用户名: 密码: 验证码:
BDNF基因修饰骨髓间充质干细胞的表达及对豚鼠螺旋神经元保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章
     BDNF基因修饰骨髓间充质干细胞的建立及体外表达
     目的骨髓间充质干细胞(Mesenchymal Stem Cells,MSCs)易于分离扩增,具备多方向分化潜能,免疫源性低,可自体移植,并且有良好迁移性,暗示其在基因治疗中可能成为有价值的运载细胞。本章利用非病毒载体介导脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)转染MSCs,观察细胞转染特性和体外表达情况,建立基因工程细胞,为进一步体内研究提供基因工程细胞来源。
     方法取豚鼠的骨髓进行MSCs的分离、培养和流式细胞仪鉴定。通过比较两种非病毒载体转染方法(脂质体法和电穿孔法),选择较好的方法介导pcDNA3.1(-)-BDNF转染MSCs并经优化浓度的G418筛选建立基因工程细胞,转染后48小时(瞬时表达)和筛选后(稳定表达)用免疫组化检测BDNF基因表达情况,RT-PCR进一步验证目的基因表达情况。
     结果成功培养MSCs,流式细胞鉴定显示各细胞表面标志表达率分别为CD44:94.65%、CD34:4.37%、CD45:7.81%。免疫组化显示脂质体介导转染的BDNF瞬时表达率约为5.80%,电穿孔法瞬时表达阳性率约为24.29%。脂质体法转染筛选14天后细胞几乎全部死亡;电穿孔法转染成功扩大培养并建立工程细胞(BDNF-MSCs),免疫组化显示BDNF阳性表达率达90%,RT-PCR扩增产物电泳证实目的基因阳性条带。
     结论用电穿孔法成功建立BDNF基因修饰MSCs的工程细胞,并用免疫组化和RT-PCR方法证实了工程细胞具备体外表达目的基因功能。
     第二章
     BDNF基因修饰骨髓间充质干细胞正常豚鼠内耳移植的实验研究
     目的BDNF基因修饰MSCs(BDNF-MSCs)是治疗神经退变性疾病包括感音神经性聋的潜在有效方法,但首先要明确以下三个问题:一是手术及细胞移植对耳蜗功能及结构是否造成不良影响;二是基因修饰的MSCs在耳蜗内存活和分布情况如何;最后是移植细胞在耳蜗内是否能较长时间维持表达目的基因的能力。目前还没有转基因MSCs内耳移植的报道,在此部分我们将在正常豚鼠耳蜗中对这些问题进行初步的探讨。
     方法正常豚鼠分3组,组Ⅰ:为空白对照组,组Ⅱ:经鼓阶开窗注射MSCs,组Ⅲ:经鼓阶开窗注射BDNF-MSCs。移植细胞均经DAPI荧光标记。3个组的动物均在术前1d、术后7d及术后28d分别行ABR检测,比较各组术前、术后的ABR阈值变化;分别取术后7d及28d各组动物的耳蜗石蜡切片HE染色观察耳蜗结构;荧光显微镜观察移植细胞存活及分布;免疫组化方法检测BDNF在耳蜗内的表达情况。
     结果经鼓阶开窗移植细胞导致术后7d时ABR阈值的暂时性提高,术后28d后恢复至正常水平。耳蜗石蜡切片HE染色显示实验动物耳蜗内结构无明显异常改变。组Ⅱ和组Ⅲ术后7d耳蜗切片可见荧光信号多分布于耳蜗底周的外淋巴腔(鼓阶和前庭阶),极少量细胞能迁移到中阶及蜗轴,术后28d移植细胞存活数量有所下降,但两组动物的移植细胞存活时间均超过28d,并且BDNF基因修饰MSCs能提高移植细胞术后28d时的存活率。免疫组化显示组Ⅲ部分移植细胞表达BDNF,术后28d的阳性表达率比术后7d有显著性下降,而其余两组无阳性染色。
     结论经鼓阶开窗移植MSCs对听力的损害是轻微(<10dB SPL)和暂时的(<28d)。移植后光镜下耳蜗形态结构没有明显变化。移植细胞能存活并分布于耳蜗内各周,主要在耳蜗底周的外淋巴腔,BDNF基因转染MSCs后可以提高移植细胞的存活率。基因修饰的MSCs能在正常耳蜗内维持表达BDNF至少28d,暗示了MSCs可用作细胞载体向内耳输送BDNF治疗感音神经性聋。
     第三章
     BDNF基因修饰骨髓间充质干细胞在致聋豚鼠内耳的表达及对螺旋神经元的保护作用
     目的多种因素包括神经营养因子减少、噪音、缺血、耳毒性药物等均会导致内耳毛细胞和螺旋神经元(spiral ganglion neurons,SGNs)的直接或间接的死亡,细胞死亡主要以凋亡的形式。在前面已证明BDNF基因修饰MSCs具备体外及正常耳蜗内表达BDNF的能力,并可以在内耳中存活至少28d,本章中将进一步分析工程细胞在药物致聋豚鼠内耳的表达水平(荧光定量RT-PCR)及对SGNs的保护作用。
     方法阿米卡星致聋的豚鼠随机分两组。实验组经鼓阶开窗注射BDNF-MSCs,对照组注射外淋巴液。每组均在7d及28d处死动物。荧光定量RT-PCR检测两组动物不同时间点的耳蜗组织BDNF的表达差异,并取耳蜗组织切片行TUNEL检测SGNs凋亡。
     结果实验组在术后7d和28d的BDNF表达量均显著性高于对照组,实验组术后7d的BDNF表达量是对照组的107倍,术后28d下降为33倍。实验组术后7d及28d的耳蜗SGNs凋亡指数均比对照组有显著性下降。
     结论药物致聋豚鼠内耳移植的BDNF基因工程细胞能维持表达长达28d,并能显著减少SGNs的凋亡。
PartⅠ
     Establishment of BDNF-engineered mesenchymal stem cells and its expression in vitro
     Objective Cell replacement and gene therapy are attractive research giving new hope to cure sensorineural hearin loss.One of the key points for long-term expression of target gene in vivo is that what kind of vector to be selected.Bone marrow mesenchymal stem cells(MSCs) do possess easy-manipulation,differentiated multipotention,agility immigration,relatively immuno-privilege,which potentially enable their allogeneic therapeutic and autotransplantation.MSCs have gained rapidly increasing attention as a therapeutic tool for gene delivery.This part is aim to establish genetic engineering cell using brain-derived neurotrophic factor(BDNF) gene transected MSCs by means of non-virus vector,and explore its characteristics and expression in vitro,provide engineering cell population for subsequent research.
     Methods The MSCs were obtained from the tibias and femurs of the guinea pigs.After cultured for free passages,flow cytometry(FCM) analysis was used to detect markers CD44,CD34,and CD45.By comparison of two non-virus vectors as lipofectamine and electroporation,the better was choice to transfer pcDNA3.1(-)-BDNF to MSCs and stable DNA integration were selected by culturing with G418 of optimized concentration.Expressed BDNF were detected by immunohistochemistry 48h post-tranfection and after selection.The expression of BDNF also confirmed by RT-PCR following by electrophoresis.
     Results MSCs population were isolated and expanded successful with distinct expression of CD44,CD34 and CD45 by 94.65%,4.37%,7.81% respectively.Immunohistochemistry transient expressed BDNF was 5%by lipofectamine and 25%by electroporation.Stable expression cell lines of BDNF engineered MSCs,with 90%expression rate of BDNF by immunohistochemistry and expression of BDNF mRNA confirmed by RT-PCR, were successfully established by electroporation whereas failed by lipofectamine.
     Conclusions Genetic engineering cells using BDNF transected MSCs were established by electroporation whereas failed by lipofectamine,and the expressed BDNF was confirmed by immunohistochemistry and RT-PCR in vitro.
     PartⅡ
     Transplantation of bone BDNF-engineered mesenchymal stem cells into the cochlea of normal guinea pigs
     Objective BDNF-engineered MSCs has the potential to treat an array of degenerative neurologic disorders including sensorineural hearing impairment. But the following questions must be identified in its practice.First is the functional and structural influence to recipients inner ear by cells transplantation;Second is the distribution and survival of grafted MSCs.Third is that how long can the BDNF-engineered MSCs maintain the expression of the target gene in vovo.By now there are no studies on transgened MSCs transplanted into the guinea pig cochleas.The main purpose of this prospective animal study was to reveal the questions as mentioned above, serving as control for the studies on deafened models.
     Methods the guinea pigs of normal hearing serving as recipients were performed an intraperilymphatic transplantation of different mixture with scala tympani injection.GroupⅠserved as a negative control without any intervention,groupⅡwere injected MSCs,and groupⅢinjected BDNF-engineered MSCs,grafted cells were labeled by DAPI.Preoperative and postoperative ABR audibility thresholds were compared between and within group.Cochlear structure was evaluated by microscopic examination of paraffin sections cut through the cochlea of the recipient animals.The distribution and survival of transplanted cells was evaluated by fluorescence microscope.Expressed BDNF was detected by immunohistochemistry.
     Results An identical significant elevated ARB thresholds were found in 7 days postoperatively at frequency 4kHz,8 kHz,16 kHz in groupⅡandⅢ, but the impairment was transcent and recovered within 28 days.NO distinct structural alternation was found in cochlea postoperatively.7 days postoperatively,most transplanted cells labeled by DAPI in groupⅢandⅢwere found in the scala tympani and scala vestibule,even a small number located in the scala media and modiolus.28 days postoperatively,labeled cells still exist in perilymphatic space despite significantly decrement. BDNF-engineered MSCs had higher survivals in inner ears compare to bare MSCs.The positive immunohistochemical reaction was detected in groupⅢin 7 and 28 days postoperatively,differed from the other two groups which were negative.
     Conclusions The trancent hearing impairment was found when using MSCs transplantation with scala tympani injection,which could recover within 28 days.NO distinct structural alternation was found in cochlea postoperatively.The grafted cells can survive at least for 28 days in the cochlea and have the potential to migrate.BDNF transfection can elevated survivals of grafted MSCs.Thus,BDNF-engineered MSCs can be used as vehicles to deliver the BDNF gene into the cochlea with implications for the treatment of sensorineural deafness.
     PartⅢ
     The expression of BDNF-engineered MSCs transplanted into the cochlea of the deafened guinea pigs and its protection to the spiral ganglion neurons in vovo
     Objective BDNF plays an important role in regulating the survival and differentiation of various neuronal populations including spiral ganglion neurons(SGNs).Based on these salutary effects of BDNF and the expression of BDNF-engineered MSCs in vitro and in normal cochlea,its expression level and efficacy in preventing the spiral ganglion neurons(SGNs) apoptosis in the deafened guinea pigs cochlea were evaluated in this part.
     Methods 24 guinea pig deafened by amikacin subcutaneous injection were randomly divided into two group,BDNF-engineered MSCs were transplanted into the cochlea of the experimental group with scala tympani injection,while the control group were injected artificial perilymphatic fluid.Total RNA were extracted for semiquantitatve real time RT- PCR,and TUNEL was used to identify the apoptotic neurons.
     Results The BDNF expressive level in experimental group was significant higher than in the control group,respectively,107 and 28 times higher at 7 days and 28 days postoperatively.The decreased apoptotic index of SGNs were detected in the experimental group compared to the control group.
     Conclusions BDNF-engineered MSCs can maintain high level expressed BDNF for at least 28 days after transplanted into deafened cochlea of the guinea pigs,and provide neurotrophic effect on SGNs by preventing its apoptosis.
引文
[1]卜行宽.世界卫生组织预防聋和听力减退工作最新进展和我们的工作情况.中华耳鼻咽喉科杂志,2004,39(5):316-318.
    [2]Morton NE.Genetic epidemiology of hearing impairment.Ann N Y Acad Sci,1991-630:16-31.
    [3]Khan AM,Handzel O,Burgess BJ,et al.Is word recognition correlated with the number of surviving spiral ganglion cells and electrode insertion depth in human subjects with cochlear implants?.Laryngoscope,2005,115(4):672-7.
    [4]Ernfors P,Van De Water T,Loring J,et al.Complementary roles of BDNF and NT-3in vestibular and auditory development.Neuron,1995,14(6):1153-64.
    [5]Wise AK,Richardson R,Hardman J,et al.Resprouting and survival of guinea pig cochlear neurons in response to the administration of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3.J Comp Neurol,2005,487(2):147-65.
    [6]Liu GH,Xie DH,Zhu GH,et al.[Effect of EGCG on H2O2-induced MnSOD gene expression in cultured spiral ganglion cells].Zhong Nan Da Xue Xue Bao Yi Xue Ban,2004,29(6):682-5.
    [7]罗欣荣,谢鼎华,刘强和.EGCG对阿米卡星诱导的大鼠螺旋神经元凋亡的保护作用.听力学及言语疾病杂志,2008,16(4):308-312.
    [8]Kawamoto K,Yagi M,Stover T,et al.Hearing and hair cells are protected by adenoviral gene therapy with TGF-betal and GDNF.Mol Ther,2003,7(4):484-92.
    [9]Yagi M,Kanzaki S,Kawamoto K,et al.Spiral ganglion neurons are protected from degeneration by GDNF gene therapy.J Assoc Res Otolaryngol,2000,1(4):315-25.
    [10]Nakaizumi T,Kawamoto K,Minoda R,et al.Adenovirus-mediated expression of brain-derived neurotrophic factor protects spiral ganglion neurons from ototoxic damage.Audiol Neurootol,2004,9(3):135-43.
    [11]Yamagata T,Miller JM,Ulfendahl M,et al.Delayed neurotrophic treatment preserves nerve survival and electrophysiological responsiveness in neomycin-deafened guinea pigs.J Neurosci Res,2004,78(1):75-86.
    [12]Glueckert R,Bitsche M,Miller JM,et al.Deafferentation-associated changes in afferent and efferent processes in the guinea pig cochlea and afferent regeneration with chronic intrascalar brain-derived neurotrophic factor and acidic fibroblast growth.factor.J Comp Neurol,2008,507(4):1602-21.
    [13]Zhai SQ,Wang DJ,Wang JL,et al.Basic fibroblast growth factor protects auditory neurons and hair cells from glutamate neurotoxicity and noise exposure. Acta Otolaryngol, 2004,124(2):124-9.
    [14] Lousteau RJ. Increased spiral ganglion cell survival in electrically stimulated, deafened guinea pig cochleae. Laryngoscope, 1987,97(7 Pt l):836-42.
    [15] Mitchell A, Miller JM, Finger PA, et al. Effects of chronic high-rate electrical stimulation on the cochlea and eighth nerve in the deafened guinea pig. Hear Res, 1997,105(l-2):30-43.
    [16] Lee JE, Nakagawa T, Kim TS, et al. A novel model for rapid induction of apoptosis in spiral ganglions of mice. Laryngoscope, 2003,113(6):994-9.
    [17] Lefebvre PP, Malgrange B, Lallemend F, et al. Mechanisms of cell death in the injured auditory system: otoprotective strategies. Audiol Neurootol, 2002,7(3): 165-70.
    [18] Pirvola U, Xing-Qun L, Virkkala J, et al. Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. J Neurosci, 2000,20(1):43-50.
    [19] Hu Z, Ulfendahl M, Olivius NP. Survival of neuronal tissue following xenograft implantation into the adult rat inner ear. Exp Neurol, 2004,185(1):7-14.
    [20] Olivius P, Alexandrov L, Miller JM, et al. A model for implanting neuronal tissue into the cochlea. Brain Res Brain Res Protoc, 2004,12(3): 152-6.
    [21] Ito J, Kojima K, Kawaguchi S. Survival of neural stem cells in the cochlea. Acta Otolaryngol, 2001,121(2): 140-2.
    [22] Li H, Roblin G, Liu H, et al. Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc Natl Acad Sci U S A, 2003,100(23): 13495-500.
    [23] Okano T, Nakagawa T, Endo T, et al. Engraftment of embryonic stem cell-derived neurons into the cochlear modiolus. Neuroreport, 2005,16(17):1919-22.
    [24] Matsumoto M, Nakagawa T, Kojima K, et al. Potential of embryonic stem cell-derived neurons for synapse formation with auditory hair cells. J Neurosci Res, 2008.
    [25] Tateya I, Nakagawa T, Iguchi F, et al. Fate of neural stem cells grafted into injured inner ears of mice. Neuroreport, 2003,14(13):1677-81.
    [26] Parker MA, Corliss DA, Gray B, et al. Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hear Res, 2007,232(l-2):29-43.
    [27] Tamura T, Nakagawa T, Iguchi F, et al. Transplantation of neural stem cells into the modiolus of mouse cochleae injured by cisplatin. Acta Otolaryngol Suppl, 2004(551):65-8.
    [28] Iguchi F, Nakagawa T, Tateya I, et al. Trophic support of mouse inner ear by neural stem cell transplantation.Neuroreport,2003,14(1):77-80.
    [29]葛圣雷,谢鼎华,朱钢华,等.骨髓基质干细胞豚鼠内耳移植初步观察.听力学及言语疾病杂志,2005,13(3):177-178.
    [30]Naito Y,Nakamura T,Nakagawa T,et al.Transplantation of bone marrow stromal cells into the cochlea of chinchillas.Neuroreport,2004,15(1):1-4.
    [31]Matsuoka AJ,Kondo T,Miyamoto RT,et al.In vivo and in vitro characterization of bone marrow-derived stem cells in the cochlea.Laryngoscope,2006,116(8):1363-7.
    [32]Matsuoka AJ,Kondo T,Miyamoto RT,et al.Enhanced survival of bone-marrow-derived pluripotent stem cells in an animal model of auditory neuropathy.Laryngoscope,2007,117(9):1629-35.
    [33]Lin DW,Trune DR.Breakdown of stria vascularis blood-labyrinth barrier in C3H/lpr autoimmune disease mice.Otolaryngol Head Neck Surg,1997,117(5):530-4.
    [34]Trune DR.Cochlear immunoglobulin in the C3H/lpr mouse model for autoimmune hearing loss.Otolaryngol Head Neck Surg,1997,117(5):504-8.
    [35]Yagi M,Magal E,Sheng Z,et al.Hair cell protection from aminoglycoside ototoxicity by adenovirus-mediated overexpression of glial cell line-derived neurotrophic factor.Hum Gene Ther,1999,10(5):813-23.
    [36]Lalwani AK,Han JJ,Castelein CM,et al.In vitro and in vivo assessment of the ability of adeno-associated virus-brain-derived neurotrophic factor to enhance spiral ganglion cell survival following ototoxic insult.Laryngoscope,2002,112(8 Pt 1):1325-34.
    [37]Chen X,Frisina RD,Bowers WJ,et al.HSV amplicon-mediated neurotrophin-3expression protects murine spiral ganglion neurons from cisplatin-induced damage.Mol Ther,2001,3(6):958-63.
    [38]Wareing M,Mhatre AN,Pettis R,et al.Cationic liposome mediated transgene expression in the guinea pig cochlea.Hear Res,1999,128(1-2):61-9.
    [39]Staecker H,Li D,O'Malley BW Jr,et al.Gene expression in the mammalian cochlea:a study of multiple vector systems.Acta Otolaryngol,2001,121(2):157-63.
    [40]谢鼎华,杨伟炎,韩德民.听力与耳聋基础和临床现代进展.湖南:湖南科学技术出版社,2007.
    [41]Park KW,Eglitis MA,Mouradian MM.Protection of nigral neurons by GDNF-engineered marrow cell transplantation.Neurosci Res,2001,40(4):315-23.
    [42]Maker TK,Wilt S,Dong Z,et al.IFN-beta gene transfer into the central nervous system using bone marrow cells as a delivery system.J Interferon Cytokine Res,2002,22(7):783-91.
    [43]Makar TK,Trisler D,Eglitis MA,et al.Brain-derived neurotrophic factor(BDNF) gene delivery into the CNS using bone marrow cells as vehicles in mice.Neurosci Lett,2004,356(3):215-9.
    [44]朱纲华,葛圣雷,谢鼎华.脑源性神经营养因子基因修饰骨髓基质细胞对体外培养小鼠螺旋神经元的影响.听力学及言语疾病杂志,2006,14(2):121-121,122-124.
    [45]Okano T,Nakagawa T,Kita T,et al.Cell-gene delivery of brain-derived neurotrophic factor to the mouse inner ear.Mol Ther,2006,14(6):866-71.
    [46]付勇,汪审清,王建亭,等.大鼠胚胎神经干细胞经蜗窗移植到正常耳蜗的研究.中华耳鼻咽喉头颈外科杂志,2008,43(12):535-537.
    [47]Sharif S,Nakagawa T,Ohno T,et al.The potential use of bone marrow stromal cells for cochlear cell therapy.Neuroreport,2007,18(4):351-4.
    [48]Friedenstein AJ,Gorskaja JF,Kulagina NN.Fibroblast precursors in normal and irradiated mouse hematopoietic organs.Exp Hematol,1976,4(5):267-74.
    [49]Kim DH,Yoo KH,Choi KS,et al.Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell.Cytokine,2005,31(2):119-26.
    [50]Labouyrie E,Dubus P,Groppi A,et al.Expression of neurotrophins and their receptors in human bone marrow.Am J Pathol,1999,154(2):405-15.
    [51]Dormady SP,Bashayan O,Dougherty R,et al.Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment.J Hematother Stem Cell Res,2001,10(1):125-40.
    [52]Crigler L,Robey RC,Asawachaicharn A,et al.Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis.Exp Neurol,2006,198(1):54-64.
    [53]Ye M,Chen S,Wang X,et al.Glial cell line-derived neurotrophic factor in bone marrow stromal cells of rat.Neuroreport,2005,16(6):581-4.
    [54]Kinnaird T,Stabile E,Burnett MS,et al.Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms.Circ Res,2004,94(5):678-85.
    [55]Dominici M,Le Blanc K,Mueller I,et al.Minimal criteria for defining multipotent mesenchymal stromal cells.The International Society for Cellular Therapy position statement.Cytotherapy,2006,8(4):315-7.
    [56]McMahon JM,Conroy S,Lyons M,et al.Gene transfer into rat mesenchymal stem cells:a comparative study of viral and nonviral vectors.Stem Cells Dev,2006,15(1):87-96.
    [57]Lee K,Majumdar MK,Buyaner D,et al.Human mesenchymal stem cells maintain transgene expression during expansion and differentiation.Mol Ther,2001,3(6):857-66.
    [58]鲁玲玲,赵焕英,赵春礼,等.骨髓间充质干细胞基因工程改造方法的比较.中国组织工程研究与临床康复,2007,11(3):471-474,I0002.
    [59]Smith CC,Lynch AM,Gooderham NJ.Evaluating the genetic toxicology of DNA-based products using existing genetic toxicology assays.Mutagenesis,2003,18(3):259-64.
    [60]Peister A,Mellad JA,Wang M,et al.Stable transfection of MSCs by electroporation.Gene Ther,2004,11(2):224-8.
    [61]Ferreira E,Potier E,Logeart-Avramoglou D,et al.Optimization of a gene electrotransfer method for mesenchymal stem cell transfection.Gene Ther,2008,15(7):537-44.
    [62]Chen ZY,He CY,Ehrhardt A,et al.Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo.Mol Ther,2003,8(3):495-500.
    [63]Haleem-Smith H,Derfoul A,Okafor C,et al.Optimization of high-effciency transfection of adult human mesenchymal stem cells in vitro.Mol Biotechnol,2005,30(1):9-20.
    [64]Hamm A,Krott N,Breibach I,et al.Efficient transfection method for primary cells.Tissue Eng,2002,8(2):235-45.
    [65]Chan J,O'Donoghue K,de la Fuente J,et al.Human fetal mesenchymal stem cells as vehicles for gene delivery.Stem Cells,2005,23(1):93-102.
    [66]Lu L,Zhao C,Liu Y,et al.Therapeutic benefit of TH-engineered mesenchymal stem cells for Parkinsont's disease.Brain Res Brain Res Protoc,2005,15(1):46-51.
    [67]Lu P,Jones LL,Tuszynski MH.BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury.Exp Neurol,2005,191(2):344-60.
    [68]杨进福,周文武,唐滔,等.血管内皮生长因子转染骨髓间充质干细胞心肌移植对心肌梗死后大鼠心功能及血管新生的作用.中华医学杂志,2006,86(15):1027-1034.
    [69]Tsuchida H,Hashimoto J,Crawford E,et al.Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats.J Orthop Res,2003,21(1):44-53.
    [70]王共先,汪泱,胡红林,等.骨髓间充质干细胞向前列腺癌趋化转移的实验研究.中华实验外科杂志,2006,23(5):582-584.
    [71]Studeny M,Marini FC,Dembinski JL,et al.Mesenchymal stem cells:potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst, 2004,96(21):1593-603.
    [72] Li H, Liu H, Heller S. Pluripotent stem cells from the adult mouse inner ear. Nat Med, 2003,9(10):1293-9.
    [73] Martinez-Monedero R, Yi E, Oshima K, et al. Differentiation of inner ear stem cells to functional sensory neurons. Dev Neurobiol, 2008,68(5):669-84.
    [74] Kondo T, Johnson SA, Yoder MC, et al. Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells. Proc Natl Acad Sci U S A, 2005,102(13):4789-94.
    [75] Jeon SJ, Oshima K, Heller S, et al. Bone marrow mesenchymal stem cells are progenitors in vitro for inner ear hair cells. Mol Cell Neurosci, 2007,34(1):59-68.
    [76] Kamiya K, Fujinami Y, Hoya N, et al. Mesenchymal stem cell transplantation accelerates hearing recovery through the repair of injured cochlear fibrocytes. Am J Pathol,2007,171(1):214-26.
    [77] Hildebrand MS, Dahl HH, Hardman J, et al. Survival of partially differentiated mouse embryonic stem cells in the scala media of the guinea pig cochlea. J Assoc Res Otolaryngol, 2005,6(4):341-54.
    [78] Hu Z, Wei D, Johansson CB, et al. Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear. Exp Cell Res, 2005,302(1):40-7.
    [79] Lim DJ, Kim HN. The canaliculae perforantes of Schuknecht. Adv Otorhinolaryngol, 1983,31:85-117.
    [80] Kawamoto K, Oh SH, Kanzaki S, et al. The functional and structural outcome of inner ear gene transfer via the vestibular and cochlear fluids in mice. Mol Ther, 2001,4(6):575-85.
    [81] Ulfendahl M, Hu Z, Olivius P, et al. A cell therapy approach to substitute neural elements in the inner ear. Physiol Behav, 2007,92(1-2):75-9.
    [82] Olivius P, Alexandrov L, Miller J, et al. Allografted fetal dorsal root ganglion neuronal survival in the guinea pig cochlea. Brain Res, 2003,979(1-2):1-6.
    [83] Hu Z, Andang M, Ni D, et al. Neural cograft stimulates the survival and differentiation of embryonic stem cells in the adult mammalian auditory system. Brain Res, 2005,1051(1-2): 137-44.
    [84] Stover T, Yagi M, Raphael Y. Cochlear gene transfer: round window versus cochleostomy inoculation. Hear Res, 1999,136(1-2): 124-30.
    [85] 罗伟,孙建军,等.豚鼠耳锅内基因治疗的安全性研究.中华医学杂志,2002,82(20): 1424-1426.
    [86]Bogaerts S,Douglas S,Corlette T,et al.Microsurgical access for cell injection into the mammalian cochlea.J Neurosci Methods,2008,168(1):156-63.
    [87]Angoulvant D,Clerc A,Benchalal S,et al.Human mesenchymal stem cells suppress induction of cytotoxic response to alloantigens.Biorheology,2004,41(3-4):469-76.
    [88]Le Blanc K,Rasmusson I,Gotherstrom C,et al.Mesenchymal stem cells inhibit the expression of CD25(interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes.Scand J Immunol,2004,60(3):307-15.
    [89]Di Nicola M,Carlo-Stella C,Magni M,et al.Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli.Blood,2002,99(10):3838-43.
    [90]Le Blanc K.Immunomodulatory effects of fetal and adult mesenchymal stem cells.Cytotherapy,2003,5(6):485-9.
    [91]Bartholomew A,Sturgeon C,Siatskas M,et al.Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo.Exp Hematol,2002,30(1):42-8.
    [92]Stankovic KM,Corfas G.Real-time quantitative RT-PCR for low-abundance transcripts in the inner ear:analysis of neurotrophic factor expression.Hear Res.2003,185(1-2):97-108.
    [93]Ruttiger L,Panford-Walsh R,Schimmang T,et al.BDNF mRNA expression and protein localization are changed in age-related hearing loss.Neurobiol Aging.2007,28(4):586-601.
    [94]Fritzsch B,Silos-Santiago I,Bianchi LM,et al.The role of neurotrophic factors in regulating the development of inner ear innervation.Trends Neurosci.1997,20(4):159-64.
    [95]Pirvola U,Ylikoski J.Neurotrophic factors during inner ear development.Curr Top Dev Biol,2003,57:207-23.
    [96]尹金淑,翟所强,等.碱性成纤维细胞生长因子/绿色荧光蛋白基因对药物性耳蜗损害的防治作用.中华医学杂志,2002,82(17):1192-1194.
    [97]邓志宏,王锦玲,邱建华,等.神经营养因子3基因转染对庆大霉素性耳聋保护作用的实验研究.临床耳鼻口冈喉科杂志,2004,18(4):231-233,T002.
    [98]蒋明,张永全,贺广湘,等.羟基磷灰石纳米颗粒介导NT-3基因对豚鼠兴奋毒性损伤耳蜗的保护作用.中南大学学报:医学版,2007,32(4):563-567.
    [99]孙虹,蒋明,朱晒红.用羟基磷灰石纳米粒作内耳基因治疗新载体的体内外研究.中华耳鼻咽喉头颈外科杂志,2008(1):51-57.
    [100]Yang Y,Nunes FA,Berencsi K,et al.Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy.Proc Natl Acad Sci U S A,1994,91(10):4407-11.
    [101]Rejali D,Lee VA,Abrashkin KA,et al.Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons.Hear Res,2007,228(1-2):180-7.
    [102]Webster M,Webster DB.Spiral ganglion neuron loss following organ of Corti loss:a quantitative study.Brain Res,1981,212(1):17-30.
    [103]Doyle KJ,Sininger Y,Starr A.Auditory neuropathy in childhood.Laryngoscope,1998,108(9):1374-7.
    [104]Zheng JL,Stewart RR,Gao WQ.Neurotrophin-4/5 enhances survival of cultured spiral ganglion neurons and protects them from cisplatin neurotoxicity.J Neurosci,1995,15(7 Pt 2):5079-87.
    [105]陈谦,吴燕,等.BDNF基因对噪音引起的听神经元损伤的保护作用.解剖学报,2003,34(1):95-98.
    [106]Khan AM,Handzel O,Damian D,et al.Effect of cochlear implantation on residual spiral ganglion cell count as determined by comparison with the contralateral nonimplanted inner ear in humans.Ann Otol Rhinol Laryngol,2005,114(5):381-5.
    [107]Shepherd RK,Coco A,Epp SB,et al.Chronic depolarization enhances the trophic effects of brain-derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss.J Comp Neurol,2005,486(2):145-58.
    [108]Rubio D,Garcia-Castro J,Manin MC,et al.Spontaneous human adult stem cell transformation.Cancer Res,2005,65(8):3035-9.
    [109]Zhu W,Xu W,Jiang R,et al.Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo.Exp Mol Pathol,2006,80(3):267-74.
    [11O]Boeda B,Weil D,Petit C.A specific promoter of the sensory cells of the inner ear defined by transgenesis.Hum Mol Genet,2001,10(15):1581-9.
    [111]Helms AW,Abney AL,Ben-Arie N,et al.Autoregulation and multiple enhancers control Math1 expression in the developing nervous system.Development,2000,127(6):1185-96.
    [112]Kanzaki S,Stover T,Kawamoto K,et al.Glial cell line-derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation.J Comp Neurol,2002,454(3):350-60.
    [113]Richardson RT,Thompson B,Moulton S,et al.The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite ontgrowth from auditory neurons.Biomaterials,2007,28(3):513-23.
    [1] Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol, 1976,4(5):267-74.
    [2] Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006,8(4):315-7.
    [3] Colter DC, Class R, DiGirolamo CM, et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A, 2000,97(7):3213-8.
    [4] Hess D, Li L, Martin M, et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol, 2003,21(7):763-70.
    [5] Doyonnas R, LaBarge MA, Sacco A, et al. Hematopoietic contribution to skeletal muscle regeneration by myelomonocytic precursors. Proc Natl Acad Sci U S A, 2004,101(37):13507-12.
    [6] Dezawa M, Kanno H, Hoshino M, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest, 2004,113(12):1701-10.
    [7] Levy YS, Merims D, Panet H, et al. Induction of neuron-specific enolase promoter and neuronal markers in differentiated mouse bone marrow stromal cells. J Mol Neurosci, 2003,21(2):121-32.
    [8] Wang G, Bunnell BA, Painter RG, et al. Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proc Natl Acad Sci U S A, 2005,102(l):186-91.
    [9] Jaiswal N, Haynesworth SE, Caplan AI, et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem, 1997,64(2):295-312.
    [10] Dennis JE, Caplan AI. Differentiation potential of conditionally immortalized mesenchymal progenitor cells from adult marrow of a H-2Kb-tsA58 transgenic mouse. J Cell Physiol, 1996,167(3):523-38.
    [11] Kim DH, Yoo KH, Choi KS, et al. Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell. Cytokine, 2005,31(2): 119-26.
    [12] Labouyrie E, Dubus P, Groppi A, et al. Expression of neurotrophins and their receptors in human bone marrow. Am J Pathol, 1999,154(2):405-15.
    [13] Dormady SP, Bashayan O, Dougherty R, et al. Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment. J Hematother Stem Cell Res, 2001,10(1):125-40.
    [14] Crigler L, Robey RC, Asawachaicharn A, et al. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol, 2006,198(1):54-64.
    [15] Ye M, Chen S, Wang X, et al. Glial cell line-derived neurotrophic factor in bone marrow stromal cells of rat. Neuroreport, 2005,16(6):581-4.
    [16] Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res, 2004,94(5):678-85.
    [17] Angoulvant D, Clerc A, Benchalal S, et al. Human mesenchymal stem cells suppress induction of cytotoxic response to alloantigens. Biorheology, 2004,41(3-4):469-76.
    [18] Matsuoka AJ, Kondo T, Miyamoto RT, et al. Enhanced survival of bone-marrow-derived pluripotent stem cells in an animal model of auditory neuropathy. Laryngoscope, 2007,117(9): 1629-35.
    [19] Ito J, Kojima K, Kawaguchi S. Survival of neural stem cells in the cochlea. Acta Otolaryngol, 2001,121(2):140-2.
    [20] Hu Z, Ulfendahl M, Olivius NP. Survival of neuronal tissue following xenograft implantation into the adult rat inner ear. Exp Neurol, 2004,185(1 ):7-14.
    [21] Olivius P, Alexandrov L, Miller JM, et al. A model for implanting neuronal tissue into the cochlea. Brain Res Brain Res Protoc, 2004,12(3): 152-6.
    [22] Li H, Roblin G, Liu H, et al. Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc Natl Acad Sci U S A, 2003,100(23):13495-500.
    [23] Okano T, Nakagawa T, Endo T, et al. Engraftment of embryonic stem cell-derived neurons into the cochlear modiolus. Neuroreport, 2005,16(17): 1919-22.
    [24] Matsumoto M, Nakagawa T, Kojima K, et al. Potential of embryonic stem cell-derived neurons for synapse formation with auditory hair cells. J Neurosci Res, 2008.
    [25] Tateya I, Nakagawa T, Iguchi F, et al. Fate of neural stem cells grafted into injured inner ears of mice. Neuroreport, 2003,14(13): 1677-81.
    [26] Parker MA, Corliss DA, Gray B, et al. Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hear Res, 2007,232(l-2):29-43.
    [27]Tamura T,Nakagawa T,Iguchi F,et al.Transplantation of neural stem cells into the modiolus of mouse cochleae injured by cisplatin.Acta Otolaryngol Suppl,2004(551):65-8.
    [28]Iguchi F,Nakagawa T,Tateya I,et al.Trophic support of mouse inner ear by neural stem cell transplantation.Neuroreport,2003,14(1):77-80.
    [29]葛圣雷[1],谢鼎华[2],朱钢华[2],等.骨髓基质干细胞豚鼠内耳移植初步观察.听力学及言语疾病杂志,2005,13(3):177-178,i001.
    [30]Naito Y,Nakamura T,Nakagawa T,et al.Transplantation of bone marrow stromal cells into the cochlea of chinchillas.Neuroreport,2004,15(1):1-4.
    [31]Matsuoka AJ,Kondo T,Miyamoto RT,et al.In vivo and in vitro characterization of bone marrow-derived stem cells in the cochlea.Laryngoscope,2006,116(8):1363-7.
    [32]Li H,Liu H,Heller S.Pluripotent stem cells from the adult mouse inner ear.Nat Med,2003,9(10):1293-9.
    [33]Martinez-Monedero R,Yi E,Oshima K,et al.Differentiation of inner ear stem cells to functional sensory neurons.Dev Neurobiol,2008,68(5):669-84.
    [34]Lin DW,Trune DR.Breakdown of stria vascularis blood-labyrinth barrier in C3H/lpr autoimmune disease mice.Otolaryngol Head Neck Surg,1997,117(5):530-4.
    [35]Trune DR.Cochlear immunoglobulin in the C3H/lpr mouse model for autoimmune hearing loss.Otolaryngol Head Neck Surg,1997,117(5):504-8.
    [36]Fritzsch B,Silos-Santiago I,Bianchi LM,et al.The role of neurotrophic factors in regulating the development of inner ear innervation.Trends Neurosci,1997,20(4):159-64.
    [37]Pirvola U,Ylikoski J.Neurotrophic factors during inner ear development.Curr Top Dev Biol,2003,57:207-23.
    [38]Yagi M,Magal E,Sheng Z,et al.Hair cell protection from aminoglycoside ototoxicity by adenovirus-mediated overexpression of glial cell line-derived neurotrophic factor.Hum Gene Ther,1999,10(5):813-23.
    [39]Chen X,Frisina RD,Bowers WJ,et al.HSV amplicon-mediated neurotrophin-3expression protects murine spiral ganglion neurons from cisplatin-induced damage.Mol Ther,2001,3(6):958-63.
    [40]Lalwani AK,Han JJ,Castelein CM,et al.In vitro and in vivo assessment of the ability of adeno-associated virus-brain-derived neurotrophic factor to enhance spiral ganglion cell survival following ototoxic insult.Laryngoscope,2002,112(8 Pt 1):1325-34.
    [41]Wareing M,Mhatre AN,Pettis R,et al.Cationic liposome mediated transgene expression in the guinea pig cochlea.Hear Res,1999,128(1-2):61-9.
    [42]Park KW,Eglitis MA,Mouradian MM.Protection of nigral neurons by GDNF-engineered marrow cell transplantation.Neurosci Res,2001,40(4):315-23.
    [43]Makar TK,Wilt S,Dong Z,et al.IFN-beta gene transfer into the central nervous system using bone marrow cells as a delivery system.J Interferon Cytokine Res,2002,22(7):783-91.
    [44]Makar TK,Trisler D,Eglitis MA,et al.Brain-derived neurotrophic factor(BDNF)gene delivery into the CNS using bone marrow cells as vehicles in mice.Neurosci Lett,2004,356(3):215-9.
    [45]朱纲华,葛圣雷,谢鼎华.脑源性神经营养因子基因修饰骨髓基质细胞对体外培养小鼠螺旋神经元的影响.听力学及言语疾病杂志,2006,14(2):121-121,122-124,T0001.
    [46]Okano T,Nakagawa T,Kita T,et al.Cell-gene delivery of brain-derived neurotrophic factor to the mouse inner ear.Mol Ther,2006,14(6):866-71.
    [47]Sharif S,Nakagawa T,Ohno T,et al.The potential use of bone marrow stromal cells for cochlear cell therapy.Neuroreport,2007,18(4):351-4.
    [48]Hildebrand MS,Dahl HH,Hardman J,et al.Survival of partially differentiated mouse embryonic stem cells in the scala media of the guinea pig cochlea.J Assoc Res Otolaryngol,2005,6(4):341-54.
    [49]Hu Z,Wei D,Johansson CB,et al.Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear.Exp Cell Res,2005,302(1):40-7.
    [50]Lim DJ,Kim HN.The canaliculae perforantes of Schuknecht.Adv Otorhinolaryngol,1983,31:85-117.
    [51]Kondo T,Johnson SA,Yoder MC,et al.Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells.Proc Natl Acad Sci U S A,2005,102(13):4789-94.
    [52]Jeon SJ,Oshima K,Heller S,et al.Bone marrow mesenchymal stem cells are progenitors in vitro for inner ear hair cells.Mol Cell Neurosci,2007,34(1):59-68.
    [53]Kamiya K,Fujinami Y,Hoya N,et al.Mesenchymal stem cell transplantation accelerates hearing recovery through the repair of injured cochlear fibrocytes.Am J Pathol,2007,171(1):214-26.
    [54]Lang H,Ebihara Y,Schmiedt RA,et al.Contribution of bone marrow hematopoietic stem cells to adult mouse inner ear:mesenchymal cells and fibrocytes.J Comp Neurol,2006,496(2):187-201.
    [55]Xia A,Kikuchi T,Hozawa K,et al.Expression of connexin 26 and Na,K-ATPase in the developing mouse cochlear lateral wall:functional implications.Brain Res, 1999,846(1): 106-11.
    [56] Hirose K, Liberman MC. Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea. J Assoc Res Otolaryngol, 2003,4(3):339-52.
    [57] Bermingham NA, Hassan BA, Price SD, et al. Mathl: an essential gene for the generation of inner ear hair cells. Science, 1999,284(5421): 1837-41.
    [58] Kawamoto K, Ishimoto S, Minoda R, et al. Mathl gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci, 2003,23(11):4395-400.
    [59] Izumikawa M, Minoda R, Kawamoto K, et al. Auditory hair cell replacement and hearing improvement by Atohl gene therapy in deaf mammals. Nat Med, 2005,11(3):271-6.
    [60] Haleem-Smith H, Derfoul A, Okafor C, et al. Optimization of high-efficiency transfection of adult human mesenchymal stem cells in vitro. Mol Biotechnol, 2005,30(1):9-20.
    [61] Hamm A, Krott N, Breibach I, et al. Efficient transfection method for primary cells. Tissue Eng, 2002,8(2):235-45.
    [1]Richardson RT,Noushi F,O'Leary S.Inner ear therapy for neural preservation.Audiol Neurootol JT-Audiology & neuro-otology,2006,11(6):343-56.
    [2]陈谦,郭维维,吴燕,等.腺病毒介导的NT 3基因转染对噪音损伤的耳蜗螺旋神经细胞的保护作用.生理学报,2002,54(5):263-266.
    [3]Okano T,Nakagawa T,Kita T,et al.Cell-gene delivery of brain-derived neurotrophic factor to the mouse inner ear.Mol Ther JT - Molecular therapy:the journal of the American Society of Gene Therapy,2006,14(6):866-71.
    [4]Izumikawa M,Minoda R,Kawamoto K,et al.Auditory hair cell replacement and hearing improvement by Atohl gene therapy in deaf mammals.Nat Med JT - Nature medicine,2005,11(3):271-6.
    [5]Zine A,Aubert A,Qiu J,et al.Hesl and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear.J Neurosci JT - The Journal of neuroscience:the official journal of the Society for Neuroscience,2001,21(13):4712-20.
    [6]Vidal A,Koff A.Cell-cycle inhibitors:three families united by a common cause.Gene JT-Gene,2000,247(1-2):1-15.
    [7]Sage C,Huang M,Karimi K,et al.Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein.Science JT- Science(New York,N.Y.),2005,307(5712):1114-8.
    [8]Helms AW,Abney AL,Ben-Arie N,et al.Autoregulation and multiple enhancers control Mathl expression in the developing nervous system.Development JT-Development (Cambridge,England),2000,127(6):1185-96.
    [9]Boeda B,Weil D,Petit C.A specific promoter of the sensory cells of the inner ear defined by transgenesis.Hum Mol Genet JT - Human molecular genetics,2001,10(15):1581-9.
    [10]张鄂,龚树生.干细胞移植在治疗感音性耳聋方面的研究进展.国外医学耳鼻咽喉科学分册,2005,29:372-375.
    [11]Ito J,Kojima K,Kawaguchi S.Survival of neural stem cells in the cochlea.Acta Otolaryngol JT - Acta oto-laryngologica,2001,121(2):140-2.
    [12]Maeda Y,Fukushima K,Nishizaki K,et al.In vitro and in vivo suppression of GJB2expression by RNA interference.Hum Mol Genet JT - Human molecular genetics,2005,14(12):1641-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700