用户名: 密码: 验证码:
盐酸埃他卡林预防压力超负荷大鼠心血管重构作用及其可能的内皮机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     高血压是最常见的心血管疾病,其主要病理生理学特征表现为压力超负荷(pressure overload)和心血管重构(cardiovascular remodeling),包括血管重构(vascular remodeling)和心脏重构(cardiac remodeling)。大量的临床研究表明,高血压心肌重构不但可导致心室的收缩及舒张功能障碍,还是心肌梗塞、甚至心衰死亡的重要独立危险因素。因此能否逆转高血压所致的心血管重构,从而降低严重心脏事件的发生率和病死率,已成为临床高血压治疗的关键,开发新型的抗高血压、抗心血管重构的新药仍是心血管领域研究的热点之一。
     方法:
     在体实验:雄性SD大鼠,体重180~220 g。麻醉后于左肋弓下缘纵切口,分离出腹主动脉后用外径为0.7 mm的小圆棒和腹主动脉一起结扎形成腹主动脉缩窄模型,诱导心肌肥大和重构。
     离体实验:取新生的1~3d的SD大鼠乳鼠心脏,消化后行心肌细胞原代培养。用异丙肾上腺素(isoproterenol ,ISO)诱导心肌细胞肥大,观察ISO对心肌细胞蛋白质含量和心肌细胞内游离Ca~(2+)的影响。
     第一部分盐酸埃他卡林(iptakalim, IPT)对压力超负荷大鼠心血管重构的作用大鼠随机分为6组:⑴假手术对照组;⑵模型对照组;⑶IPT 1 mg/kg组;⑷IPT 3 mg/kg组;⑸IPT 9 mg/kg组;⑹L isenopril 15 mg/kg组。其中假手术对照组大鼠只行手术通路,不结扎腹主动脉,其余手术操作均和手术组相同。其它各组大鼠均做模型处理。各组药物均溶于NS中,于术后第3天灌胃给药,给药容积为0.5 ml/l00 g体重。每天1次,假手术对照组和模型对照组仅给予等体积普通蒸馏水,连续灌胃给药6周。实验结束后八导生理记录仪观察血流动力学和心脏功能的变化,HE染色和Masson’s染色观察心血管组织病理学改变,RT-PCR检测心肌肥大的标志基因——心钠素(atrial natriuretic peptide, ANP)和脑钠素(brain natriuretic peptide, BNP)的表达。
     第二部分:IPT逆转心血管重构的内皮机制
     (一)内皮素系统在压力超负荷大鼠模型中的作用
     大鼠随机分为5组:⑴假手术对照组;⑵模型对照组;⑶IPT 1 mg/kg组;⑷IPT 3 mg/kg组;⑸IPT 9 mg/kg组。手术方案同第一部分。放射免疫法测定血浆中内皮素-1(endothelin-1, ET-1)的含量,RT-PCR观察心肌组织ET-1和内皮素转化酶(endothelin converting enzyme, ECE)的表达,免疫组化法检测心肌组织ETA和ETB的表达。
     (二) eNOS-NO信号通路在压力超负荷大鼠模型中的作用
     大鼠随机分为5组:⑴假手术对照组;⑵模型对照组;⑶I PT 3 mg/kg组;⑷左旋硝基精氨酸甲酯(N G-nitro-L- arginine methyl ester, L-NAME) 50 mg/kg (L-NAME 50)组;⑸IPT 3 mg/kg + L-NAME 50 mg/kg (IPT 3+L-NAME 50)组。手术方案同第一部分。实验结束后八导生理记录仪观察血流动力学和心脏功能的变化,HE染色和Masson’s染色观察心肌组织病理学改变,RT-PCR心肌组织内皮型一氧化氮合酶(endothelial nitric oxide synthase, eNOS )mRNA的表达,免疫组化法检测心肌组织eNOS的表达,生化法观察血浆中一氧化氮(nitric oxide, NO)含量的变化。
     (三)前列环素(prostacyclin, PGI_2)在压力超负荷大鼠模型中的作用
     大鼠随机分为5组:⑴假手术对照组;⑵模型对照组;⑶IPT 3 mg/kg组;⑷i ndomethacin 2 mg/kg (Indo 2)组;⑸IPT 3mg/kg + indomethacin 2 mg/kg (IPT 3+Indo 2)组。手术方案同第一部分。实验结束后八导生理记录仪观察血流动力学和心脏功能的变化,HE染色和Masson’s染色观察心肌组织病理学改变,放射免疫法观察血浆中PGI_2含量的变化。
     第三部分:IPT对异丙肾上腺素诱导的培养心肌细胞肥大的影响
     1:确定ISO诱导心肌肥大的最适浓度。将培养72 h后的心肌细胞按1×105/孔接种到24孔板中,随机分为6组,每组设4个复孔。⑴Control;⑵ISO 1×10-8 mol/L;⑶1×10~(-7) mol/L;⑷1×10~(-6) mol/L;⑸1×10~(-5) mol/L;⑹1×10~(-4) mol/L。培养48h后,Lowry’s法测定心肌细胞蛋白含量;2:不同浓度IPT对ISO诱导的肥大心肌细胞总蛋白含量的影响。将培养72 h后的心肌细胞按1×105/孔接种到24孔板中,随机分为6组,每组设4个复孔。⑴Control;⑵ISO 1×10~(-5)mol/L;⑶ISO 1×10~(-5)mol/L+IPT 1×10~(-7)mol/L;⑷ISO 1×10~(-5)mol/L+IPT 1×10~(-6)mol/L;⑸ISO 1×10~(-5)mol/L+IPT1×10~(-5)mol/L;⑹ISO 1×10~(-5)mol/L+IPT 1×10~(-4)mol/L。培养48h后,Lowry’s法测定心肌细胞蛋白含量;3:将培养72 h后的心肌细胞按1×105/孔接种到24孔板中,随机分为6组,每组设4个复孔。⑴Control;⑵ISO 1×10~(-5)mol/L;⑶ISO 1×10~(-5)mol/L+IPT 1×10~(-7)mol/L;⑷ISO 1×10~(-5)mol/L+IPT 1×10~(-6)mol/L;⑸ISO 1×10~(-5)mol/L+IPT 1×10~(-5)mol/L;⑹ISO 1×10~(-5)mol/L+IPT 1×10~(-4)mol/L。培养48h后,激光共聚焦显微镜测定每组心肌细胞Ca2+含量,每组取20个细胞。
     结果:
     第一部分IPT对压力超负荷大鼠心血管重构的作用
     血压:整个实验6 wk内,假手术组收缩压(systolic blood pressure, SBP)基本保持稳定,模型组大鼠血压呈时间依赖性增加,各时间点血压均比基础值升高约1.5 kPa左右,IPT 1,3,9 mg/kg/d和Lisenopril 15 mg/kg/d治疗自试验第2周起,可以明显降低大鼠尾动脉SBP。腹主动脉缩窄6 wk后,与假手术组相比,模型组大鼠颈动脉SBP,舒张压(diastolic blood pressure, DBP),平均动脉压(mean blood pressure, MBP)和腹主动脉跨狭窄部位收缩压压力差(Transtenosis gradient of SBP)都明显增高(P<0.01 vs Sham组)。经过IPT 1,3,9 mg/kg/d治疗6 wk后,各组大鼠颈动脉SBP,DBP,MBP,腹主动脉跨狭窄部位收缩压压力差呈剂量相关性降低。
     心功能:与假手术组相比,模型组大鼠的左室收缩压(left ventricular systolic pressure, LVSP),左室压力最大上升速率(maximal rate of left ventricular systolic pressure, +dp/dtmax),左室压力最大下降速率(maximal rate of left ventricular diastolic pressure, -dp/dtmax),心肌纤维缩短速度的生理最大值(Vmp),心肌纤维缩短速度的理论最大值(Vmax)均明显增加,表明为了适应腹主动脉缩窄后后负荷的增加,模型组大鼠动用了左心室的心力储备,收缩功能明显增强(P<0.01 vs Sham组),而左心室舒张末期压(left ventricular end diastolic pressure, LVEDP)和假手术组相比明显降低,表明模型组大鼠左心室的舒张功能减弱,心肌的顺应性降低。而经过IPT 1,3,9 mg/kg/d治疗6 wk后,各组大鼠的心室舒缩功能明显改善。
     心血管重构:腹主动脉缩窄后6 wk,可引起全心指数(heart weight/body weight, HW/BW)、左心指数(left ventricular weight/body weight, LVW/BW)、右心指数(right ventricular weight/body weight, RVW/BW)和肺指数(lung weight/body weight, LW/BW)都明显增加,表明心脏发生了大体上的重构,模型组大鼠心肌细胞横截面积(cardiomyocyte cross-section area)、心肌间质胶原容积分数(collagen volume fraction, CVF)、心肌血管周围胶原面积(perivscular collagen area, PVCA)心肌的羟脯氨酸含量(hydroxyproline)和对照组相比明显增加(P<0.05,P<0.01 vs Sham组)。与假手术组相比,模型组大鼠主动脉的血管总面积(total artery area, TAA)、管腔总面积(lumen area, LA)、血管管壁面积(cross-section area, CSA)、CSA/TAA、血管平均直径(artery diameter, AD)、血管管壁平均厚度(media)以及M/L等参数均明显增加,表明模型组大鼠的主动脉发生了明显的重构(P<0.01 vs Sham组)。腹主动脉缩窄6 wk后,大鼠心肌组织ANP、BNP mRNA的表达明显上调(P<0.01 vs Sham组)。经IPT 1,3,9 mg/kg/d治疗后,各剂量组均能明显降低心脏指数和肺指数,可剂量相关地抑制心肌细胞横截面积增加,分别为41.54%,43.59%,44.10%(P<0.01 vs Control组);可剂量相关地抑制CVF的升高,分别为35.71%,73.21%(P<0.01 vs Control组),87.98%(P<0.01 vs Control组);可剂量相关地抑制PVCA的升高,分别为34.96%,56.50%(P<0.05 vs Control组),66.26%(P<0.05 vs Control组);可剂量相关地抑制大鼠心肌的羟脯氨酸含量的升高,抑制率分别为56.72%,92.53%(P<0.05 vs Control组)和92.53%(P<0.05 vs Control组),可剂量相关地下调大鼠心肌组织ANP、BNP mRNA的表达(P<0.05, P<0.01 vs Control组)。
     第二部分:IPT逆转心血管重构的内皮机制
     (一)内皮素系统在压力超负荷大鼠模型中的作用
     腹主动脉缩窄6 wk后,大鼠血浆ET-1的含量比假手组明显升高(101.97±19.64 pg/ml vs 135.27±36.91 pg/ml,P<0.05);大鼠心肌组织ET-1、ECE mRNA的表达明显上调(P<0.01 vs Sham组);大鼠心脏的内皮素受体A型(endothelin-1 receptor A type, ETA)、内皮素受体B型(endothelin-1 receptor Btype, ETB)的表达明显上调(P<0.01 vs假手术组)。IPT 1、3、9 mg/kg治疗6 wk后,可剂量相关地抑制大鼠血浆ET-1的升高,分别为(120.11±40.06)pg/ml、(95.98±28.27)pg/ml(P<0.05 vs Control组)和(78.01±21.77)pg/ml(P<0.01 vs Control组);可剂量相关地下调大鼠心肌组织ET-1、ECE mRNA的表达(P<0.05,P<0.01 vs模型组);可剂量依赖性性地下调大鼠心脏ETA、ETB的表达(P<0.05,P<0.01 vs模型组)。
     (二) eNOS-NO信号通路在压力超负荷大鼠模型中的作用
     血压:在6 wk的实验期间,单独应用L-NAME大鼠的SBP随时间逐渐升高,第2 wk、第4 wk、第6 wk的SBP分别为20.6±2.2、20.8±1.7、21.2±1.4 kPa,与同期模型组的SBP 17.9±2.5、18.7±1.2、18.0±1.2 kPa相比差异有显著性(P<0.05,P<0.01)。而IPT 3+L-NAME 50组和单用L-NAME组相比,在第2 wk、第4 wk、第6 wk能分别降低SBP约10.4%、15.1%和10.7%(P<0.0l)。
     心功能:经过6 wk的内源性的NOS抑制后,L-NAME 50组大鼠心室的收缩功能和假手术组相比明显增强,而心室的舒张功能和顺应性明显降低。合用IPT,能明显降低ASBP和LVSP(P<0.05)。此外,我们还发现了一个有趣的现象,L-NAME 50mg/kg/d无论是单独应用还是和IPT合用,都导致了比模型组大鼠还要严重的高血流动力学状态,但却未发生大体形态学上的心肌肥大。
     心脏重构:腹主动脉缩窄6 wk后,无论是单用L-NAME还是和IPT合用,2组大鼠的心脏从大体上和病理学检查上都未发现明显的肥大(vs Sham组)。单用L-NAME组的心肌纤维化程度均比假手术组明显升高,心肌组织羟脯氨酸含量明显增加(P<0.01 vs Sham组),甚至诱发了比模型组更严重的胶原沉积,合用IPT可以改善单独应用L-NAME导致的心肌纤维化,分别为0.87%(CVF)和4.3%(PVCA),明显抑制心肌组织羟脯氨酸含量明显增加(P<0.01 vs L-NAME 50)。电镜结果显示,假手术组大鼠心肌肌丝排列整齐、连续,线粒体和心肌纤维呈平行排列,线粒体嵴突排列整齐,Z线清晰。IPT 3+L-NAME 50组的心肌纤维平行排列,Z线均匀分隔肌小节,卵圆形的线粒体呈列分布在肌纤维之间。而单独用L-NAME组的心肌细胞可以看到无论使线粒体的数量还是体积都比假手术组和IPT 3+L-NAME 50组明显增加。提示当内源性的NOS被抑制后,心肌细胞发生了亚细胞结构的重构,表现为线粒体数量的增加(hyperplasia)和体积的增加(hypertrophy)。IPT可以改善这种亚细胞结构的重构。
     eNOS-NO:腹主动脉缩窄6 wk后,血浆中的NO含量明显低于假手术组(21.56±8.06μmol/L vs 13.89±1.59μmol/L,P<0.05)。IPT1,3,9 mg/kg可以剂量相关地提高血浆中NO含量(P<0.05,P<0.01 vs Control组)。并且血浆中的NO含量和左心室重构指数、心肌胶原含量、SBP(tail-cuff)呈明显的负相关。模型组大鼠心肌组织的eNOS mRNA和eNOS蛋白表达水平和假手术组相比明显下调。经过IPT治疗6 wk后eNOS mRNA和eNOS蛋白表达水平和模型组相比明显增加。单独应用L-NAME 6 wk后,大鼠心肌组织的eNOS mRNA和eNOS蛋白表达被明显抑制,合用IPT后能明显提高被抑制的eNOS mRNA和eNOS蛋白的表达。
     (三)PGI_2在压力超负荷大鼠模型中的作用
     血压:单用indomethacin组SBP(tail-cuff)呈时间依赖性升高,颈动脉收缩压(right carotid aorta systolic blood pressure, ASBP)和跨狭窄部位收缩压差值也明显增加,合用IPT后只能部分而不能完全改善indomethacin诱导的高血流动力学状态,和模型组相比差异无显著性。
     心功能:单用吲哚美辛Indo 2组的心脏收缩功能明显增加,心肌的顺应性明显下降,合用IPT后能明显抑制心肌收缩力的提高,改善心肌的顺应性。心脏重构:腹主动脉缩窄6 wk后,单用吲哚美辛和假手术组相比HW/BW,LVW/BW和RVW/BW比值明显增加,心肌细胞横截面积亦明显增加,合用IPT后只能部分而不能完全改善心肌细胞的肥大。单用Indomethacin后,心肌组织的CVF、PVCA、心肌组织羟脯氨酸含量明显增加(P<0.05,P<0.01 vs Sham组),合用IPT后可明显抑制CVF和PVCA的恶化(P<0.05,P<0.01 vs Indo 2)。明显抑制心肌组织羟脯氨酸含量的增高(P<0.05 vs Indo 2)。
     PGI_2:腹主动脉缩窄6 wk后,模型组血浆中PGI_2含量和假手术组相比明显降低(63.87%,P<0.05 vs Sham组),IPT 1,3,9 mg/kg可以剂量相关地提高血浆中PGI_2含量(P<0.05 vs Control组)。Indo 2组血浆的PGI_2含量和假手术组相比明显降低,和模型组相比也降低了19%,合用IPT后能明显提高血浆中PGI_2的含量(P<0.05 vs Indo 2组)。
     第三部分:IPT对异丙肾上腺素诱导的培养心肌细胞肥大的影响
     1:与对照组相比,ISO1×10~(-5)mol/L组和ISO1×10-4mol/L组的心肌细胞蛋白含量分别增加了24.53%和31.74%(P<0.01),二者之间没有明显差别,说明1×10~(-5)mol/L ISO可以完全激活β-肾上腺素受体(β-adrenergic receptor,β-AR),使心肌细胞蛋白含量显著增加;2:与对照组相比,ISO组心肌细胞蛋白含量增加了39.62%,IPT 1×10~(-7)mol/L组、1×10~(-6)mol/L组、1×10~(-5)mol/L组、1×10-4mol/L组可剂量依赖性地抑制ISO诱导的心肌细胞肥大和蛋白含量的增加,抑制率分别为52.38%、85.71%、95.24%、95.24%。3:与对照组相比,ISO组心肌细胞荧光强度(fluorescence intensity)明显增加(15.18±10.99 vs 125.82±45.56,P<0.01),IPT 1×10~(-7)mol/L组、1×10~(-6)mol/L组、1×10~(-5)mol/L组、1×10-4mol/L组可剂量依赖性地抑制ISO诱导的心肌细胞荧光强度的增加,抑制率分别为26.36%、31.82%、70.91%、90.91%。
     结论:
     1 IPT 1,3,9 mg/kg组可以明显逆转腹主动脉缩窄/压力超负荷大鼠的心血管重构,并且这种逆转作用呈现一定的剂量依赖性;
     2 IPT逆转心血管重构的作用可能与作用于内皮细胞上的KATP通道,恢复内皮细胞的分泌功能密切相关,即增加NO和PGI_2的分泌,抑制ET-1的合成、分泌,抑制内皮素系统的活化;
     3在培养新生乳鼠心肌细胞上,IPT可以剂量依赖性地抑制ISO诱导的心肌细胞肥大和蛋白质含量的增加,其作用机制可能与降低细胞膜静息膜电位,抑制Ca~(2+)内流有关。
Background:
     Hypertension is a substantial public health problem, the major pathophysiological character is pressure overload and cardiovascular remodeling, including vascular remodeling and cardiac remodeling. A lot of clinical investigations reveal that essential hypertension and consequent left ventricular hypertrophy not only contribute to ventricular systolic and diastolic dysfunction, but also have been recognized as a strong, virtually independent risk factor. So the desirability to prevent and induce regression of LVH by drug treatment is widely understood, and a variety of antihypertensive drugs has been shown to cause regression of LVH in treated hypertensives. However, the advantages and disadvantages of these drugs have been debated and there is an impetus for the development of new chemical entities with a more desirable therapeutic endpoint, decreasing morbidity and mortality of hypertensives.
     Methods:
     In vivo: Adult male Sprague–Dawley rats (weight range 180–220 g), after rats were anesthetized, under sterile conditions, the abdominal aorta was exposed through a abdominal incision and constricted at the suprarenal level by a 4-0 silk suture tied around both the aorta and a blunted 22-gauge needle, which was then pulled out. A similar procedure was performed for Sham group except without the ligature.
     In vitro: Sprague–Dawley rats neonatal ventricular myocytes were isolated and cultured. Cardiomyocytes were exposed to isoproterenol (ISO) for 48 h, and the total protein content of the cardiomyocytes was measured. Laser scanning confocal microscope was used to determine the [Ca~(2+)]_i of cardiomyocytes.
     PartⅠThe experimental therapeutic effects of iptakalim on cardiovascular protection in pressure-overload rats
     Animals were divided into 6 groups:⑴Sham group;⑵C ontrol group;⑶IPT 1 mg/kg group;⑷IPT 3 mg/kg group;⑸IPT 9 mg/kg group;⑹Lisenopril 15 mg/kg group. The drugs were dissolved in distilled water and administered orally via a gastric tube. Drugs were administered from 3 days after operation through 6 weeks after surgery. At the end of the experiment, an eight-channel direct-writing oscillograph were used to evaluate the hemodynamics and heart function, the histological changes were investigated by HE and Masson’s stain. RT-PCR method was used to measure the cardiac hypertrophy marker gene, ANP and BNP mRNA expression.
     PartⅡIPT reverse cardiovascular remodeling: Endothelial mechanism
     1 Role of endothelin system in pressure-overload rats
     Animals were divided into 5 groups:⑴Sham group;⑵C ontrol group;⑶IPT 1 mg/kg group;⑷IPT 3 mg/kg group;⑸I PT 9 mg/kg group. Radioimmunoassay was used to determine the serum ET-1 content, RT-PCR method was used to measure the cardiac ET-1 and ECE mRNA expression, immunochemistry method was used to evaluate the cardiac ETA and ETB expression.
     2 Role of eNOS-NO signal pathway in pressure-overload rats
     Animals were divided into 5 groups:⑴Sham group;⑵C ontrol group;⑶IPT 3 mg/kg group;⑷L-NAME 50 mg/kg group;⑸L -NAME 50 mg/kg + IPT 3 mg/kg group. At the end of the experiment, an eight-channel direct-writing oscillograph were used to evaluate the hemodynamics and heart function, the histological changes were investigated by HE and Masson’s stain. RT-PCR method was used to measure the cardiac eNOS mRNA expression, immunochemistry method was used to evaluate the cardiac eNOS expression, and biochemical method was used to determine serum nitric oxide content.
     3 Role of PGI_2 in pressure-overload rats
     Animals were divided into 5 groups:⑴Sham group;⑵C ontrol group;⑶IPT 3 mg/kg group;⑷i ndomethacin 2 mg/kg group (Indo 2);⑸indomethacin 2 mg/kg + IPT 3 mg/kg group(Indo 2+IPT 3). At the end of the experiment, an eight-channel direct-writing oscillograph were used to evaluate the hemodynamics and heart function, the histological changes were investigated by HE and Masson’s stain. Radioimmunoassay was used to determine the serum PGI_2 content.
     PartⅢEffect of ISO on cultured cardiomyocytes hypertrophy induced by ISO
     1: Ascertain the appropriate concentration of ISO inducing cardiomyocytes hypertrophy. Cardiomyocytes were cultured in 24 well tissue culture plates for 72 h, 1×105/well, and then divided into 6 groups:⑴Control group;⑵ISO 1×10-8 mol/L;⑶ISO 1×10~(-7) mol/L;⑷I SO 1×10~(-6) mol/L;⑸ISO 1×10~(-5) mol/L;⑹I SO 1×10~(-4) mol/L. After 48 h, Lowry’s method was used to determine the cardiomyocytes total protein content. 2: Effect of IPT on cardiomyocytes total protein content in ISO-induced cardiomyocytes hypertrophy. Cardiomyocytes were cultured in 24 well tissue culture plate for 72 h, 1×105/well, then divided into 6 group:⑴Control group;⑵ISO 1×10~(-5) mol/L;⑶ISO 1×10~(-5) mol/L+IPT 1×10~(-7) ;⑷ISO 1×10~(-5) mol/L+IPT 1×10~(-6);⑸ISO 1×10~(-5) mol/L+IPT 1×10~(-5);⑹ISO 1×10~(-5) mol/L+IPT 1×10~(-4). After 48 h, Lowry’s method was used to determine the cardiomyocytes total protein content. 3: Effect of IPT on cardiomyocytes [Ca2+]i in ISO-induced cardiomyocytes hypertrophy. Cardiomyocytes were cultured in 24 well tissue culture plate for 72 h, 1×105/well, then divided into 6 group:⑴Control group;⑵I SO 1×10~(-5) mol/L;⑶I SO 1×10~(-5) mol/L+IPT 1×10~(-7) ;⑷ISO 1×10~(-5) mol/L+IPT 1×10~(-6);⑸ISO 1×10~(-5) mol/L+IPT 1×10~(-5);⑹ISO 1×10~(-5) mol/L+IPT 1×10~(-4). After 48 h, laser scanning confocal microscope was used to determine [Ca_~(2+)]_i of cardiomyocytes, 20 cells were selected in each group.
     Results:
     PartⅠThe experimental therapeutic effects of iptakalim on cardiovascular protection in pressure-overload rats
     Blood pressure: During the time course, tail artery systolic blood pressure(SBP) in Sham group maintain at the baseline level, tail artery SBP in Control group increased significantly with a time-dependent manner, IPT 1,3,9 mg/kg/d and Lisenopril 15 mg/kg/d treatment inhibited the increase of tail artery SBP markedly from 2 week. At the end of 6 week, carotid aorta SBP, DBP, MBP and transtenosis gradient of SBP increased significantly with a time-dependent manner(P<0.01 vs Sham group), IPT 1,3,9 mg/kg/d and Lisenopril 15 mg/kg/d treatment inhibited the increase of carotid aorta SBP, DBP, MBP and transtenosis gradient of SBP markedly.
     Heart function: After 42 d of aortic banding, LVSP,±dp/dtmax,Vmp,Vmax increased significantly, while left ventricular LVEDP decreased significantly compared with Sham group (P<0.01). IPT 1, 3, 9 mg/kg/d and Lisenopril 15 mg/kg/d treatment ameliorated left ventricular systolic and diastolic function, augmented cardiac compliance markedly.
     Cardiovascular remodeling:After 42 d of aortic banding, heart weight/body weight(HW/BW), left ventricular weight/body weight(LVW/BW), right ventricular weight/body weight(RVW/BW) , lung weight/body weight(LW/BW) total area of total aorta(TAA), area of lumen(LA), cross-section area(CSA), CSA/TAA, aorta radium(AR), media(M) and M/L increased significantly, indicating a morphological remodeling of heart and aortic remodeling. Cardiomyocytes cross-section area, CVF, PVCA and cardiac tissue hydroxyproline increased significantly compared with Sham group(P<0.05,P<0.01). ANP and BNP mRNA expression increased significantly in Control group rats compared with that in Sham group rats(P<0.01). After treatment with IPT 1,3,9 mg/kg/d, HW/BW, LVW/BW, RVW/BW, LW/BW, cardiomyocyte cross-section area(41.54%,43.59%,44.10%, P<0.01 vs Control group),CVF(35.71%,73.21%,P<0.01 vs Control group), PVCA(34.96%,56.50%,P<0.05 vs Control group),cardiac tissue Hydroxyproline content(56.72%,92.53%,P<0.05 vs Control group) were reversed ,respectively. Cardiac ANP and BNP mRNA expression were downregulated significantly(P<0.05, P<0.01 vs Control group).
     PartⅡIPT reverse cardiovascular remodeling: Endothelial mechanism
     1 Role of endothelin system in pressure-overload rats
     After 42 d of aortic banding, plasma ET-1 content was increased (101.97±19.64 pg/ml vs 135.27±36.91 pg/ml,P<0.05 vs Sham group), cardiac tissue ET-1、ECE mRNA and ETA、ETB protein expression were upregulated in Control group(P<0.01). After treatment with IPT 1,3,9 mg/kg/d, plasma ET-1 content was decreased significantly(P<0.01 vs Control group), the upregulation of cardiac tissue ET-1、ECE mRNA and ETA、ETB protein expression were inhibited markedly(P<0.05,P<0.01 vs Control group).
     2 Role of eNOS-NO signal pathway in pressure-overload rats
     Blood pressure: Chronic L-NAME administration caused persistent severe hypertension. The SBP (of the 2nd, 4th, 6th weeks) were 20.6±2.2, 20.8±1.7 and 21.2±1.4 kPa versus 17.9±2.5, 18.7±1.2 and 18.0±1.2 kPa in Control group rats, respectively (P<0.05, P<0.0l). SBP of L-NAME 50 + iptakalim 3 group in the 2nd, 4th, 6th weeks had 10.4%, 15.1%, 10.7% lower than that of rats given L-NAME alone, respectively(P<0.0l).
     Heart function: After 42 days of NO synthase inhibition, ASBP,LVSP,±dp/dtmax were significantly increased(P<0.05,P<0.01 vs Sham group), while LVEDP decreased markedly (P<0.01 vs Sham group), indicating an enhanced contractility but a reduced diastolic compliance were taken place, and iptakalim could statistically or partially ameliorate the LV function(P<0.05 versus L-NAME 50 group). Interestingly, in L-NAME 50 mg/kg/d rats (whether iptakalim was given or not), the LVW/BW and RVW/BW of rats were not statistically different from those of Sham group, despite of the significant increase in blood pressure.
     Cardiac remodeling: Histological examination demonstrated that both CVF, PVCA and cardiac tissue hydroxyproline revealed significant difference in both L-NAME 50 mg·kg-1·d-1 and IPT 3 mg·kg-1·d-1+L-NAME 50 mg·kg-1·d-1 compared to that of Sham group, and combined with IPT 3 ameliorated cardiac tissue hydroxyproline compared with that of L-NAME 50 alone. However, the extent of myocyte hypertrophy of rats given IPT 3 mg/kg/d +L-NAME 50 mg/kg/d or given L-NAME 50 mg/kg/d alone were not statistically different from those of Sham group. Ultrastructural examination revealed well-organized myofibrils with mitochondria grouped along the periphery of longitudinally oriented fibers were found in Sham group rats, mitochondria tightly packed, intact horizontally oriented cristae in Sham group rats, well-preserved intercalated disk with smooth contours in Sham group rats. The cardiomyocytes in iptakalim 3+L-NAME 50 group showed almost uniform parallel myofibril arrangement. Z-lines dividing the sarcomeres were linear and perpendicular to the myofilaments. Myofibrils alternated with few rows of ovoid mitochondria. However, the number of mithochondria in the latter group seems to be larger. Ultrastructure of the cardiomyocytes from L-NAME-treated rats presented mitochondrial changes, characterized by diffuse mild to moderate increase in size (hypertrophy) and number (hyperplasia), focally forming several rows of enlarged mitochondria separating the myofibrils. Many mitochondria had the appearance of elongated giant mitochondria. Longitudinally oriented cristae, either parallel to the long axis of the mitochondrion or irregular and concentric, were observed in many areas.
     eNOS-NO: After 42 d of aortic banding, serum NO content was decreased (21.56±8.06μmol/L vs 13.89±1.59μmol/L,P<0.05), treatment with IPT 1,3,9 mg/kg increase serum NO content significantly with a dose-dependent manner, significant negative linear correlations were found between LVW/BW, cardiac tissue hydroxyproline , SBP and serum NO. There was a tendency for decreased immunoreactivity to eNOS and eNOS mRNA expression in Control group rats compared with that in Sham group rats. Immunoreactivity for eNOS and eNOS mRNA expression was obviously enhanced in cardiomyocytes by long-term iptakalim treatment. However, long-term L-NAME administration reduced immunoreactivity for eNOS and eNOS mRNA expression which can be completely improved by iptakalim 3 +L-NAME 50.
     3 Role of PGI_2 in pressure-overload rats
     Blood pressure: Chronic indomethacin administration caused time-dependent severe hypertension, increased ASBP and transtenosis blood pressure. Combined with IPT 3 ameliorated indomethacin induced severe hemodynamics partially. There were no statistically difference between these two groups and Control group.
     Heart function: Prolonged administration indomethacin enhanced cardiac contractility and reduced cardiac diastolic compliance, combined with IPT 3 inhibited the increase of cardiac contractility, ameliorated cardiac compliance.
     Cardiac remodeling: After 42 d of aortic banding, HW/BW, LVW/BW, RVW/BW and cardiomyocytes cross-section increased significantly in Indo 2 group. Combined with IPT 3 ameliorated cardiac hypertrophy partially but not completely. Long-term treatment with indomethacin cardiac CVF, PVCA and hydroxyproline increased significantly compared with Sham group(P<0.05,P<0.01), combined with IPT 3 inhibited the deterioration of CVF and PVCA(P<0.05,P<0.01 vs Indo 2) ,inhibited the increase of cardiac hydroxyproline(P<0.05 vs Indo 2).
     PGI_2: After 42 d of aortic banding, plasma PGI_2 content decreased markedly compared with Sham group(63.87%,P<0.05).Long-term treatment with IPT 1, 3, 9 mg/kg increase plasma PGI_2 significantly with a dose-dependent manner. Chronic administration indomethacin decrease plasma PGI_2 content significantly, combined with IPT 3 inhibited the decrease of plasma PGI_2 content markedly(P<0.05 vs Indo 2). PartⅢEffect of ISO on cultured cardiomyocytes hypertrophy induced by ISO 1: The total protein of cardiomyocytes was increased by 24.53% and 31.74% in ISO 1×10~(-5)mol/L group and ISO 1×10~(-4)mol/L group, respectively(P<0.01 vs Control group), and there is no statistically difference between these two group, indicating 1×10~(-5)mol/L ISO can activatedβ-AR completely; 2: The total protein of cardiomyocytes was increased by 39.62% in ISO 1×10~(-5)mol/L group(P<0.01 vs Control group), in IPT 1×10~(-7)mol/L, 1×10~(-6)mol/L, 1×10~(-5)mol/L, 1×10~(-4)mol/L group, the total protein of cardiomyocytes was markedly decreased with a dose-dependent manner and the inhibition rate was 52.38%, 85.71%, 95.24% and 95.24%, respectively; 3: Compared with values in Control group, the fluorescence intensity increased significantly in ISO 1×10~(-5)mol/L group(15.18±10.99 vs 125.82±45.56,P <0.01)which could be inhibited completely in IPT-treated group, and the inhibition rate was 26.36%, 31.82%, 70.91% and 90.91%, respectively.
     Conclusions
     1 iptakalim 1, 3, 9 mg/kg can significantly reverse abdominal aorta binding/pressure- overload induced cardiovascular remodeling with a dose-dependent manner;
     2 iptakalim might possess cardioreparative properties, its mechanism may contribute to binding KATP channel in endothelial cells, ameliorating endothelium cells function, augmenting NO and PGI_2 secretion, inhibiting ET-1 biosynthesis, secretion, inhibiting ET-1 system activation;
     3 In cultured cardiomyocytes in vitro, iptakalim inhibites cardiomyocytes hypertrophy and total protein enhancement, this may contribute to decreasing cell resting membrane potential and inhibiting [Ca~(2+)]_i.
引文
1. Chrysant SG. Vascular remodeling: The role of angiotensin converting enzyme inhibitors [J]. Am Heart J, 1998; 135(2Pt2):S21-S30
    2. Weber KT, Sun Y, Guarda E. Structural remodeling in hypertensive heart disease and the role of hormones [J]. Hypertension, 1994, 23 (6Pt2): 869-877
    3. Pollman MJ, Yamada T, Horiuchi M, Gibbons GH. Vasoactive substances regulate vascular smooth muscle cell apoptosis. Countervailing influences of nitric oxide and angiotensin II [J]. Circ Res, 1996, 79(4):748-756
    4. Crabos M , Coste P, Paccalin M et al. Reduced basal NO-mediated dilation and decreased endothelial NO-synthase expression in coronary vessels of spontaneously hypertensive rats [J]. J Mol Cell Cardiol, 1997,29( l) :55-65
    5. Brilla CG, Janicki JS, Weber KT. Impaired diastolic function and coronary reserve in genetic hypertension. Role of interstitial fibrosis and medial thickening of intramyocardial coronary arteries [J]. Circ Res,1991,69 (1):107-15
    6. Zhu YC, Zhu YZ, Spitznagel H, et al .Substrate metabolism, hormone interaction, and angiotensin-converting enzyme inhibitors in left ventricular hypertrophy [J]. Diabetes ,1996,45 (Suppl1): S59-65
    7. Wang HJ, Zhu YC, Yao T. Effects of all-trans retinoic acid on angiotensin Ⅱ-induced myocyte hypertrophy [J]. J Appl Physiol, 2002, 92 (5):2162-2168
    8. Verdecchia P, Porcellati C, Schillaci G et al. Ambulatory blood pressure an independent predictor of prognosis in essential hypertension [J]. Hypertension, 1994, 24: 793–801
    9. Verdecchia P, Schillaci G, Borgioni C et al. Prognostic significance of serial changes in left ventricular mass in essential hypertension [J]. Circulation, 1998, 97: 48–54
    10. Bolognese L, Dellavesa P, Rossi L et al. Prognostic value of left ventricular mass in uncomplicated acute myocardial infarction and one-vessel coronary arterydisease [J]. Am J Cardiol, 1994, 73: 1-5
    11. Kim S, Ohta K, Hamaguchi A, et al. Effects of an AT1 receptor antagonist, an ACE inhibitor and a calcium channel antagonist on cardiac gene expressions in hypertensive rats [J].Br J Pharmacol, 1996, 118(3):549-556
    12. Kyselovic J, Morel N, Wibo M, et al. Prevention of salt-dependent cardiac remodeling and enhanced gene expression in stroke-prone hypertensive rats by the long -acting calcium channel blocker lacidipine [J]. J Hypertens, 1998, 16(10):1515-1522
    13. Brooks WW, Bing OH, Boluyt MO, et al. Altered inotropic responsiveness and gene expression of hypertrophied myocardium with captopril [J]. Hypertension, 2000, 35 (6):1203-1209
    14. Hocher B, George I, Rebstock J, et al. Endothelin system-dependent cardiac remodeling in renovascular hypertension [J]. Hypertension, 1999, 33 (3): 816-822
    15. 陈庆英,刘国树. 常用抗高血压药物的不良反应及处理[J]. 药物不良反应杂志, 2004, 6(1): 22-27
    16. Wang H. Cardiovascular ATP-sensitive K+ channel as a new molecular target for development of antihypertensive drugs [J]. Acta Pharmacol Sina, 1998, 19: 397-402
    17. Quast U, Cook NS. Moving together: K+ channel openers and ATP-sensitive K+ channels [J]. Trends Pharmacol Sci, 1989, 10(11):431-435
    18. Wang H. Cardiovascular ATP-sensitive potassium channel as a new molecular target for development of antihypertensive drugs [J]. Acta Pharmacologica Sinica, 1998,19(5):397-402
    19. Wang H. Pharmacological characteristics of novel antihypertensive drug, iptakalim hydrochoride and its molecular mechanisms [J]. Drug Dev Res , 2003,58(1):65-68
    20. Wang H, Long CL, Duan ZB, et al. A new ATP-sensitive potassium channelopener protects endothelial function in cultured aortic endothelial cells [J]. Cardiovasc Res, 2007, 73(3):497-503
    21. Jouannot P, Hatt P. Rat myocardial mechanics during pressure-induced hypertrophy development and reversal [J]. Am J Physiol, 1975, 229:355–364
    22. 胡 燕,沈国胜,方达超。清醒大鼠心功能与血流动力学试验法 [M]。见:徐叔云,卞如濂,陈 修 主编。药理实验方法学,第 3 版,北京:人民卫生出版社,2002:976-982
    23. Liao Y, Takashima S, Asano Y, et al. Activation of adenosine A1 receptor attenuates cardiac hypertrophy and prevents heart failure in murine left ventricular pressure-overload model [J]. Circ Res,2003, 93:759–766.
    24. Isoyama S ,Ito N ,Satoh K ,Takishima T .Collagen deposition and the reversal of coronary reserve in cardiac hypertrophy [J]. Hypertension, 1992, 20:491-500
    25. Dao HH , Essalihi R , Graillon J F , et al. Pharmacological prevention and regression of arterial remodeling in a rat model of isolated systolic hypertension[J ] . J Hypertens, 2002, 20:1597-1606.
    26. 于学军, 戚文航, 顾德官,等。自发性高血压大鼠左室肥厚及心肌纤维化的动态变化[J]。高血压杂志,1999,7(2):159~162
    27. Doggrell SA, Brown L. Rat models of hypertension, cardiac hypertrophy and failure [J]. Cardiovasc Res, 1998, 39(1):89-105.
    28. Cutilletta AF, Dowell RJ, Rudnik M, et al. Regression of myocardial hypertrophy 1. Experimental model, changes in. heart weight, nucleic acids and collagen [J]. J Mol Cell Cardiol, 1975, 7:767-780.
    29. 龙超良,冯华松,汪 海. 盐酸埃他卡林对高血压心脏重构的作用[J]。中国药理学通报,2003,19(1):48-51
    30. Xue H, Zhang YL, Liu GS et al. A new ATP-sensitive potassium channel opener protects the kidney from hypertensive damage in spontaneously hypertensive rats [J]. J Pharmacol Exp Ther, 2005, 315: 501-509.
    31. Weber KT. Cardiac interstitium in health and disease: the fibrillar collagen network [J]. J Am Coll Cardiol, 1989, 13(7):1637-1652
    32. Diamond JA, Phillips RA. Hypertensive heart disease [J]. Hypertens Res, 2005, 28 (3): 191 - 202.
    33. Conrad C H, BrooksW W, Hayes J A, et al. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat [J]. Circulation, 1995, 91 (1): 161 - 170.
    34. 34 Baumbach GL, Heistad DD. Remodeling of cerebral arterioles in chronic hypertension [J]. Hypertension, 1989, 13(6 Pt 2):968-972
    35. Dickhout JG, Lee RM. Structural and functional analysis of small arteries from young spontaneously hypertensive rats [J]. Hypertension, 1997, 29(3):781-789
    36. Rizzoni D, Castellano M, Porteri E et al.Vascular structural and functional alterations before and after the development of hypertension in SHR [J]. Am J Hypertens,1994, 7(2):193-200
    37. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling [J]. N Engl J Med, 1994, 330(20):1431-1438
    38. Kamiya A, Togawa T. Adaptive regulation of wall shear stress to flow change in the canine carotid artery [J]. Am J Physiol, 1980, 239(1):H14-21.
    39. Katoh M, Kurosawa Y, Tanaka K, et al. Fluvastatin inhibits O2- and ICAM-1 levels in a rat model with aortic remodeling induced by pressure overload [J]. Am J Physiol Heart Circ Physiol, 2001, 281(2):H655-60
    40. De Bold AJ, Borenstein HB, Veress AT, Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats [J]. Life Sci, 1981, 28:89– 94.
    41. Sagnella GA. Atrial natriuretic peptide mimetics and vasopeptidase inhibitors [J]. Cardiovasc Res, 2001, 51(3):416-428
    42. Maack, T,Suzuki M, Almeida FA, et al. Physiological role of silent receptors ofatrial natriuretic factor [J]. Science, 1987, 238: 675–678
    43. Chien KR, Zhu H, Knowlton KU, et al. Transcriptional regulation during cardiac growth and development [J]. Ann Rev Physiol, 1993, 55: 77–95
    44. Gardner DG. Natriuretic peptides: markers or modulators of cardiac hypertrophy [J]? Trends Endocrinol Metab, 2003, 14(9):411-416
    45. Luchner A, Muders F, Dietl O, et al. Differential expression of cardiac ANP and BNP in a rabbit model of progressive left ventricular dysfunction [J]. Cardiovasc Res, 2001, 51(3):601-607
    46. Yanagisawa M, Kurihara H, Kimura S et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells [J]. Nature, 1988, 332: 411–415.
    47. Cowburn PJ, Cleland JG. Endothelin antagonists for chronic heart failure: Do they have a role [J]? Eur Heart J, 2001, 22(19):1772-1784.
    48. Arai M, Yoguchi A, Iso T, et al. Endothelin-1 and its binding sites are upregulated in pressure overload cardiac hypertrophy [J]. Am J Physiol, 1995, 268(5 Pt 2):H2084-2091
    49. Yorikane R,Sakai S, Miyauchi T et al. Increased production of endothelin-1 in the hypertrophied rat heart due to pressure overload [J]. FEBS Lett, 1993, 332: 31–34
    50. Sakai S, Miyauchi T, Kobayashi M et al. Inhibition of myocardial endothelin pathway improves long-term survival in heart failure [J]. Nature 1996; 384: 353–355.
    51. 汪 海,龙超良,贾国栋,等. 盐酸埃他卡林对内皮素系统的影响[J]. 中国药理学通报, 2005, 21(1): 33-37
    52. 金满文,陈维洲. 内皮素系统及其抑制药[M]. 见: 陈 修,陈维洲,曾贵云 主编. 心血管药理学, 北京: 人民卫生出版社, 第 3 版, 2003: 214-235
    53. Hosoda K, Nakao K, Arai H, et al. Cloning and expression of human endothelin-1 receptor cDNA [J]. FEBS Lett, 1991, 287: 23–26.
    54. Wanner TD, Mitchell JA, De Nucci G, Vane JR. Endothelin-1 and endothelin-3 release EDRF from isolated perfused arterial vessels of the rat and rabbit [J]. J Cardiovasc Pharmacol, 1989, 13: S85–88.
    55. De Nucci G, Thomas R, D’Orleans-Juste P et al. Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor [J]. Proc Natl Acad Sci USA, 1988, 85: 9797–9800.
    56. Ogawa Y, Nakao K, Arai H et al. Molecular cloning of a non-isopeptide selective human endothelin receptor [J]. Biochem Biophys Res Commun, 1991, 178: 248–255.
    57. Haynes WG, Strachan FE, Webb DJ. Endothelin ETA and ETB receptors mediate vasoconstriction of human resistance and capacitance vessels in vivo [J]. Circulation, 1995, 92: 357–363.
    58. Davenport AP, Maguire JJ. Is endothelin-induced vasoconstriction mediated only by ETA receptors in humans [J]? Trends Pharmacol Sci, 1994, 15:9–11.
    59. Watanuki M, Horie M, Tsuchiya K, et al. Endothelin-1 inhibition of cardiac ATP-sensitive K+ channels via pertussis-toxin-sensitive G-proteins [J]. Cardiovasc Res, 1997, 33(1):123-130.
    60. Margulies KB, Hildebrand FL Jr, Lerman A, et al. Increased endothelin in experimental heart failure [J]. Circulation, 1990, 82:2226–2230
    61. Teerlink JR, Lofler BM, Hess P, et al. Role of endothelin in the maintenance of blood pressure in conscious rats with chronic heart failure. Acute effects of the endothelin receptor antagonist Ro 47-0203 (bosentan) [J]. Circulation, 1994, 90:2510–2518
    62. Schunkert H, Orzechowski HD, Bocker W, et al. The cardiac endothelin system in established pressure overload left ventricular hypertrophy [J]. J Mol Med, 1999, 77(8):623-630.
    63. Giannessi D, Del Ry S, Vitale RL . The role of endothelins and the it receptors in heart failure [ J ] . Pharmacol Res, 2001 , 43(2) :111-126.
    64. Kobayashi T, Miyauchi T, Sakai S, et al. Expression of endothelin-1, ETA and ETB receptors, and ECE and distribution of endothelin-1 in failing rat heart [J]. Am J Physiol Heart Circ Physiol, 1999, 276:H1197–1206
    65. Lee GR, Bell D, Kelso EJ, et al. Evidence for altered ETB receptor characteristics during development and progression of ventricular cardiomyocyte hypertrophy [J]. Am J Physiol Heart Circ Physiol, 2004, 287(1):H425-432.
    66. 瞿 卫,王自正,王书奎,黄 敏. 慢性心力衰竭大鼠内皮素系统表达的变化[J]. 中国病理生理杂志,2004, 20(10): 1849 - 1852
    67. Matsuoka H, Nakata M, Kohno K, et al. Chronic L-arginine administration attenuates cardiac hypertrophy in spontaneously hypertensive rats [J]. Hypertension, 1996, 27:14– 18.
    68. Calderone A, Thaik CM, Takahashi N, et al. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts [J]. J Clin Invest, 1998, 101(4):812-818
    69. Liao Y, Asakura M, Takashima S, et al. Celiprolol, a vasodilatory beta-blocker, inhibits pressure overload-induced cardiac hypertrophy and prevents the transition to heart failure via nitric oxide-dependent mechanisms in mice [J]. Circulation, 2004, 110(6):692-699
    70. Liao YL, Asakura M, Takashima S, et al. Benidipine, a long-acting calcium channel blocker, inhibits cardiac remodeling in pressure-overloaded mice [J]. Cardiovasc Res, 2005, 65(4):879-888.
    71. Liu YH, Xu J, Yang XP, et al. Effect of ACE inhibitors and angiotensinⅡ type 1 receptor antagonists on eddothelial NO synthase knockout mice with heart failure [J]. Hypertension, 2002, 39:375-381
    72. Balligand JL, Cannon PJ. Nitric oxide synthases and cardiac muscle. Autocrineand paracrine influences [J]. Arterioscler Thromb Vasc Biol, 1997, 17(10):1846-1858
    73. Yada T, Hiramatsu O, Tachibana H, et al. Role of NO and KATP channels in adenosine-induced vasodilation on in vivo canine subendocardial arterioles [J]. Am J Physiol, 1999, 277: H1931-1939
    74. Ray CJ, Marshall JM. The cellular mechanisms by which adenosine evokes release of nitric oxide from rat aortic endothelium [J]. J Physiol, 2006, 570: 85–96.
    75. Pechanova O, Bernatova I, Pelouch V, Simko F. Protein remodeling of the heart in NO-deficient hypertension: the effect of captopril [J]. J Mol Cell Cardiol, 1997, 29:3365–3374
    76. Takemoto M, Egashira K, Tomita H, et al. Chronic angiotensin-converting enzyme inhibition and angiotensin II type I receptor blockade: Effects on cardiovascular remodeling in rats induced by the long-term blockade of nitric oxide synthesis [J]. Hypertension, 1997, 30:1621–1627.
    77. Dupuis M, Soubrier F, Brocheriou I, et al. Profiling of aortic smooth muscle cell gene expression in response to chronic inhibition of nitric oxide synthase in rats [J]. Circulation, 2004, 110: 867-873.
    78. Arnal JF, Warin L, Michel JB. Determinants of aortic cyclic guanosine monophosphate in hypertension induced by chronic inhibition of nitric oxide synthase [J]. J Clin Invest, 1992, 90: 647–652.
    79. Arnal JF, el Amrani AI, Chatellier G, et al. Cardiac weight in hypertension induced by nitric oxide synthase blockade [J]. Hypertension, 1993, 22(3):380-387.
    80. Bartunek J, Weinberg EO, Tajima M, et al. Chronic NG-Nitro-L-arginine methyl ester–induced hypertension novel molecular adaptation to systolic load in absence of hypertrophy [J] .Circulation, 2000, 101: 423-429.
    81. Janati-Idrissi R, Basson B, Laplace M, Bui MH. In situ mitochondrial function in volume overload- and pressure overload-induced cardiac hypertrophy in rats [J].Basic Res Cardiol, 1995, 90: 305–313.
    82. Kojda G, Kottenberg K. Regulation of basal myocardial function by NO [J]. Cardiovasc Res, 1999, 41: 514–523.
    83. Xie YW, Shen W, Zhao G, et al. Role of endothelium-derived nitric oxide in the modulation of canine myocardial mitochondrial respiration in vitro. Implications for the development of heart failure [J]. Circ Res, 1996, 79:381–387.
    84. Decking UK, Williams JP, Dahmann R, et al. The nitric oxide-induced reduction in cardiac energy supply is not due to inhibition of creatine kinase [J]. Cardiovasc Res, 2001, 51: 313–321.
    85. Ito N, Bartunek J, Spitzer KW, Lorell BH. Effects of nitric oxide donor sodium nitroprusside on intracellular pH and contraction in hypertrophied myocytes [J]. Circulation, 1997, 95: 2303–2311.
    86. Kelly RA, Balligand JL, Smith TW. Nitric oxide and cardiac function [J]. Circ Res, 1996, 79: 363–380.
    87. Zhang S, Hiraoka M, Hirano Y. Effects of alpha1-adrenergic stimulation on L-type Ca2+ current in rat ventricular myocytes [J]. J Mol Cell Cardiol, 1998, 30(10):1955-1965.
    88. Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy [J].Cell, 1998, 93(2):215-228.
    89. Passier R, Zeng H, Frey N,et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo [J]. J Clin Invest, 2000, 105(10):1395-1406
    90. Aoki H, Sadoshima J, Izumo S. Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro [J].Nat Med, 2000, 6(2):183-188.
    91. Frey N, McKinsey TA,Olson EN. Decoding calcium signals involved in cardiac growth and function [J]. Nat Med, 2000, 6(11):1221-1227
    92. Conlin PR, Moore TJ, Swartz SL, et al. Effect of indomethacin on blood pressurelowering by captopril and losartan in hypertensive patients [J]. Hypertension, 2000, 36(3):461-465.
    93. Ritchie RH, Schiebinger RJ, LaPointe MC, Marsh JD. Angiotensin II–induced hypertrophy of adult rat cardiomyocytes is blocked by nitric oxide [J]. Am J Physiol, 1998, 275:H1370–H1374.
    94. Yu H, Gallagher AM, Garfin PM, Printz MP. Prostacyclin release by rat cardiac fibroblasts: inhibition of collagen expression [J]. Hypertension, 1997, 30:1047–1053.
    95. Hara A, Yuhki K, Fujino T,et al. Augmented cardiac hypertrophy in response to pressure overload in mice lacking the prostaglandin I2 receptor [J]. Circulation, 2005, 112(1):84-92.
    96. Xiao CY, Hara A, Yuhki K, et al. Roles of prostaglandin I2 and thromboxane A2 in cardiac ischemia-reperfusion injury: a study using mice lacking their respective receptors [J]. Circulation, 2001, 104: 2210–2215.
    97. Archer S, Rich S. Primary pulmonary hypertension: a vascular biology and translational research "work in progress [J]. Circulation, 2000, 102: 2781–2791
    98. Coleman RA, Smith WL, Narumiya S. International Union of Pharmacology classification of prostanoid receptors: Properties, distribution, and structure of the receptors and their subtypes [J]. Pharmacol Rev, 1994, 46: 205–229.
    99. Narumiya S, Sugimoto Y, Ushikubi F. Prostanoid receptors: structures, properties, and functions [J]. Physiol Rev, 1999, 79: 1193–1226.
    100.Utsumi H, Yasukawa K, Soeda T et al. Noninvasive mapping of reactive oxygen species by in vivo electron spin resonance spectroscopy in indomethacin-induced gastric ulcers in rats [J]. J Pharmacol Exp Ther, 2006, 317(1):228-235
    101.崔文玉,龙超良,朱庆磊,汪 海. 盐酸埃他卡林对心肌 KATP 敏感性钾通道的作用[J]. 中国药理学通报, 2004, 20(2): 166-172
    102.Koch WJ, Lefkowitz RJ, Rockman HA. Functional consequences of alteringmyocardial adrenergic receptor signaling [J]. Annu Rev Physiol, 2000, 62:237-260.
    103.Eichhorn EJ, Heesch CM, Barnett JH, et al. Effect of metoprolol on myocardial function and energetics in patients with nonischemic dilated cardiomyopathy: a randomized, double-blind, placebo-controlled study [J]. J Am Coll Cardiol, 1994, 24(5):1310-20.
    104.Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy [J]. Cell, 1998, 93(2):215-228.
    105.李三潭, 王瑞英,王 虹,等. ATP 敏感性钾通道的活化改善心肌顿抑的作用. 中华心血管病杂志[J], 1997, 25 (6): 460-463.
    106.Sanada S, Node K, Asanuma H, et al.Opening of the adenosine triphosphate-sensitive potassium channel attenuates cardiac remodeling induced by long-term inhibition of nitric oxide synthesis: Role of 70-kDa S6 kinase and extracellular signal-regulated kinase [J].J Am Coll Cardiol, 2002, 40(5):991-997
    107.龙超良,朱庆磊,王爱平,孙辉业,汪 海. 盐酸埃他卡林选择性降压作用的研究[J]. 中国临床药理学与治疗学杂志, 2003, 8(5): 494-498
    108.Matsubara BB, Matsubara LS, Zornoff LA, et al. Left ventricular adaptation to chronic pressure overload induced by inhibition of nitric oxide synthase in rats [J]. Basic Res Cardiol, 1998, 93(3):173-181.
    109. Bregagnollo EA, Okoshi K, Bregagnollo IF, et al. Effects of the prolonged inhibition of the angiotensin-converting enzyme on the morphological and functional characteristics of left ventricular hypertrophy in rats with persistent pressure overload [J]. Arq Bras Cardiol, 2005, 84(3):225-32
    110.Noma A. ATP-regulated K+ channels in cardiac muscle [J]. Nature, 1983, 305(5930):147-148.
    1. Katz AM. Evolving concepts of heart failure: Cooling furnace,malfunctioning pump, enlarging muscle. Part I [J]. J Card Fail, 1997, 3:319-334.
    2. Katz AM. Evolving concepts of heart failure: Cooling furnace,malfunctioning pump, enlarging muscle. Part II: Hypertrophy and dilatation of the failing heart [J]. J Card Fail, 1998, 4:67-81.
    3. Braunwald E. Cardiovascular medicine at the turn of the millennium: Triumphs, concerns, and opportunities [J]. N Engl J Med, 1997; 337:1360-1369.
    4. Cleland JGSK, Poole-Wilson PA. Successes and failures of current treatment of heart failure [J]. Lancet, 1998, 352(suppl 1):19-28.
    5. Schmieder RE, Messerli FH. Is the decrease in arterial pressure the sole factor for reduction of left ventricular hypertrophy [J]? Am J Med, 1992, 92:S28-S34.
    6. Ghali JK, Kadakia S, Cooper RS, Liao Y. Impact of left ventricular hypertrophy on ventricular arrhythmias in the absence of coronary artery disease [J]. J Am Coll Cardiol, 1991;17:1277-1282
    7. Linzbach AJ. Heart failure from the point of view of quantitative anatomy [J]. Am J Cardiol, 1960, 5:370-382.
    8. Meerson FZ. Insufficiency of hypertrophied heart [J]. Basic Res Cardiol, 1976, 71:343-354.
    9. Anversa P, Ricci R, Olivetti G. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review [J]. J Am Coll Cardiol, 1986, 7(5):1140-1149
    10. Anversa P, Beghi C, Kikkawa Y, Olivetti G. Myocardial infarction in rats. Infarct size, myocyte hypertrophy, and capillary growth [J]. Circ Res, 1986, 58:26-37.
    11. Mann DL. Mechanisms and models in heart failure: A combinatorial approach [J]. Circulation, 1999, 100: 999-1008.
    12. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling-concepts and clinical implications: A consensus paper from an international forum on cardiacremodeling [J]. J Am Coll Cardiol, 2000, 35: 569-582.
    13. Yu CM, Tipoe GL, Wing-Hon Lai K, Lau CP. Effects of combination of angiotensin-converting enzyme inhibitor and angiotensin receptor antagonist on inflammatory cellular infiltration and myocardial interstitial fibrosis after acute myocardial infarction [J]. J Am Coll Cardiol, 2001, 38: 1207-1215
    14. Kempf T, Wollert KC. Nitric oxide and the enigma of cardiac hypertrophy [J]. Bioessays, 2004, 26:608-615.
    15. Rubanyi GM. The role of endothelium in cardiovascular homeostasis and diseases [J]. J Cardiovasc Pharmacol, 1993, 22(Suppl 4):S1-S14.
    16. Cooke JP, Tsao PS. Go with the flow. Circulation, 2001, 103:2773-2775.
    17. Miura H, Watchel RE, Liu Y, et al. Flow-induced dilation of human coronary arterioles: Important role of Ca2+-activated K+ channels [J]. Circulation, 2001, 103:1992-1998.
    18. Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerosis coronary arteries [J]. N Engl J Med, 1986, 315:1046-1051.
    19. Balligand, JL, Cannon, PJ. Nitric oxide synthases and cardiac muscle. Autocrine and paracrine influences [J]. Arterioscler Thromb Vasc Biol, 1997, 17(10): 1846- 1858.
    20. Alderton, WK., Cooper, CE., Knowles RG. Nitric oxide synthases: Structure, function and inhibition [J]. Biochem J, 2001, 357(Pt 3): 593-615.
    21. Balligand JL, Cannon PJ. Nitric oxide synthases and cardiac muscle. Autocrine and paracrine influences [J]. Arterioscler Thromb Vasc Biol, 1997, 17:1846–1858.
    22. Ziolo MT, Bers DM. The real estate of NOS signaling: location, location, location [J]. Circ Res, 2003, 92:1279-1281.
    23. Barouch LA, Harrison RW, Skaf MW, et al. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms [J]. Nature, 2002, 416: 337-339.
    24. Khan SA, Skaf MW, Harrison RW, et al. Nitric oxide regulation of myocardial contractility and calcium cycling: independent impact of neuronal and endothelial nitric oxide synthases [J]. Circ Res, 2003, 92:1322-1329.
    25. Sun Y, Carretero OA, Xu J, et al. Lack of inducible NO synthase reduces oxidative stress and enhances cardiac response to isoproterenol in mice with deoxycorticosterone acetate-salt hypertension [J]. Hypertension , 2005, 46(6): 1355-1361
    26. Arstall MA, Sawyer DB, Fukazawa R, Kelly RA. Cytokinemediated apoptosis in cardiac myocytes: the role of inducible nitric oxide synthase induction and peroxynitrite generation [J]. Circ Res, 1999, 85:829-840.
    27. Hasegawa T, Takagi S, Nishimaki K, et al. Impairment of L-arginine metabolism in spontaneously hypertensive rats [J]. Biochem Int, 1992, 26:653-658.
    28. Kuo JF, Davis CW, Tse J. Depressed cardiac cyclic GMP-dependent protein kinase in spontaneously hypertensive rats and its further depression by guanethidine [J]. Nature, 1976, 261:335-336.
    29. Matsuoka H, Nakata M, Kohno K, et al. Chronic L-arginine administration attenuates cardiac hypertrophy in spontaneously hypertensive rats [J]. Hypertension, 1996, 27(1):14-18.
    30. Duff JL, Monia BP, Berk BC. Mitogen-activated protein (MAP) kinase is regulated by the MAP kinase phosphatase (MKP-1) in vascular smooth muscle cells. Effect of actinomycin D and antisense oligonucleotides [J]. J Biol Chem, 1995, 270(13):7161-7166
    31. Biasucci LM, Vitelli A, Liuzzo G, et al. Elevated levels of interleukin-6 in unstable angina [J]. Circulation, 1996, 94:874-877.
    32. Kacimi R, Long CS, Karliner JS. Chronic hypoxia modulates the interleukin-1β-stimulated inducible nitric oxide synthase pathway in cardiac myocites [J]. Circulation, 1997, 96:1937-1943.
    33. Torre-Amione G, Kapadia S, Lee J, et al. Expression and functional significanceof tumor necrosis factor receptors in human myocardium [J]. Circulation, 1995, 92:1487-1493.
    34. Smith SC, Allen PM. Neutralization of endogenous tumor necrosis factor ameliorates the severity of myosin-induced myocarditis [J]. Circ Res, 1992, 70:856-863.
    35. Matsumori A, Yamada T, Suzuki H, et al. Increased circulating cytokines in patients with myocarditis and cardiomyophaty [J]. Br Heart J, 1994, 72:561-566.
    36. Ichinose F, Bloch KD, Wu JC, et al. Pressure overloadinduced LV hypertrophy and dysfunction in mice are exacerbated by congenital NOS3 deficiency [J]. Am J Physiol, 2004, 286:H1070-H1075.
    37. Ruetten H, Dimmeler S, Gehring D, et al. Concentric left ventricular remodeling in endothelial nitric oxide synthase knockout mice by chronic pressure overload [J]. Cardiovasc Res, 2005, 66:444- 453.
    38. Barouch LA, Harrison RW, Skaf MW, et al. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms [J]. Nature, 2002, 416:337-339.
    39. Barouch LA, Cappola TP, Harrison RW, et al. Combined loss of neuronal and endothelial nitric oxide synthase causes premature mortality and age-related hypertrophic cardiac remodeling in mice [J]. J Mol Cell Cardiol, 2003, 35:637-644
    40. Scherrer-Crosbie M, Ullrich R, Bloch KD, et al. Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice [J]. Circulation, 2001, 104:1286-1291.
    41. Wollert KC, Drexler H. Regulation of cardiac remodeling by nitric oxide: focus on cardiac myocyte hypertrophy and apoptosis [J]. Heart Fail Rev, 2002, 7:317-325.
    42. Liu YH, Xu J, Yang XP, et al. Effect of ACE inhibitors and angiotensin II type 1 receptor antagonists on endothelial NO synthase knockout mice with heart failure [J]. Hypertension, 2002, 39:375-381.
    43. Bueno OF , Molkentin JD. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death [J]. Circ Res, 2002, 91: 776-781
    44. Cheng TH, Shih NL, Chen SY, et al. Reactive oxygen species modulate endothelin-I-induced c-fos gene expression in cardiomyocytes [J]. Cardiovasc Res, 1999, 41: 654-662.
    45. Cheng TH, Shih NL, Chen SY, et al. Nitric oxide inhibits endothelin-1-induced cardiomyocyte hypertrophy through cGMP-mediated suppression of extracellular-signal regulated kinase phosphorylation [J]. Mol Pharmacol, 2005, 68(4):1183-1192.
    46. Liu PQ, Lu W, Pan JY. Molecular mechanism of nitric oxide in preventing cardiomyocytes from hypertrophic response induced by angiotensin II [J]. Sheng Li Xue Bao, 2002, 54(3):213-218.
    47. Calderone A, Thaik CM, Takahashi N, et al. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts [J]. J Clin Invest, 1998, 101:812-818.
    48. Lohmann SM, Vaandrager AB, Smolenski A, et al. Distinct and specific functions of cGMP-dependent protein kinases [J]. Trends Biochem Sci 1997, 22:307-312
    49. Mery PF, Lohmann SM, Walter U, Fischmeister R. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes [J]. Proc Natl Acad Sci USA, 1991, 88:1197-1201.
    50. Vila-Petroff MG, Younes A, Egan J, et al. Activation of distinct cAMP-dependent and cGMPdependent pathways by nitric oxide in cardiac myocytes [J]. Circ Res, 1999, 84:1020-1031.
    51. Shah AM, Spurgeon HA, Sollott SJ, et al. 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes [J]. Circ Res , 1994, 74:970-978.
    52. Yuasa K, Michibata H, Omori K, Yanaka N. A novel interaction of cGMP-dependent protein kinase I with troponin T [J]. J Biol Chem, 1999,274:37429-37434.
    53. Wollert KC, Fiedler B, Gambaryan S, et al. Gene transfer of cGMP-dependent protein kinase I enhances the antihypertrophic effects of nitric oxide in cardiomyocytes [J]. Hypertension, 2002, 39:87-92.
    54. Sumii K, Sperelakis N. cGMP-dependent protein kinase regulation of the L-type Ca2+ current in rat ventricular myocytes [J]. Circ Res, 1995, 77:803-812.
    55. Klein G, Drexler H, Schr¨oder F. Protein kinase G reverses all isoproterenol induced changes of cardiac single L-type calcium channel gating [J]. Cardiovasc Res, 2000, 48:367-374.
    56. Kato T, Sano M, Miyoshi S, et al. Calmodulin kinases II and IV and calcineurin are involved in leukemia inhibitory factor-induced cardiac hypertrophy in rats [J]. Circ Res, 2000, 87:937-945.
    57. Fiedler B, Lohmann SM, Smolenski A, et al. Inhibition of calcineurin-NFAT hypertrophy signaling by cGMPdependent protein kinase type I in cardiac myocytes [J]. Proc Natl Acad Sci USA, 2002, 99:11363-11368.
    58. Zou Y, Hiroi Y, Uozumi H, et al. Calcineurin plays a critical role in the development of pressure overload-induced cardiac hypertrophy [J]. Circulation, 2001, 104:97-101.
    59. De Windt LJ, Lim HW, Bueno OF, et al. Targeted inhibition of calcineurin attenuates cardiac hypertrophy in vivo [J]. Proc Natl Acad Sci USA, 2001, 98: 3322-3327.
    60. Bueno OF, Wilkins BJ, Tymitz KM, et al. Impaired cardiac hypertrophic response in Calcineurin Abeta-deficient mice [J]. Proc Natl Acad Sci USA, 2002, 99:4586-4591.
    61. Hill JA, Rothermel B, Yoo KD, et al. Targeted inhibition of calcineurin in pressure-overload cardiac hypertrophy. Preservation of systolic function [J]. J Biol Chem, 2002, 277:10251-10255.
    62. Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptionalpathway for cardiac hypertrophy [J]. Cell, 1998, 93:215-228.
    63. Arber S, Halder G, Caroni P. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation [J]. Cell, 1994, 79: 221-231.
    64. Arber S, Caroni P. Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ [J]. Genes Dev, 1996, 10: 289-300
    65. Arber S, Hunter JJ, Ross J Jr, et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure [J]. Cell, 1997, 88: 393-403.
    66. Flick MJ, Konieczny SF. The muscle regulatory and structural protein MLP is a cytoskeletal binding partner of betaI-spectrin [J]. J Cell Sci. 2000; 113: 1553-1564.
    67. Pashmforoush M, Pomies P, Peterson KL, et al. Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy [J]. Nat Med, 2001, 7: 591-597
    68. Zhou Q, Chu PH, Huang C, et al. Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy [J]. J Cell Biol, 2001, 155: 605-612
    69. Heineke J, Kempf T, Kraft T, et al. Downregulation of cytoskeletal muscle LIM protein by nitric oxide: Impact on cardiac myocyte hypertrophy [J]. Circulation, 2003 , 107(10):1424-1432
    70. Kempf T, Wollert KC. Nitric oxide and the enigma of cardiac hypertrophy [J]. Bioessays, 2004, 6(6):608-615
    71. Miano JM. Serum response factor: toggling between disparate programs of gene expression [J]. J Mol Cell Cardiol, 2003, 35(6):577-593.
    72. Chai J, Tarnawski AS. Serum response factor: Discovery, biochemistry, biological roles and implications for tissue injury healing [J]. J Physiol Pharmacol, 2002, 53(2):147-157.
    73. Bourguignon LY, Zhu H, Shao L, et al. Rho-kinase (ROK) promotes CD44v (3,8-10)-ankyrin interaction and tumor cell migration in metastatic breast cancer cells [J]. Cell Motility and the Cytoskeleton, 1999, 43(4): 269-287
    74. Zhang BL, Zheng Y. Regulation of RhoA GTP Hydrolysis by the GTPase-Activating Proteins p190, p50RhoGAP, Bcr, and 3BP-1 [J]. Biochemistry , 1998, 37(15): 5249-5257
    75. Seasholtz TM, Majumdar M, Brown JH. Rho as a mediator of G protein-coupled receptor signaling [J]. Mol Pharmacol, 1999, 55: 949-956
    76. Miralles F, Posern G, Zaromytidou AI, Treisman R. Actin dynamics control SRF activity by regulation of its coactivator MAL [J]. Cell, 2003, 113: 329-342
    77. Pilz RB, Casteel DE. Regulation of gene expression by cyclic GMP [J]. Circ Res, 2003, 93(11):1034-1046.
    78. Gudi T, Chen JC, Casteel DE, et al. cGMP-dependent protein kinase inhibits serum response element-dependent transcription by inhibiting Rho activation and functions [J]. J Biol Chem, 2002, 277: 37382-37393
    79. Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells [J]. Nature, 1988, 332(6163):411-415
    80. Xu D, Emoto N , Giaid A, et al. ECE21 : A membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1 [J]. Cell, 1994, 78(3): 473-485.
    81. Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors [J]. Nat Rev Mol Cell Biol, 2002, 3(9):639-650
    82. Clerk A, Bogoyevitch MA, Anderson MB, Sugden PH. Differential activation of protein kinase C isoforms by endothelin-1 and phenylephrine and subsequent stimulation of p42 and p44 mitogen-activated protein kinases in ventricular myocytes cultured from neonatal rat hearts [J]. J Biol Chem, 1994, 269(52): 32848-32857
    83. Clerk A, Pham FH, Fuller SJ, et al. Regulation of mitogen-activated proteinkinases in cardiac myocytes through the small G protein Rac1 [J]. Mol Cell Biol, 2001, 21(4):1173-1184.
    84. Sharrocks AD.The ETS-domain transcription factor family [J].Nat Rev Mol Cell Biol, 2001, 2(11):827-837
    85. Sugden PH. An overview of endothelin signaling in the cardiac myocyte [J]. J Mol Cell Cardiol, 2003, 35(8): 871-886
    86. Arai K, Maruyama Y, Nishida M, et al. Differential requirement of G alpha12, G alpha13, G alphaq, and G beta gamma for endothelin-1-induced c-Jun NH2-terminal kinase and extracellular signal-regulated kinase activation [J]. Mol Pharmacol, 2003, 63(3):478-488.
    87 odama H, Fukuda K, Takahashi E, et al. Selective involvement of p130Cas/Crk/Pyk2/c-Src in endothelin-1-induced JNK activation [J]. Hypertension, 2003, 41(6):1372-1379
    88 ikic I, Tokiwa G, Lev S, et al. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation [J]. Nature, 1996, 383(6600):547-550
    89 Tanaka S, Hanafusa H. Guanine-nucleotide exchange protein C3G activates JNK1 by a ras-independent mechanism. JNK1 activation inhibited by kinase negative forms of MLK3 and DLK mixed lineage kinases [J]. J Biol Chem, 1998, 273(3):1281-4.
    90 Dolfi F, Garcia-Guzman M, Ojaniemi M, et al. The adaptor protein Crk connects multiple cellular stimuli to the JNK signaling pathway [J]. Proc Natl Acad Sci U S A, 1998, 95(26):15394-15399.
    91 Clerk A, Michael A, Sugden PH. Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: A role in cardiac myocyte hypertrophy [J]?J Cell Biol, 1998, 142(2):523-535
    92 Sugden PH, Clerk A. Regulation of the ERK subgroup of MAP kinase cascades through G protein-coupled receptors [J]. Cell Signal, 1997, 9(5):337-351
    93 Heidkamp MC, Bayer AL, Martin JL, Samarel AM. Differential activation of mitogen-activated protein kinase cascades and apoptosis by protein kinase C epsilon and delta in neonatal rat ventricular myocytes [J]. Circ Res, 2001, 89(10): 882-890.
    94 Sugden PH, Clerk A.Regulation of the ERK subgroup of MAP kinase cascades through G protein-coupled receptors [J]. Cell Signal, 1997, 9(5):337-351
    95 Fields TA, Casey PJ. Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins [J]. Biochem J, 1997, 321 ( Pt 3):561-571
    96 Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase [J]. Eur J Biochem, 1980, 107: 519-527.
    97 Doble BW, Woodgett JR. GSK-3: Tricks of the trade for a multitasking kinase [J]. J Cell Sci, 2003, 116:1175-1186
    98 Badorff C, Ruetten H, Mueller S, et al. Fas receptor signaling inhibits glycogen synthase kinase 3 beta and induces cardiac hypertrophy following pressure overload [J]. J Clin Invest, 2002, 109:373-381.
    99 Hardt SE, Sadoshima J. Glycogen synthase kinase-3beta: A novel regulator of cardiac hypertrophy and development [J]. Circ Re, 2002; 90:1055-1063.
    100Haq S, Choukroun G, Kang ZB, et al. Glycogen synthase kinase- 3 beta is a negative regulator of cardiomyocyte hypertrophy [J]. J Cell Biol, 2000, 151:117-130.
    101Morisco C, Seta K, Hardt SE, et al. Glycogen synthase kinase 3 beta regulates GATA4 in cardiac myocytes [J]. J Biol Chem, 2001, 276: 28586-28597.
    102Morisco C, Zebrowski D, Condorelli G, et al. The Akt-glycogen synthase kinase 3 beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes [J]. J Biol Chem, 2000, 275:14466-14475.
    103Antos CL, McKinsey TA, Frey N, et al. Activated glycogen synthase- 3 betasuppresses cardiac hypertrophy in vivo [J]. Proc Natl Acad Sci U S A, 2002, 8:8.
    104Sanbe A, Gulick J, Hanks MC, et al. Reengineering inducible cardiac- specific transgenesis with an attenuated myosin heavy chain promoter [J]. Circ Res, 2003, 92:609-616.
    105 Haq S, Michael A, Andreucci M, et al. Stabilization of beta-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth [J]. Proc Natl Acad Sci U S A, 2003, 100:4610-4615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700