用户名: 密码: 验证码:
高压下钨、铼氮化物和复杂氢化物Li_2BeH_4的理论结构设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于高压结构相变为驱动,从理论上设计新型超硬材料和新型储氢材料是科学前沿课题,对后续实验合成具有重要借鉴和指导作用。本文利用最新的晶体结构预测新技术,系统地研究了具有潜在超硬特性的过渡族金属W和Re的氮化物和具有储氢性能的轻金属配位氢化物Li_2BeH_4在高压下的晶体结构,并深入讨论了该晶体结构下材料的力学(如弹性和硬度)和化学键合等性质,得到了以下创新性结果:
     1.提出了常压下WN_2的两个能量近似简并的六角备选结构,其空间群分别为P63/mmc和P-6m2,这两个新相的晶格动力学稳定,力学性能优异(理论维氏硬度约为36 GPa),可以在压力高于30 GPa条件下实验合成。
     2.系统研究了高压下Re-N化合物的晶体结构,提出低压下具有R-3m结构的ReN和高压下(>14.6 GPa)具有C2/m结构的ReN_2最有可能被合成,ReN_2的理论维氏硬度可以达到25 GPa。
     3.预言了Li_2BeH_4的高压相具有β-Na_2SO_4结构,相变压力是7.2 GPa,与实验值相吻合。在更高压力下(大于28.8 GPa)Li_2BeH_4相变为La_2NiO_4结构。化学键定量研究表明Li_2BeH_4高压相的合成仍然无法实现降低氢解离温度的目的。
Finding the global minimum of the free-energy surface for crystal at high-pressure is of great importance in both study of high-pressure phase transition and design of new materials. Currently, the most widely used method in this field is the so called‘enumeration method’(EM), which can be briefly described as follows: A number of candidates are proposed based on the known structures of other materials, and the free energy favorable structure is obtained at the end of structural optimization of these candidates. Obviously, EM is a local optimization method and usually fails to reach the global minimum. In contrast, the newly developed“Universal Structure Predictor: Evolutionary Xtallography”(USPEX),“Globle Space-Group Optimization”(GSGO), and“Crystal structure Analysis using Particle Swarm Optimization”(CALYPSO) are global optimization methods for general crystal structure prediction, which are very efficient in finding the global minimum valley of the ab initio free-energy surface and has a success rate of nearly 100 % for crystal with up to tens of atoms in the unit cell, furthermore, which find large sets of competitive local minimums. These methods are taking place of EM gradually and becoming increasingly important in both the study of high-pressure phase transition and design of new materials.
     There has been considerable interesting in finding new superhard materials (SMs) because they are of primary importance in modern science and technology. SMs of partially covalent compounds of transition metal with light elements (B, C, N and O) have so far not been reported experimentally. However, the recently synthesized pyrite type PtN_2 has been predicted to be SM with theoretical Vickers hardness exceeding 48 GPa, which has triggered worldwide interest in the mechanical properties of 5 d transition metal nitrides.
     The first part of our work is to find new (super) hard materials in 5 d serious transition metal nitrides MNx (M = W, Re; x = 1, 2), through searching the global minimum of their ab initio free-energy landscape under various pressures as implement in the USPEX code.
     The NiAs type structure has been found to be the best candidate for WN, which agrees well with the results of the EM calculations in former study. Furthermore, we have found WN_2 energetically favors two hexagonal structures (HEXs) of space group P63/mmc and P-6m2 with very similar enthalpies, which are energetically much superior to previously proposed baddeleyite- and cotunnite-type structures in the pressure range of 0-60 GPa, and stable against decomposition into a mixture of W+N_2 or WN+1/2N_2. The two hexagonal structures are dynamical stable at both ambient and high pressures without phonon softening behaviors in their whole Brillouin Zones.
     Both two HEXs of WN_2 reveal a stacking of N-W-N“sandwiches”layers consisted of edge sharing WN6 trigonal prisms. The strong hybrid of W 5 d orbital and N 2 p orbital led to directional covalent W-N bonding in the prisms. The strong covalent N-N bonding provides a strengthening effect on these crystals by reinforcing the links of the N-W-N sandwiches layers. The two HEXs possess high calculated bulk (shear) modulus of about 360 (230) GPa, indicating they are ultra-incompressible materials and can withstand shear strain to a large extent. Actually, they are both ultra-hard materials with theoretical Vickers hardness of about 36 GPa exceeding that of SiO_2 (30.6 GPa) andβ-Si_3N_4 (30.3 GPa). The outstanding mechanical properties of the two HEXs can be attributed to the strong covalent N-N and N-W bonding networks over the whole crystals. Both the two HEXs are semiconductor with indirect band gap of about 1.2 eV, and synthesizable at above 30 GPa within our thermodynamic study.
     We found two structures with pace group R-3m and C2/m energetically surpass the NiAs- and columbite-type structures for ReN and ReN_2, respectively. Several structural characters of the two new phases are worthy of remark: (i) Just like noble metal dinitrides, ReN contains N-N bonds; (ii) in contrast to noble metal dinitrides, one-half of N-N bonds are broken in ReN_2. R-3m and C2/m phases are dynamical stable at both ambient and high pressures without phonon softening behaviors in their whole Brillouin Zones, and synthesizable at high-pressure within our thermodynamic study. Both the new phases reveal metallic behavior with 5-d electrons of Re as major carriers.
     ReN and ReN_2 possess very large bulk modulus (> 370 GPa) and shear modulus (> 200 GPa). ReN_2 is ultra-hard materials with a Vickers hardness of 25 GPa, which can be attributed to the strong covalent N-Re and N-N bonding network over the whole crystal. However, the hardness of ReN is not yet computable because of the strong metallic Re-Re bonding layers forbid the N-Re and N-N bonding to form 3D networks. In view of ReN has a stacking of“Re-N-N-Re”layers, which is likely to exhibit strong mechanical anisotropy.
     Recently, Filinchuk et al. had found a phase transition of LiBH4 at 1.2 GPa from the ambient-pressure Pnma structure into a Ama2 structure, which possess BeH4 anions have a nearly square-planar coordination comprising four Li atoms. The high-pressure structure was believed to be a step towards destabilization of LiBH4. Therefore, the exploration of the high-pressure polymorphs of other light metal complex hydrides is fundamental interest and has attracted great attentions.
     The second part of our work is to obtain the crystal structure of experimental observed dense phase (DP) for lithium beryllium hydrides (Li2BeH4) at pressure above 9.1 GPa, through finding its global minimum of the ab initio free-energy landscape under various pressures as implement in the USPEX code, and then get a glimpse of the hydrogen decomposing efficiency of DP by a quantify study of its chemical bonds.
     In good agreement with previous experimental data, we found a phase transition at 7.1 GPa from the ambient-pressure polymorphα-Li2BeH4 (phase I) to aβ-Na_2SO_4-type structure (phase II). The second transformation from phase II to a La_2NiO_4-type structure (phase III) occurs at 28.8 GPa. Both phase II and III are dynamical stable when their energy stable. The current results have ruled out previously proposed Cs_2MgH_4-type structure. The two transformations are of first order with remarkable volume collapse of 3.32 % and 5.17 %, respectively, which can be easy detected by X-ray diffraction. The metalized phenomena were not found in both the two new phases up to 40 GPa.
     Phase II possesses the BeH4 tetrahedrons, similar to that of phase I, but in dramatic contrast to the peculiar BeH4 octahedral layer in phase III. The Mulliken charges reveal an ionic picture for the interaction between Li atoms and BeH4 tetrahedron or BeH4 octahedral layers. The hydrogen decomposing efficiencies of phase II and are not much different from phase I since their Mulliken overlap population (MOP) are about the same (~ 0.84), but phase III is likely to be better in view of its MOP is just 0.64. However, phase III is unlikely to be stabilized at ambient pressure in consideration of the high transition pressure. Our results suggest that the dense structure will not be a step towards destabilization of Li2BeH4.
引文
[1] V. V. Brazhkin, A. G. Lyapin, and R. J. Hemley,“Harder than diamond: dreams and reality”, Philosophical Magazine A 82, 231 (2002).
    [2] N. V. Novikov,“Physical Properties of Diamond”, Clarendon Press, Gloucestershire, (1987).
    [3] A. V. Kurdyumov, V. G. Malogolovets, N. V. Novikov, A. N. Pilyankevich, and L. A. Shulman,“Polymorphous Modifications of Carbon and Boron Nitride”, Metallurgy, Moscow, (1994).
    [4] M. Weiler, S. Sattel, T. Giessen, K. Jung, H. Ehrhardt, V. S. Veerasamy, and J. Robertson,“Preparation and properties of highly tetrahedral hydrogenated amorphous carbon”, Physical Review B 53, 1594 (1996).
    [5] R. S. Ruoff and A. L. Ruoff,“Is C60 stiffer than diamond?”Nature 350, 663 (1991).
    [6] V. V. Brazhkin, A. G. Lyapin, S. V. Popova, R. N. Voloshin, Y. V. Antonov, S. G. Lyapin, Y. A. Kluev, A. M. Naletov, and N. N. Mel'nik,“Metastable crystalline and amorphous carbon phases obtained from fullerite C60 by high-pressure and high-temperature treatment”, Physical Review B 56, 11465 (1997).
    [7] Funamori, Nobumasa, Jeanloz, and Raymond,“High-Pressure Transformation of Al2O3”, Science 278, 1109 (1997).
    [8] I. P. Frantsevich, F. F. Voronov, and S. A. Bakuta, Elastic constants and elastic modulus of metals and non metals, Naukova Dumka, Kiev, (1982).
    [9] T. Endo, T. Sato, and M. Shimada,“High-pressure synthesis of B2O with diamond-like structure”, Journal of Materials Science Letters 6, 683 (1987).
    [10] D. M. Teter and R. J. Hemley,“Low-Compressibility Carbon Nitrides”, Science 271, 53 (1996).
    [11] H. Sjostrom, S. Stafstro, M. Boman, and J. E. Sundgren,“Superhard and Elastic Carbon Nitride Thin Films Having Fullerenelike Microstructure”, Physical Review Letters 75, 1336 (1995).
    [12] Q. Gu, G. Krauss, and W. Steurer,“Transition Metal Borides: Superhard versus Ultra-incompressible”, Advanced Materials 20, 3620 (2008).
    [13] A. Zerr, G. Miehe, and R. Riedel,“Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure”, Nature Materials 2, 185 (2003).
    [14] E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H. K. Mao, and R. J. Hemley,“Synthesis and characterization of a binary noble metal nitride”, Nature Materials 3, 294 (2004).
    [15] J. C. Crowhurst, A. F. Goncharov, B. Sadigh, C. L. Evans, P. G. Morrall, J. L. Ferreira, and A. J. Nelson,“Synthesis and characterization of the nitrides of platinum and iridium”, Science 311, 1275 (2006).
    [16] A. F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R. J. Hemley, and H. K. Mao,“Synthesis of novel transition metal nitrides IrN2 and OsN2”, Physical Review Letters 96, 155501 (2006).
    [17] J. C. Crowhurst, A. F. Goncharov, B. Sadigh, J. M. Zaug, D. Aberg, Y. Meng, and V. B. Prakapenka,“Synthesis and characterization of nitrides of iridinm and palladium”, Journal of Materials Research 23, 1 (2008).
    [18] M. Chhowalla and H. E. Unalan,“Thin films of hard cubic Zr3N4 stabilized by stress”, Nature Materials 4, 317 (2005).
    [19] R. Yu, Q. Zhan, and L. C. De Jonghe,“Crystal structures of and displacive transitions in OsN2, IrN2, RuN2, and RhN2”, Angewandte Chemie-International Edition 46, 1136 (2007).
    [20] R. Yu, Q. Zhan, and X. F. Zhang,“Elastic stability and electronic structure of pyrite type PtN2: A hard semiconductor”, Applied Physics Letters 88, 051913 (2006).
    [21] R. Yu and X. F. Zhang,“Family of noble metal nitrides: First principles calculations of the elastic stability”, Physical Review B 72, 054103 (2005).
    [22] D. Aberg, B. Sadigh, J. Crowhurst, and A. F. Goncharov,“Thermodynamic ground states of platinum metal nitrides”, Physical Review Letters 100, 095501 (2008).
    [23] C. Jiang, Z. Lin, and Y. Zhao,“Thermodynamic and Mechanical Stabilities of Tantalum Nitride”, Physical Review Letters 103, 185501 (2009).
    [24] L. Zhou,“Progress and problems in hydrogen storage methods”, Renewable and Sustainable Energy Reviews 9, 395 (2005).
    [25] L. Zhou, Y. Zhou, and Y. Sun,“Enhanced storage of hydrogen at the temperature of liquid nitrogen”, International Journal of Hydrogen Energy 29, 319 (2004).
    [26] N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, and O. M. Yaghi,“Hydrogen Storage in Microporous Metal-Organic Frameworks”, Science 300, 1127 (2003).
    [27] H. Oesterreicher, J. Clinton, and H. Bittner,“Hydrides of La-Ni compounds”, Materials Research Bulletin 11, 1241 (1976).
    [28] D. Richter, R. Hempelmann, and L. A. Vinhas,“Hydrogen diffusion in LaNi5H6 studied by quasi-elastic neutron scattering”, Journal of the Less Common Metals 88, 353 (1982).
    [29] A. J. Goudy, D. G. Stokes, and J. A. Gazzillo,“The effect of heat transfer on the desorption kinetics of LaNi5H6”, Journal of the Less Common Metals 91, 149 (1983).
    [30] S.-i. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, and C. M. Jensen,“ComplexHydrides for Hydrogen Storage”, Chemical Reviews 107, 4111 (2007).
    [31] J. W. Lauher, D. Dougherty, and P. J. Herley,“Sodium tetrahydroaluminate”, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry 35, 1454 (1979).
    [32] N. Sklar and B. Post,“Crystal structure of lithium aluminum hydride”, Inorganic Chemistry 6, 669 (1967).
    [33] B. C. Hauback, H. W. Brinks, C. M. Jensen, K. Murphy, and A. J. Maeland,“Neutron diffraction structure determination of NaAlD4”, Journal of Alloys and Compounds 358, 142 (2003).
    [34] E. R?nnebro, D. Noréus, K. Kadir, A. Reiser, and B. Bogdanovic,“Investigation of the perovskite related structures of NaMgH3, NaMgF3 and Na3AlH6”, Journal of Alloys and Compounds 299, 101 (2000).
    [35] A. Fossdal, H. W. Brinks, M. Fichtner, and B. C. Hauback,“Determination of the crystal structure of Mg(AlH4)2 by combined X-ray and neutron diffraction”, Journal of Alloys and Compounds 387, 47 (2005).
    [36] H. W. Brinks and B. C. Hauback,“The structure of Li3AlD6”, Journal of Alloys and Compounds 354, 143 (2003).
    [37] P. M. Harris and E. P. Meibohm,“THE CRYSTAL STRUCTURE OF LITHIUM BOROHYDRIDE LiBH4”, Journal of the American Chemical Society 69, 1231 (1947).
    [38] J. P. Soulié, G. Renaudin, R. Cerny, and K. Yvon,“Lithium boro-hydride LiBH4: I. Crystal structure”, Journal of Alloys and Compounds 346, 200 (2002).
    [39] K. Miwa, N. Ohba, S.-i. Towata, Y. Nakamori, and S.-i. Orimo,“First-principles study on lithium borohydride LiBH4”, Physical Review B 69, 245120 (2004).
    [40]“The Lattice Constants of the Alkali Borohydrides and the Low-Temperature Phase of Sodium Borohydride”, The Journal of Chemical Physics 22, 434(1954).
    [41] Y. Nakamori, G. Kitahara, and S. Orimo,“Synthesis and dehydriding studies of Mg-N-H systems”, Journal of Power Sources 138, 309 (2004).
    [42] Z. Xiong, P. Chen, G. Wu, J. Lin, and K. L. Tan,“Investigations into the interaction between hydrogen and calcium nitride”, Journal of Materials Chemistry 13, 1676 (2003).
    [43] B. M. Bulychev, R. V. Shpanchenko, E. V. Antipov, D. V. Sheptyakov, S. N. Bushmeleva, and A. M. Balagurov,“Synthesis and Crystal Structure of Lithium Beryllium Deuteride Li2BeD4”, Inorganic Chemistry 43, 6371 (2004).
    [44] Ccaron, R. erny, Y. Filinchuk, H. Hagemann, and K. Yvon,“Magnesium Borohydride: Synthesis and Crystal Structure”, Angewandte Chemie International Edition 46, 5765 (2007).
    [45] W. Grochala and P. P. Edwards,“Thermal Decomposition of the Non-Interstitial Hydrides for the Storage and Production of Hydrogen”, Chemical Reviews 104, 1283 (2004).
    [46] Y. Filinchuk, D. Chernyshov, A. Nevidomskyy, and V. Dmitriev,“High-Pressure Polymorphism as a Step towards Destabilization of LiBH4”, Angewandte Chemie International Edition 47, 529 (2008).
    [47] Y. Filinchuk, A. V. Talyzin, D. Chernyshov, and V. Dmitriev,“High-pressure phase of NaBH4: Crystal structure from synchrotron powder diffraction data”, Physical Review B 76, 092104 (2007).
    [48] A. Le Bail,“Inorganic structure prediction with GRINSP”, Journal of Applied Crystallography 38, 389 (2005).
    [49] A. R. Oganov and C. W. Glass,“Crystal structure prediction using ab initio evolutionary techniques: Principles and applications”, Journal of Chemical Physics 124, 144704 (2006).
    [50] D. J. Wales and J. P. K. Doye,“Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms”, The Journal of Physical Chemistry A 101, 5111 (1997).
    [51] S. Goedecker,“Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems”, The Journal of Chemical Physics 120, 9911 (2004).
    [52] R. Martoňák, A. Laio, and M. Parrinello,“Predicting Crystal Structures: The Parrinello-Rahman Method Revisited”, Physical Review Letters 90, 075503 (2003).
    [53] J. Pannetier, J. Bassas-Alsina, J. Rodriguez-Carvajal, and V. Caignaert,“Prediction of crystal structures from crystal chemistry rules by simulated annealing”, Nature 346, 343 (1990).
    [54] T. S. Bush, C. R. A. Catlow, and P. D. Battle,“Evolutionary programming techniques for predicting inorganic crystal structures”, Journal of Materials Chemistry 5, 1269 (1995).
    [55] S. M. Woodley, P. D. Battle, J. D. Gale, and C. R. A. Catlow,“The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation”, Physical Chemistry Chemical Physics 1, 2535 (1999).
    [56] C. W. Glass, A. R. Oganov, and N. Hansen,“USPEX - Evolutionary crystal structure prediction”, Computer Physics Communications 175, 713 (2006).
    [57] Y. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. O. Lyakhov, M. Valle, and V. Prakapenka,“Transparent dense sodium”, Nature 458, 182 (2009).
    [58] A. R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C. W. Glass, Z. Liu, T. Yu, O. O. Kurakevych, and V. L. Solozhenko,“Ionic high-pressure form of elemental boron”, Nature 457, 863 (2009).
    [59] Y. Li, H. Wang, Q. Li, Y. Ma, T. Cui, and G. Zou,“Twofold Coordinated Ground-State and Eightfold High-Pressure Phases of Heavy Transition Metal Nitrides MN2 (M = Os, Ir, Ru, and Rh)”, Inorganic Chemistry 48, 9904 (2009).
    [60] A. F. Young, J. A. Montoya, C. Sanloup, M. Lazzeri, E. Gregoryanz, and S. Scandolo,“Interstitial dinitrogen makes PtN2 an insulating hard solid”, Physical Review B 73, 153102 (2006).
    [61] J. C. Crowhurst, A. F. Goncharov, B. Sadigh, J. M. Zaug, D. Aberg, Y. Meng, and V. B. Prakapenka,“Synthesis and characterization of nitrides of iridium and palladium”, Journal of Materials Research 23, 1 (2008).
    [62] X. Guo, L. Li, Z. Liu, D. Yu, J. He, R. Liu, B. Xu, Y. Tian, and H.-T. Wang,“Hardness of covalent compounds: Roles of metallic component and d valence electrons”, Journal of Applied Physics 104, 023503 (2008).
    [63] P. Kroll, T. Schroter, and M. Peters,“Prediction of novel phases of tantalum(V) nitride and tungsten(VI) nitride that can be synthesized under high pressure and high temperature”, Angewandte Chemie International Edition 44, 4249 (2005).
    [64] P. Kroll,“New Metal Nitride Compounds: Can they be Synthesized at High-Pressures?”Materials Research Society Symposia Proceedings 1040, Q09 (2008).
    [65] E. Zhao and Z. Wu,“Structural, electronic and mechanical properties of ReN2 from first principles”, Computational Materials Science 44, 531 (2008).
    [66] Y. Li and Z. Zeng,“New potential super-incompressible phase of ReN2”, Chemical Physics Letters 474, 93 (2009).
    [67] Y. Li and Z. and Zeng,“Potential ultra-incompressible material ReN: first-principles prediction”, Solid State Communications 149, 1591 (2008).
    [68] Y. D. K. E. Lipinska-Kalita, Y. Song, J. Lin, M. Somayazulu, P. Dera, J. Yarger, H. K. Mao, and R. J. Hemley, First Annual SSAAP Symposium, Albuquerque,NM (2004).
    [69] M. Born and R. Oppenheimer,“Zur Quantentheorie der Molekeln”, Annalen der Physik 389, 457 (1927).
    [70]谢希德,陆栋,《固体能带理论》,复旦大学出版社, (1998).
    [71]徐光宪,黎乐民,王德民,《量子化学》,科学出版社, (2001).
    [72]李正中,《固体理论》,高等教育出版社, (2003).
    [73] P. Hohenberg and W. Kohn,“Inhomogeneous Electron Gas”, Physical Review 136, B864 (1964).
    [74] W. Kohn and L. J. Sham,“Self-Consistent Equations Including Exchange and Correlation Effects”, Physical Review 140, A1133 (1965).
    [75] J. P. Perdew and Y. Wang,“Accurate and simple analytic representation of the electron-gas correlation energy”, Physical Review B 45, 13244 (1992).
    [76] D. M. Ceperley and B. J. Alder,“Ground State of the Electron Gas by a Stochastic Method”, Physical Review Letters 45, 566 (1980).
    [77]黄昆,韩汝琦,《固体物理学》,高等教育出版社, (1998).
    [78] F. Bloch,“über die Quantenmechanik der Elektronen in Kristallgittern”, Zeitschrift für Physik A Hadrons and Nuclei 52, 555 (1929).
    [79] M.波恩,黄昆,《晶格动力学理论》,北京大学出版社, (2006).
    [80]周明,孙树栋,《遗传算法原理及应用》,国防工业出版社, (1999).
    [81] D. E. Goldberg,“Genetic Algorithms in Search, Optimization and Machine Learning”, Addison-Wesley, (1989).
    [82]田永军,《共价晶体硬度的微观理论》,功能材料学术文集,2005年第2卷第4期, (2005).
    [83] F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, and Y. Tian,“Hardness ofCovalent Crystals”, Physical Review Letters 91, 015502 (2003).
    [84] A. Simunek and J. Vackar,“Hardness of Covalent and Ionic Crystals: First-Principle Calculations”, Physical Review Letters 96, 085501 (2006).
    [85] A. Simunek,“How to estimate hardness of crystals on a pocket calculator”, Physical Review B 75, 172108 (2007).
    [86] K. Li, X. Wang, F. Zhang, and D. Xue,“Electronegativity Identification of Novel Superhard Materials”, Physical Review Letters 100, 235504 (2008).
    [87] X.-Q. Chen, C. L. Fu, M. Kr?mar, and G. S. Painter,“Electronic and Structural Origin of Ultraincompressibility of 5 d Transition-Metal Diborides MB2 (M = W, Re, Os)”, Physical Review Letters 100, 196403 (2008).
    [88] M. Wang, Y. Li, T. Cui, Y. Ma, and G. Zou,“Origin of hardness in WB4 and its implications for ReB4, TaB4, MoB4, TcB4, and OsB4”, Applied Physics Letters 93, 101905 (2008).
    [89] D. Choi and P. N. Kumta,“Synthesis, Structure, and Electrochemical Characterization of Nanocrystalline Tantalum and Tungsten Nitrides”, Journal of the American Ceramic Society 90, 3113 (2007).
    [90] M. Valle,“STM3: a chemistry visualization platform”, Zeitschrift für Kristallographie 220, 585 (2005).
    [91] H. T. Stokes, D. M. Hatch, and B. J. Campbell, http://stokes.byu.edu/isotropy.html
    [92] A. Togo, http://sourceforge.net/projects/spglib/
    [93] G. Kresse and J. Furthmüller,“Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set”, Physical Review B 54, 11169 (1996).
    [94] P. E. Bl?chl,“Projector augmented-wave method”, Physical Review B 50, 17953(1994).
    [95] G. Kresse and D. Joubert,“From ultrasoft pseudopotentials to the projector augmented-wave method”, Physical Review B 59, 1758 (1999).
    [96] S. Shang, Y. Wang, and Z.-K. Liu,“First-principles elastic constants of alpha- and theta-Al2O3”, Applied Physics Letters 90, 101909 (2007).
    [97] R. Hill,“The Elastic Behaviour of a Crystalline Aggregate”, Proceedings of the Physical Society. Section A 65, 349 (1952).
    [98] A. Togo, http://fropho.sourseforge.net
    [99] U. Müller,“Inorganic Structural Chemistry”, John Wiley & Sons, Ltd, Chichester, (2006).
    [100] Y. Benhai, W. Chunlei, S. Xuanyu, S. Qiuju, and C. Dong,“Structural stability and mechanical property of WN from first-principles calculations”, Journal of Alloys and Compounds 487, 556 (2009).
    [101] F. Gao,“Theoretical model of intrinsic hardness”, Physical Review B 73, 132104 (2006).
    [102] H.-Y. Chung, M. B. Weinberger, J. B. Levine, A. Kavner, J.-M. Yang, S. H. Tolbert, and R. B. Kaner,“Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure”, Science 316, 436 (2007).
    [103] S. Otani, M. M. Korsukova, and T. Aizawa,“High-temperature hardness of ReB2 single crystals”, Journal of Alloys and Compounds 477, L28 (2009).
    [104] W. Zhou, H. Wu, and T. Yildirim,“Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: A combined first-principles and neutron scattering study”, Physical Review B 76, 184113 (2007).
    [105] Z. Chen, M. Gu, C. Q. Sun, X. Zhang, and R. Liu,“Ultrastiff carbidesuncovered in first principles”, Applied Physics Letters 91, 061905 (2007).
    [106] E. Zurek, R. Hoffmann, N. W. Ashcroft, A. R. Oganov, and A. O. Lyakhov,“A little bit of lithium does a lot for hydrogen”, Proceedings of the National Academy of Sciences 106, 17640 (2009).
    [107] X. Zhang, G. Trimarchi, and A. Zunger,“Possible pitfalls in theoretical determination of ground-state crystal structures: The case of platinum nitride”, Physical Review B (Condensed Matter and Materials Physics) 79, 092102 (2009).
    [108] Y. Filinchuk, D. Chernyshov, and R. Cerny,“Lightest Borohydride Probed by Synchrotron X-ray Diffraction: Experiment Calls for a New Theoretical Revision”, The Journal of Physical Chemistry C 112, 10579 (2008).
    [109] M. R. Hartman, J. J. Rush, T. J. Udovic, R. C. Bowman Jr, and S.-J. Hwang,“Structure and vibrational dynamics of isotopically labeled lithium borohydride using neutron diffraction and spectroscopy”, Journal of Solid State Chemistry 180, 1298 (2007).
    [110] T. J. Frankcombe, G.-J. Kroes, and A. Zuttel,“Theoretical calculation of the energy of formation of LiBH4”, Chemical Physics Letters 405, 73 (2005).
    [111] J. K. Kang, S. Y. Kim, Y. S. Han, R. P. Muller, and W. A. Goddard,“A candidate LiBH4 for hydrogen storage: Crystal structures and reaction mechanisms of intermediate phases”, Applied Physics Letters 87, 111904 (2005).
    [112] Pistorius and C. W. F. T.,“Melting and polymorphism of lithium tetrahydroborate to 45 kbar”, Zeitschrift fuer Physikalische Chemie 88, 253 (1974).
    [113] P. Vajeeston, P. Ravindran, R. Vidya, H. Fjellvag, and A. Kjekshus,“Pressure-induced phase of NaAlH4: A potential candidate for hydrogen storage?”Applied Physics Letters 82, 2257 (2003).
    [114] N. A. Bell and G. E. Coates,“Lithium and sodium beryllium hydrides”, Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 628 (1968).
    [115] J. P. Bastide,“Crystal structure of lithium beryllium hydrides LiBeH3, Li2BeH4”, Solid State Communications 74, 355 (1990).
    [116] C. H. Hu, D. M. Chen, Y. M. Wang, D. S. Xu, and K. Yang,“Structural transition of Li2BeH4 under high pressure: A first-principles study”, Physical Review B 75, 224108 (2007).
    [117] F. D. Murnaghan,“The Compressibility of Media under Extreme Pressures”, Proceedings of the National Academy of Sciences 30, 244 (1944).
    [118] K. Parlinski, Z. Q. Li, and Y. Kawazoe,“First-Principles Determination of the Soft Mode in Cubic ZrO2”, Physical Review Letters 78, 4063 (1997).
    [119] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne,“First-principles simulation: ideas, illustrations and the CASTEP code”, Journal of Physics: Condensed Matter 14, 2717 (2002).
    [120] D. R. Stephens and E. M. Lilley,“Compressions of Isotopic Lithium Hydrides”, Journal of Applied Physics 39, 177 (1968).
    [121] J. F. Herbst and J. L. G. Hector,“Energetics of the Li amide/Li imide hydrogen storage reaction”, Physical Review B 72, 125120 (2005).
    [122] P. Vajeeston, P. Ravindran, R. Vidya, H. Fjellvag, and A. Kjekshus,“Huge-pressure-induced volume collapse in LiAlH4 and its implications to hydrogen storage”, Physical Review B 68, 212101 (2003).
    [123] T. Palasyuk and M. Tkacz,“Pressure-induced structural phase transition in rare-earth trihydrides. Part II. SmH3 and compressibility systematics”, Solid State Communications 141, 302 (2007).
    [124] N. Hirao, T. Kondo, E. Ohtani, K. Takemura, and T. Kikegawa,“Compression of iron hydride to 80 GPa and hydrogen in the Earth's inner core”, GeophysicalResearch Letters 31, L06616 (2004).
    [125] P. Vajeeston, P. Ravindran, A. Kjekshus, and H. Fjellvag,“Structural stability of alkali boron tetrahydrides ABH4 (A = Li, Na, K, Rb, Cs) from first principle calculation”, Journal of Alloys and Compounds 387, 97 (2005).
    [126] K. Miwa, M. Aoki, T. Noritake, N. Ohba, Y. Nakamori, S.-i. Towata, A. Zuttel, and S.-i. Orimo,“Thermodynamical stability of calcium borohydride Ca(BH4)2”, Physical Review B 74, 155122 (2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700