用户名: 密码: 验证码:
聚(3,4-乙撑二氧噻吩)复合材料的制备及其电化学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器因具有比功率高、比电容高、循环性能好、成本低、“绿色”环保等众多优点而广泛应用于航空航天、交通运输、电子计算机等领域。目前,导电聚合物以其快速高效充放电、温度宽、环境友好、成本低的特性,成为一种很有前途的超级电容器电极材料。其中聚3, 4-乙撑二氧噻吩(简称为PEDOT)尤其备受关注,但是PEDOT因其理论比容量低等缺点而被限制发展。因此本文主要研究PEDOT的复合材料来克服其不足,具体内容如下:
     (1)以碳纳米管(CNTs)为基体,制备不同CNTs质量百分比的PEDOT/CNTs纳米复合物,并探讨其电化学性能。考虑到CNTs分散性和相容性不良,因此对CNTs进行聚苯乙烯磺酸盐(PSS)的修饰,并水热法成功制备出核-壳型PEDOT/PSS-CNTs复合材料,其比电容达198.2 F·g-1,循环2000圈以后比电容衰减26.9%。同时,研究以该复合材料为电极组装成对称电容器来研究其电化学电容行为。
     (2)由于金属氧化物的能量密度一般都比较高,因此本文采用微波法和界面聚合法分别制备PEDOT/RuO2·xH2O和PEDOT/MnO2纳米复合物。并证明PEDOT/RuO2·xH2O复合物在150 oC热处理后有良好的电化学可逆性和电容特性,而且在0.15 A g-1电流密度下比电容达到153.3 F g-1,当升高到0.8 A g-1时,比容量衰减量大约为17%。另外,制备的PEDOT/MnO2的纳米复合物证明是一种具有多孔孔道结构的无定型材料,当在-0.2~0.8 V (vs. SCE)范围内,电流密度为0.5 A·g-1时,单电极比容量达到196.3 F·g-1,500次循环后仍保持有90%的比容量。
     (3)本文制备了PEDOT/PANI纳米复合物,并和活性碳组成混合电容器。该混合电容器在1.0 V的电位窗口下,以0.5 M H2SO4为电解质,当电流密度为1/2 A g-1时,比容量达30.7 F g-1,功率密度达到324.9 W kg-1。为了进一步提高该混合电容器的性能,我们考虑将含有+1价态的无机金属盐与H2SO4溶液组成混合电解液体系,电化学测试表明在0.5 M H2SO4 + 0.2 M K2SO4混合体系下,混合电容器的比电容,能量密度和功率密度具有明显的提高。
Supercapacitors has attracted wide attention and applied in many fields including aviation and aerospace, transportation, communication and computer because of high energy density, high specific capacitance, long cycle life, low cost and green environmental conservation. At present, conducting polymers (COPs) can be considered as a kind of promising materials owning to quick and efficient charge-discharge, temperature relief, environmental amicability and low cost. Among the COPs, poly (3, 4-ethylenedioxythiophene) (PEDOT) has drawn a wide interest. However, PEDOT also has some inevitable shortcomings such as the relatively small‘‘theoretic SC’’. Therefore, we focus on the PEDOT-based composite with good electrochemical capacitance behavior. The details are as follows:
     (1) PEDOT/CNTs nanocomposite was synthesized by using the CNTs as the template, and the effect of various mass ratios of CNTs on the electrochemical capacitance of the composite was investigated. Moreover, due to the poor solubility and compatibility of CNTs, a non-covalent method was used to functionalize CNTs with poly (sodium 4-styrene sulfonate) (PSS), then the core-shell PEDOT/PSS-CNTs nanocomposite was successfully realized via hydrothermal polymerization. The nanocomposite had a specific capacitance of 198.2 F g-1 and a capacitance degradation of 26.9% after 2000 cycles. And the electrochemical measurements of the symmetric supercapacitor based on the PEDOT/PSS-CNTs nanocomposite were further studied.
     (2) Due to the high energy density of the metal oxide, PEDOT/RuO2·xH2O and PEDOT/MnO2 nanocomposite could be synthesized by microwave-assisted and interfacial polymerization, respectively. As for the PEDOT/RuO2·xH2O nanocomposite, the composite system annealing at 150 oC might possess the most favorable electrochenmical properties with the specific capacitance of 153.3 F g-1 at the current density of 0.15 A g-1. While the current density was increased to 0.8 A g-1, the loss was up to about 17%. In other hand, the as-prepared PEDOT/MnO2 nanocomposite was proved to be amorphous and porous. The specific capacitance of nanocomposite was 196.3 F g-1 at the current density of 0.5 A g-1 with the potential range of -0.2~0.8 V (vs. SCE), and the capacity retention of the nanocomposite was about 90% after 500 cycles.
     (3) Asymmetric supercapaciotors based on as-prepared PEDOT/PANI nanocomposite as a positive electrodes and activated carbon as a negative electrode were successfully fabricated. The results showed that the asymmetric supercapacitor could deliver the specific capacitance of 30.7 F g-1 and a power density of 324.9 W kg-1 in a potential window range between 0 and 1 V in 0.5 M H2SO4 aqueous electrolyte. In addition, the hybrid electrolyte including the inorganic compound including +1 metal ions and H2SO4 solution was investigated to further improve the electrochemical performance of the asymmetric supercapacitor. The electrochemical tests indicated that the specific capacitance, energy density and power density of the asymmetric supercapacitor had the most enhancements in the 0.5 M H2SO4 + 0.2 M K2SO4 hybrid electrolyte.
引文
[1] Kotz R, Carlen M. Principles and applications of electrochemical capacitors [J]. Electrochim. Acta, 2000, 45: 2483~2498.
    [2] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? [J]. Chem. Rev. 2004, 104 (10): 4245~4269.
    [3] Andrew B. Ultracapacitors: Why, How, and where Is the Technology [J]. J. Power Sources, 2000, 91(1): 34~50.
    [4] Conway B E, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors [J]. J. Power Sources, 1997, 66(1~2): 1~14.
    [5] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors [J]. Chem. Rev., 2004, 104(10): 4245~4270.
    [6] Chu A, Braatz P. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. Initial characterization [J]. J. Power Sources, 2002, 112(1): 261~269.
    [7] Conway B E, Pell W G. Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices [J]. J. Power Sources, 2002, 112(1): 236~246.
    [8] Schaller K V, Gruber C. Fuel cell drive and high dynamic energy storage systems-opportunities for the future city bus [J]. Fuel Cells Bulletin, 2000, 3(27): 9~13.
    [9] Gutamnn G. Hybrid electric vehicles and electrochemical storage systems-a technology push-pull couple [J]. J. Power Sources, 1999, 84(2): 275~279.
    [10] Conway B E. Transition from“supercapacitor”to“battery”behavior in electrochemical energy storage [J]. J. Electrochem. Soc., 1991, 138(6): 1539~1548
    [11] Arbizzani C, Mastragostino M, Soavi F. New trends in electrocemical supercapacitors [J]. J. Power Sources, 2001, 100(1-2):164~170.
    [12] Venkat S. Mathematical modeling of electrochemical capacitor [J]. J. Electrochem. Soc., 1999, 146(5):1650~1658.
    [13] Qu D Y. Stuies of actived carbons used in double-layer supercapacitors [J]. J. Power Sources, 2002, 109(2): 403~411.
    [14] Shi H. Activated carbons and double layer capacitance [J]. Electrochim. Acta, 1996, 41:1633~1639.
    [15] Gryglewica G, Machnikowski J, Grabowska E L. et al. Effect of pore size distribution of coal-based activated carbons on double layer capacitance [J]. Electrochim. Acta, 2005, 50: 1197~1200.
    [16]江奇,瞿美臻,张伯兰等.电化学超级电容器电极材料的研究进展[J].无机材料学报, 2002, 17(4): 649~654.
    [17] Nishino A. Capacitor: operating principles, current market and technical trends [J]. J. Power Sources, 1996, 60(2): 137~147.
    [18] Pell W G, Conway B E, Adams W A. et al. Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV application [J], J. Power Sources, 1999, 80(1-2): 134~141.
    [19] Rudge A, Raistrick I, Gottesfeld S. et al. A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors [J]. Electrochim. Acta, 1994, 39(2):273~287.
    [20]唐致远,徐国祥.电子导电聚合物在电化学电容器中的应用[J].化工进展, 2002, 22(9): 652~655.
    [21] Jayakannan M, Annu S, Ramalekshmi S. Structural effects of dopants and polymerization methodologies on the solid-state ordering and morphology of polyaniline [J]. J. Polym. Sci. Part B: Polym. Phys., 2005, 43(11): 1321-1331.
    [22] Pell W G, Conway B E. Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes [J]. J. Power Sources, 2004, 136(2): 334~345.
    [23]梁吉,马仁志,魏秉庆等.基于碳纳米管的超级电容器[J].中国科学E辑, 2000, 30: 112~115.
    [24]江奇,刘宝春,瞿美臻等.多壁碳纳米管结构与其电化学容量之间关系的研究[J].化学学报, 2002, 60(8): 1539~1543.
    [25]罗建民.基于氧化锰的超级电容器电极材料的电化学电容行为[D].硕士学位论文.新疆:新疆大学, 2007.
    [26] Beguin F, Szostak K, Lota G, et al. A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends [J]. Adv. Mater., 2005, 17: 2380~2384.
    [27] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizesless than 1 nanometer [J]. Sceince, 2006, 313(5794): 1760~1763.
    [28] Futaba D N, Hata K, Yamada T, et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes [J]. Nat. Mater., 2006, 5(12): 987~994.
    [29] Wei S, Kang W P, Davidson J L, et al. Supercapacitive behavior of CVD carbon nanotubes grown on ti coated Si wafer [J]. Diamond & Related Materials, 2008, 17(4~5): 906~911.
    [30] Wang D W, Li F, Liu M, et al. Improved capacitance of SBA-15 templated mesoporous carbons after modification with nitric acid oxidation [J]. New carbon Materials, 2007, 22(4): 307~314.
    [31] Yang J, Liu Y F, Chen X M, et al. Carbon electrode material with high densities of energy and power [J]. Acta Phys-Chim Sin, 2008, 24(1):13~19.
    [32] Hu C C, Liu M J, Chang K H. Anodic deposition of hydrous ruthenium oxide for supercapacitors [J]. Electrochim. Acta, 2007, 163: 1126~1131.
    [33] Liang Y Y, Li H L, Zhang X G. Solid state synthesis of hydrous ruthenium oxide for supercapacitors [J]. J. Power Source, 2007, 173(1):599~602.
    [34] Gujar T P, Shinde V R, Lokhande C D, et al. Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor [J]. Electrochem. Commun., 2007, 9(3): 504~510.
    [35] Lee B J, Sivakkumar S R, Ko J M, et al. Carbon nanofibre/hydrous RuO2 nanocomposite electrodes for supercapacitors [J]. J. Power Sources, 2007, 168(2): 546~552.
    [36] Liu Y, Zhao W. W, Zhang X G. Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors [J]. Electrochim. Acta, 2008, 53: 3296~3304.
    [37] Prasad K R, Miura N. Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors [J]. Electrochem. Commun., 2004, 6(8): 849~852.
    [38] Liu H T, He P, Li Z Y, et al. A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte [J]. Electrochim. Acta, 2006, 51(10):1925~1931.
    [39]何天白,胡汉杰.海外高分子科学的新进展[M].北京:化学工业出版社,1997: 140~152
    [40] Shirakawa H, Louis E J, MacDiarmid A G, et al; Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x [J]. Chem. Commun., 1977, 16(5): 578~580
    [41] Seott J C, Pfluger P, Krounbi M T, et al. Electron-spin-resonance studies of pyrrole polymers: evidence for bipolarons [J]. Phys. Rev. B. 1983, 28(4): 2140~2145.
    [42]李永舫.导电聚合物[J].化学进展,2002, 14(3): 207~211.
    [43] Hong J S, Joo M, Vittal R, et al. Improved photocurrent-voltage characteristics of Ru (II)-Dye sensitized solar cells with polypyrrole-anchored TiO2 films [J]. J. Electrochem. Soc., 2002, 149: E493~E496.
    [44] Li Y X, Hagen J, Haarer D. Novel photoelectrochromic cells containing a polyaniline layer and a dye-sensitized nanocrystalline TiO2 photovoltaic cell [J]. Synth. Met., 1998, 94: 273~277.
    [45] Kros A, Nolte R J M, Sommerdijk N A J M. Conducting polymers with confined dimensions [J]. Adv. Mater., 2002, 14(23): 1779~1782.
    [46] Garcia B, Lamzoudi A, Pillier F, et al. Oxide/polypyrrole composite films for corrosion protection of iron [J]. J. Electrochem. Soc. 2002, 149: B560~B566.
    [47] Park N G, Ryu K S, Park Y J, et al. Synthesis and electrochemical properties of V2O5 intercalated with binary polymers [J]. J. Power Sources, 2002, 103:273~276.
    [48] Ryu K S, Jeong S K, Joo J, et al. Polyaniline doped with dimethyl sulfate as a nucleophilic dopant and its electrochemical properties as an electrode in a lithium secondary battery and a redox supercapacitor [J]. J. Phys. Chem. B, 2007, 111(4): 731~739.
    [49] Fan L Z, Maier J. High-performance polypyrrole electrode materials for redox supercapacitors [J]. Electrochem. Commun., 2006, 8(6): 937~940.
    [50] Wu Q F, He K X, Mi H Y, et al. Electrochemical capacitance of polypyrrole nanowire prepared by using cetyltrimethylammonium bromide (CTAB) as soft template [J]. Mater. Chem. Phys., 2007, 101(2-3): 367~371.
    [51] Fonseca C P, Benedetti J E. Neves S. Poly (3-methyl thiophene)/PVDF composite as an electrode for supercapacitors [J]. J. Power Sources, 2006, 158(1): 789~794.
    [52] Zhou H H, Chen H, Luo S L, et al. The effect of the polyaniline morphology on the performance of polyaniline supercapacitors [J]. J. Solid State Electrochem., 2005, 9: 574~580.
    [53] Kim B C, Ko J M, Wallace G G. A novel capacitor material based on nafion-doped polypyrrole [J]. J. Power Source, 2008, 177(2): 665~668.
    [54] Pan L J, Pu L, Shi Y, et al. Synthesis of polyaniline nanotubes with a reactive template of manganese oxide [J]. Adv. Mater., 2007, 19(3): 461~464.
    [55] Wang Y G, Li H Q, Xia Y Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance [J]. Adv. Mater., 2006, 18(19): 2619~2623.
    [56] Mi H Y, Zhang X G, Ye X G, et al. Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapacitors [J]. J. Power Source, 2008, 176(1): 403~409.
    [57] Sharma R K, Rastogi A C, Desu S B. Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor [J]. Electrochim. Acta, 2008, 53(26): 7690~7695.
    [58] Kim T Y, Lee T H, Kim J E, et al. Organic solvent dispersion of poly (3, 4- ethylenedioxythiophene) with the use of polymeric ionic liquid [J]. J. Polym. Sci. Part A: Polym. Chem., 2008, 46: 6872~6879.
    [59] Selvaganesh S V, Mathiyarasu J, Phani K L N, et al. Chemical synthesis of PEDOT-Au nanocomposite [J]. Nanoscale Res. Lett., 2007, 2: 546–549.
    [60] Groenendaal L B, Jonas F, Freitag D, et al. Poly (3, 4-ethylenedioxythiophene) and its derivatives: past, present and future [J]. Adv. Mater., 2000, 12: 481~494.
    [61] Dai C A, Chang C J, Chi H Y, et al. Mulsion synthesis of nanoparticles containing PEDOT using conducting polymeric surfactant: synergy form colloid stability and intercalation doping [J]. J. Polym. Sci. Part A: Polym. Chem., 2008, 46: 2536~2548.
    [62] Chen J H, Dai C A, Chiu W Y. Synthesis of highly conductive EDOT copolymer films via oxidative chemical in situ polymerization [J]. J. Polym. Sci. Part A: Polym. Chem., 2008, 46: 1662~1673.
    [63] Carlberg C, Chen X W, Inganas O. Ionic transport and electronic structure in poly (3, 4-ethylenedioxythiophene) [J]. Solid State Ionics, 1996, 85: 73~78.
    [64] Louwet F, Groenendaal L, Dhaen J, et al. PEDOT/PSS: synthesis, characterization, properties and applications [J]. Synth. Met., 2003, 135~136: 115~117.
    [65] Kros A, VanHovell W F M, Sommerdijk N A J M, et al. Poly (3, 4-ethylenedioxythiophene)-based glucose biosensors [J]. Adv. Mater., 2001, 13: 1555~1557.
    [66]孙小杰,肖迎红.导电聚3,4-乙撑二氧噻吩的制备及性能[J].高分子材料科学与工程, 2007, 23(2): 141~144.
    [67] Liu R, Cho S I, Lee S B. Poly (3, 4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor [J]. Nanotechnology, 2008, 19: 215710~215717.
    [68] Ryu K S, Lee Y G, Hong Y S, et al. Poly(ethylenedioxythiophene) (PEDOT) as polymer electrode in redox supercapacitor [J]. Electrochim. Acta, 2004, 50: 843~847.
    [69] Han G, Yuan J, Shi G., et al. Electrodeposition of polypyrrole/multiwalled carbon nanotubecomposite films [J]. Thin Solid Films, 2005, 474: 64~69.
    [70] Lota K, Khomenko V, Frackowiaka E. Capacitance properties of poly (3, 4-ethylenedioxythiophene)/carbon nanotubes composites [J]. J. Phys. Chem. Solids, 2004, 65: 295~301.
    [71] Wang J, Xu Y L, Sun X F, et al. Electrochemical capacitance of the composite of poly (3, 4-ethylenedioxythiophene) and functionalized single-walled carbon nanotubes [J]. J. Solid State Electrochem., 2008, 12: 947~952.
    [72] Selvakumar M, Bhat D K. Activated carbon-polyethylenedioxythiophene composite electrodes for symmetrical supercapacitors [J]. J. Appl. Polym. Sci., 2008, 107: 2165~2170
    [73] Peng C, Snook G A, Fray D J, et al. Carbon nanotube stabilised emulsions for electrochemical synthesis of porous nanocomposite coatings of poly 3, 4-ethylene-dioxythiophene [J]. Chem. Commun., 2006, 44: 4629~4631.
    [74] Chen L, Yuan C Z, Dou H, et al. Synthesis, electrochemical capacitance of core-shell poly(3,4-ethylenedioxythiophene)/poly(sodium-4-styrenesulfonate)-modified multiwalled carbon nanotube nanocomposites [J]. Electrochim. Acta, 2009, 54: 2335~2341.
    [75] Huang L M, Lin H Z, Wen T C, et al. Highly dispersed hydrous ruthenium oxide in poly (3, 4-ethylenedioxythiophene)-poly (styrene sulfonic acid) for supercapacitor electrode [J]. Electrochim. Acta, 2006, 52: 1058~1063.
    [76] Liu F J. Electrodeposition of manganese dioxide in three-dimensional poly (3, 4-ethylenedioxythiophene)-poly (styrene sulfonic acid)-polyaniline for supercapacitor [J]. J. Power Source, 2008, 182(1): 383~388.
    [77] Xu Y L, Wang J, Sun W, et al. Capacitance properties of poly (3, 4-ethylenedioxythiophene)/polypyrrole composites [J]. J. Power Source, 2006, 159(1): 370-373.
    [78] Zhang L J, Peng H, Kilmartin P A, et al. Poly (3, 4-ethylenedioxythiophene) and polyaniline bilayer nanostructures with high conductivity and electrocatalytic activity [J]. Macromolecules, 2008, 41: 7671~7678.
    [79] Garreau S, Louarn G, Buisson J P, et al. In situ spectroelectrochemical raman studies of poly (3, 4-ethylenedioxythiophene) (PEDT) [J]. Macromolecules, 1999, 32: 6807~6812.
    [80] O’Connell M J, Boul P, Ericson L M, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping [J]. Chem. Phys. Lett., 2001, 342(3~4): 265~271.
    [81] Gong K P, Yu P, Su L, et al. Polymer-assisted synthesis of manganese dioxide/carbon nanotubenanocomposite with excellent electrocatalytic activity toward reduction of oxygen [J]. J. Phys. Chem. C, 2007, 111, 1882~1887.
    [82] Du N, Zhang H, Chen B D, et al. Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors [J]. Adv. Mater., 2007, 19: 1641~1645.
    [83] Wu M Q, Snook G A, Gupta V, et al. Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline [J]. J. Mater. Chem., 2005, 15: 2297~2303.
    [84] Zheng J P, Huang J, Jow T R. The limitations of energy density for electrochemical capacitors [J]. J. Electrochem. Soc., 1997, 144(6): 2026 ~2031.
    [85] Jow T R, Zheng J P. Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide [J]. J. Electrochem. Soc., 1998, 145(1): 49~52.
    [86] Hong J, Yeo I H, Paika W K. Conducting polymer with metal oxide for electrochemical capacitor [J]. J. Electrochem. Soc., 2001, 148: A156~A163.
    [87] Wang J C, Yu X F, Li Y X, et al. Poly (3, 4-ethylenedioxythiophene)/mesoporous carbon composite [J]. J. Phys. Chem. C, 2007, 111: 18073~18077.
    [88] Subramanian V, Zhu H W, Vajtai R, et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures [J]. J. Phys. Chem. B, 2005, 109: 20207~20214.
    [89] Chang J K, Tsai W T. Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors [J]. J. Electrochem. Soc., 2003, 150(10): A1333~A1338.
    [90] Liu R, Lee S B. MnO2/poly (3, 4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage [J]. J. Am. Chem. Soc., 2008, 130: 2942~2943.
    [91] Wang Y G, Wu W, Cheng L, et al. A Polyaniline-intercalated layered manganese oxide nanocomposite prepared by an inorganic/organicinterface reaction and its high electrochemical performance for Li storage [J]. Adv. Mater., 2008, 20: 1~5.
    [92]方惠群,侯士峰,陈洪渊.乙撑二氧噻吩在中性水溶液中的电化学聚合及行为研究[J].化学通报, 1995, 53: 710~715
    [93] Feng Q, Kanoh H, Miyai Y, et al. Metal ion extraction/insertion reactions with todorokite-type manganese oxide in the aqueous phase [J]. J. Chem. Mater., 1995, 7: 1722~1727.
    [94] Wang X F, Ruan D B, Wang D Z, et al. Hybrid electrochemical supercapacitors based onpolyaniline and activated carbon electrodes [J]. Acta Physico-Chimica Sinica, 2005, 21(3): 261~266.
    [95] Wang Y G, Cheng L, Xia Y Y. Electrohemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution [J]. J. Power Sources, 2006, 153(1):191~196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700