1111.
    46. Cuerco AM, Stefanis L, Fredenburg R, et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science, 2004, 305(5688): 1292-1295.
    47. Martinez-Viceente M, Talloczy Z, Kaushik S, et al. Dopamine-modifiedα-synucleinblocks chaperone-mediated autophagy. J Clin Invest, 2008, 118(2): 777-788.
    48. Massey AC, Kaushik S, Sovak G, et al. Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci USA, 2006, 103 (15): 5805–5810.
    49. Cuervo AM, Stefanis L, Fredenburg R, et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science, 2004, 305(5688): 1292–1295.
    50. Yue X, Song W, Zhang W, et al. Mitochondrially localized EGFR Is subjected to autophagic regulation and implicated in cell survival. Autophagy, 2008, 4(5): 641–649.
    51. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1): 28-42.
    1. Prasad K, Kalra J, Chandhary AK, et al. Effect of polymorphonuclear leukocyte derived oxygen free radicals and hypochlorous acid on cardiac function and some biochemical parameters. Am Heart J, 1990, 119(pt1): 538-559.
    2. Tappel A, Tappel A. Oxidant free radical initiated chain polymerization of protein and other biomolecules and its relationship to diseases. Med Hypotheses, 2004, 63(1): 98-99.
    3. Taimor G, Hofstaetter B, Piper HM. Apoptosis induction by nitric oxide in adult cardiomyocytes via cGMP-signaling and its impairment after simulated ischemia. Cardiovasc Res, 2000, 45(3): 588-594.
    4. Kwon YG, Min JK, Kim KM, et al. Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J Biol Chem, 2001, 276(14): 10627-10633.
    5. Imai J, Maruya M, Yashiroda H, et al. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J, 2003, 22(14): 3557-3567.
    6. Gu M , Gash MT , Mann VM , et al. Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol, 1996, 39(3): 385-389.
    7. Blache D, Gesquière L, Loreau N, et al. Oxidant st ress: the role of nutrients in cell-lipoproyein interactions. Proc Nutr Soc, 1999, 58(3): 559-563.
    8. Swerdlow RH, Parks JK, Cassarino DS, et al. Characterization of cybrid cell linescontaining mtDNA from Huntington’s disease patients. Biochem Biophys Res Commun, 1999, 261(3):701-704.
    9. Przedborski S, Tieu K, Perier C, et al. MPTP as a mitochondrial neurotoxic model of Parkinson's disease. J Bioenerg Biomembr, 2004, 36(4): 375-379.
    10. Kumar MJ, Andersen JK. Perspectives on MAO-B in aging and neurological disease: where do we go from here? Mol Neurobiol, 2004, 30(1): 77-89.
    11. Schapira AH. Mitochondrial involvement in Parkinson’s disease, Huntington’s disease, Hereditary paralegial Friedeich’s ataxia. Biochim Biophys Acta, 1999, 1410(2): 99-102.
    12. Graeber MB, Müller U. Recent developments in molecular of mitochondrial disorders. J Neuro Sci, 1998, 153(2): 251-263.
    13. Gorman AM,MeGowan A,O'Neill C, et a1. Oxidative stress and apoptosis in neurodegeneration. J Neurol Sci, 1996, 139(Suppl):45-52。
    14.胡国华,陈雪,董丽华等。帕金森病模型大鼠黑质多巴胺能神经元的氧化应激研究。中风与神经疾病杂志,2003, 20(6):507-509。
    15. Kocatürk PA, Akbostanci MC, Tan F, et al. Superoxide dismutase activity and zinc and copper concentrations in Parkinson’s disease. Pathophysiology, 2000, 7(1): 63 - 67.
    16. Bostantjopoulou S, Kyriazis G, Katsarou Z, et al. Superoxide dismutase activity in early and advanced Parkinson’s disease. Funct Neurol, 2007, 12(2): 63– 68.
    17. Abraham CR, Selkoe DJ, Potter H. Immunochemical identification of the serine protease inhibitor alpha1-antichymotrypsin in brain amyloid deposis of Alzheimer’s disease. Cell, 1998, 52(4): 487-501.
    18. Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science, 2001, 292(5521): 1552-1555.
    19.赵静,刘振国。帕金森病与泛素蛋白酶体系统脑与神经疾病杂志,2004,12:310-312。
    20. Turnbull S, Tabner BJ, El-Agbaf OM, et al. Alpha-Synuclein implicated in Parkinson’s disease catalyses the formation of hydrogen peroxide in vitro. Free Radic Biol Med, 2001, 30(10): 1163-1170.
    21. Song DD, Shults CW, Sisk A, et al. Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol, 2004, 186(2): 158-172.
    22. Lee M, Hyun D, Halliwell B, et al. Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult. J Neurochem, 2001, 76(4): 998– 1009.
    23. Kanda S, Bishop JF, Eglitis MA, et al. Enhanced vulnerability to oxidative stress by alpha-synuclein mutations and C-terminal truncation. Neuroscience, 2000, 97(2): 279–284.
    24. Junn E,Mouradian MM.Human alpha-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neurosci Lett, 2002, 320(3): 146–150.
    25. Perez RG, Waymire JC, Lin E, et al. A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci, 2002, 22(8): 3090–3099.
    26. Lotharius J, Brundin P. Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Hum Mol Genet, 2002, 11(20): 2395-2407.
    27. Lotharius J, Barg S, Wiekop P, et al. Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem, 2002, 277(41): 38884–38894.
    28. Volles MJ, Lee SJ, Rochet JC, et al. Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry, 2001, 40(26): 7812–7819.
    1. Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science, 2004, 306(5698): 990–995
    2. Levine B, Klionsky DJ. Development by self-digestion; molecular mechanisms and biological functions of autophagy. Dev Cell, 2004, 6: 463–477
    3. Rubinsztein DC, DiFiglia M, Heintz N, et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy, 2005, 1(1): 11–22
    4. Bursch W, Ellinger A, Gerner C, et al. Autophagocytosis and programmed cell death. In: Klionsky DJ, editor. Autophagy. Georgetown, TX: Landes Bioscience. 2004: 287-303.
    5. Cuervo AM. Autophagy: many paths to the same end. Mol Cell Biochem, 2004,263(1-2): 55–72.
    6. Yoshimori T. Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun, 2004, 313(2): 453-458.
    7. Wang CW, Klionsky DJ. Microautophagy. In: Klionsky DJ, editor. Autophagy. Georgetown, TX: Landes Bioscience. 2004: 107-14.
    8. Majeski AE, Dice JF. Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol, 2004, 36(12): 2435-2444.
    9. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1): 27-42.
    10. Kim J, Klionsky DJ. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem, 2000, 69: 303-342.
    11. Walker DH, Popov VL, Crocquet-valdes PA, et al. Cytokine-induced, nitric oxide-dependent, intracellular antirickettsial activity of mouse endothelial cells. Lab Invest, 1997, 76(1): 129-138.
    12. Tallóczy Z, Jiang W, Virgin HW 4th, et al. Regulation of starvation and virus-induced autophagy by the eIF2alpha kinase signalling pathway. Proc Natl Acad Sci USA, 2002, 99(1): 190-195.
    13. Lemasters JJ, Qian T, He L, et al. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal, 2002, 4(5): 769-781.
    14. Webb JL, Ravikumar B, Atkins J, et al. Alpha-synuclein is degraded by both autophagy and the proteasome. J Biol Chem, 2003, 278(27): 25009-25013.
    15. Bursch W, Hochegger K, Torok L, et al. Autophagic and apoptotic types of programmed cell death exihibit different fates of cytoskeletal filaments. J Cell Sci, 2000, 113(pt7):1189-1198.
    16. Ogier-Denis E, Codogno P. Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta, 2003, 1603(2): 113-128.
    17. Klionsky DJ . Autophagy. Curr Biol, 2005, 15(8):R282-R283.
    18. Mari?o G, López-Otín C. Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci, 2004, 61(12):1439-1454.
    19. Eskelinen EL. Maturation of autophagic vacuoles in mammalian cells. Autophagy, 2005, 1(1): 1-10.
    20. Gustafsson AB, Gottlieb RA. Recycle or die: The role of autophagy in cardioprotection. J Mol Cell Cardiol, 2008, 44(4): 654-661.
    21. Mizushima N. Autophagy: process and function. Genes Dev, 2007, 21(22): 2861-2873.
    22. Kirisako T, Baba M, Ishihara N, et al. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol, 1999, 147(2): 435-446.
    23. Cardenas ME, Cutler NS, Lorenz MC, et al. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev, 1999, 13(24): 3271-3279.
    24. Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol, 2004, 36(12): 2445-2462.
    25. Pattingre S, Espert L, Biard-Piechaczyk M, et al. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie, 2008, 90(2): 313-323.
    26. Lum JJ, Bauer DE, Kong M, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 2005, 120(2): 237-248.
    27. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 2004, 6(4): 463-477.
    28. Uttenweiler A, Schwarz H, Neumann H, et al. The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol Biol Cell, 2007, 18(1): 166-175.
    29. Klionsky DJ, Meijer AJ, Codogno P, et al. Autophagy and P70S6 kinase. Autophagy, 2005, 1(1): 59-60.
    30. Kamada Y, Funakoshi T, Shintani T, et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol, 2000, 150(6): 1507-1513.
    31. Komatsu M, Waguri S, Ueno T, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol, 2005, 169(3): 425-434.
    32. Baehrecke EH. Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol, 2005, 6(6): 505-510.
    33. Klionsky DJ . The molecular machinery of autophagy:unanswered questions. J Cell Sci, 2005, 118(pt1): 7-18.
    34. Massey AC, Kaushik S, Sovak G, et al. Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci USA, 2006, 103(15): 5805-5810.
    35. Yue X, Song W, Zhang W, et al. Mitochondrially localized EGFR Is subjected to autophagic regulation and implicated in cell survival. Autophagy, 2008, 4(5): 641-649.
    36. Shastry BS. Neurodegenerative disorders of protein aggregation. Neurochem Int, 2003,43(1): 1-7.
    37. Pan T, Kondo S, Le W, et al. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain, 2008, 131(pt8): 1969-1978.
    38. McCray BA, Taylor JP. The role of autophagy in age-related neurodegeneration. Neurosignals, 2008, 16(1): 75-84.
    39. Chung KK, Dawson VL, Dawson TM. The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. Trends Neurosci, 2001, 24( Suppl 11): S7-14.
    40. Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science, 2001, 292(5521): 1552-1555.
    41. Verhoef LG, Lindsten K, Masucci MG, et al. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum Mol Genet, 2002, 11(22): 2689-2700.
    42. Shastry BS. Neurodegenerative disorders of protein aggregation. Neurochem Int, 2003, 43(1): 1-7.
    43. Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 2006, 441(7095): 880-884.
    44.刘康永,刘春风,钱进军等。突变型α-synuclein的自噬性降解途径及可能机制。中华神经科杂志,2008,41(1):51-56。.
    45. Yang YP, Liu KY, Qian JJ, et al. The abnormal aggregation of alpha-synuclein induces autophagic programmed cell death in PC12 cells. Eur J Neurol, 2007, 14 (Suppl 1):197.
    46. Cuerco AM, Stefanis L, Fredenburg R, et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science, 2004, 305(5688): 1292-1295.
    47. Bandhyopadhyay U, Cuervo AM. Chaperone-mediated autophagy in aging and neurodegeneration: Lessons from alpha-synuclein. Exp Gerontol. 2007, 42(1-2): 120-8.
    48. Zhang ZX, Roman GC, Hong Z, et al. Parkinson's disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet, 2005, 365(9459): 595-597.
    49. Li W, Hoffman PN, Stirling W, et al. Axonal transport of human alpha-synuclein slows with aging but is not affected by familial Parkinson's disease-linked mutations. JNeurochem, 2004, 88(2): 401-410.
    50. Bergamini E, Cavallini G, Donati A, et al. The role of macroautophagy in the ageing process, anti-ageing intervention and age-associated diseases. Int J Biochem Cell Biol, 2004, 36(12): 2392-404.
    51. McCray BA, Taylor JP. The role of autophagy in age-related neurodegeneration. Neurosignals, 2008, 16(1): 75-84.
    52. Droge W. Autophagy and aging--importance of amino acid levels. Mech Ageing Dev, 2004, 125(3): 161-168.
    53. Simonsen A, Cumming RC, Brech A, et al. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy, 2008, 4(2): 176-184.
    54.Tóth ML, Sigmond T, Borsos E, et al. Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy, 2008, 4(3): 330-338.
    55. Donati A, Cavallini G, Carresi C, et al. Anti-aging effects of anti-lipolytic drugs. Exp Gerontol, 2004, 39(7): 1061-1067.
    56. Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res, 2005, 8(1): 3-5.
    57. Vellai T, Bicsák B, Tóth ML, et al. Regulation of cell growth by autophagy. Autophagy, 2008, 4(4): 507-509.
    58. Zhao J, Brault JJ, Schild A, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab, 2007, 6(6): 472-483.
    59. Lev N, Melamed E, Offen D. Apoptosis and Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry, 2003, 27(2): 245-250.
    60. Blandini F, Mangiagalli A, Cosentino M, et al. Peripheral markers of apoptosis in Parkinson’s disease: the effect of dopaminergic drugs. Ann N Y Acad Sci, 2003, 1010: 675-678.
    61. Furuya D, Tsuji N, Yagihashi A, et al. Beclin 1 augmentedcis-diamminedichloroplatinum induced apoptosis via enhancing caspase-9 activity. Exp Cell Res, 2005, 307(1): 26-40.
    62. Boya P, González-Polo RA, Casares N, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol, 2005, 25(3): 1025-1040.
    63. Yu L, Alva A, Su H, et al. Regulation of an ATG7-Beclin 1 program of autophagic cell death by caspase-8. Science, 2004, 304(5676): 1500-1502.
    64. Saeki K, Yuo A, Okuma E, et al. Bcl-2 down regulation causes autophagy in a caspase-independent mannar in human leukemic HL60 cells. Cell Death Differ, 2000, 7(12):1263-1269.
    65. Shimizu S, Kanaseki T, Mizushima N, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagic genes. Nat Cell Biol, 2004, 6(12): 1221-1228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700