用户名: 密码: 验证码:
黄瓜(Cucumis sativus L.)遗传转化、植株再生及驯化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜(Cucumis sativus L.)是世界范围内的重要蔬菜。一方面,建立一套稳定的遗传转化体系可为运用过量表达、报告基因表达和RNAi等技术进行黄瓜功能基因组学研究提供技术支撑;另一方面,由于黄瓜现有栽培品种的遗传基础十分狭窄,与黄瓜属其他野生资源远缘杂交的亲合性很低,采用传统育种方法很难在短时间内获得对生物或非生物胁迫具有抗性的优良品种,而植物基因工程是扩大黄瓜现有资源遗传基础的有效途径。为此,本试验建立了稳定的黄瓜瞬时表达和成株遗传转化体系,主要结果如下:
     1构建了由CaMV35S启动子调控的、2种黄瓜a-半乳糖苷酶的增强型绿色荧光蛋白(enhanced green flurescent protein, EGFP)融合表达载体。运用聚合酶链式反应(polymerase chain reaction, PCR)技术,以质粒pCambia1303为模板扩增了CaMV35S启动子序列;以质粒pEGFP-N1为模板扩增了EGFP编码序列;运用反转录聚合酶链式反应(Reverse transcript-PCR, RT-PCR)技术,以黄瓜总RNA为模板扩增了黄瓜酸性α-半乳糖苷酶Ⅰ或碱性α-半乳糖苷酶Ⅰ编码序列。将上述3个片段插入表达载体pCambia1381*c的多克隆位点,分别构建了EGFP位于目的基因C端的2个α-半乳糖苷酶基因的EGFP融合表达载体。
     2在NH4NO3浓度为2.0g/L、6-BA浓度为1.0mg/L、NAA浓度为0.1mg/L的MS培养基中添加酵母提取物5g/L有利于产生质地疏松的愈伤组织,适合作为外源基因瞬时表达的受体。基因枪法将上述经测序验证的2个表达载体分别导入洋葱表皮和黄瓜愈伤组织细胞,共聚焦显微镜下观察EGFP的表达情况。结果表明黄瓜酸性α-半乳糖苷酶Ⅰ在包括液泡在内的整个细胞中均有表达,而黄瓜碱性α-半乳糖苷酶Ⅰ主要在细胞核和细胞周边表达。
     3通过比较两种野生型黄瓜品种的不同外植体,发现欧洲型黄瓜EP-6适合用子叶为外植体诱导再生植株,华北型黄瓜津春4号适合用茎节作为外植体诱导再生植株。适合EP-6子叶再生芽的最佳芽诱导培养基为(MS±0.5mg/L ABA+2.0mg/L6-BA+2.0mg/L AgNO3);适合津春4号茎节再生芽的最佳诱导培养基为(MS±0.5mg/L6-BA);最佳生根培养基为(1/2MS+15g/L蔗糖+0.6mg/L IBA)。
     4EP-6子叶转化体系的建立:将子叶在上述最佳诱芽培养基上预培养2d,以菌液pCambia2201/EHA105侵染20min,在含50μmol/LAS的最佳芽诱导培养基中黑暗条件下共培养2d,转入选择培养基(最佳诱芽培养基+400mg/L Cef)中筛选抗性芽,光照条件下培养25d左右,有抗性芽长出时转入伸长培养基中培养。抗性芽2cm左右时转入生根培养基,获得抗性株系,伸长培养和生根培养时添加60mg/L Kan和400mg/L Cef进行筛选。
     5津春4号的茎节转化体系的建立:将茎节在最佳诱芽培养基上预培养2d,以菌液pCambia2201/EHA105侵染20min,在含50μmol/LAS的最佳芽诱导培养基中黑暗条件下共培养2d,转入选择培养基(最佳诱芽培养基+400mg/L Cef)中筛选抗性芽,光照条件下培养,12d左右有抗性芽长出时转入伸长培养基中培养。抗性芽2cm左右时转入生根培养,获得抗性株系,伸长培养和生根培养时添加80mg/L Kan和400mg/L Cef进行筛选。
     6统计结果显示,以津春4号的黄瓜茎节为外植体时,从共培养开始到转化苗生根平均需42d;以EP-6黄瓜的子叶作为外植体时,从共培养开始到转化苗生根平均需59d。若以RT-PCR阳性作为判断最终转化成功的标准,津春4号茎节转化体系的转化率为0.83%,EP-6子叶转化体系的转化率为0.36%
     7将转基因组培苗于蔗糖浓度为6%的1/2MS培养基中生根4周,随后移栽至蔗糖为3%的培养基中培养1周,在组培苗6叶1心时,移栽于草碳:珍珠岩:河沙=1:1:1的基质中驯化,最有利于组培苗根系的发育,驯化成活率可达98.7%。
Cucumber (Cucumis sativus L.) is grown worldwide as an important vegetable. On the one hand, establishing an efficient cucumber transformation system is important for functional genomics research through techniques such as gene over-expression, reporter gene expression and RNA interference. On the other hand, Improving the biotic or abiotic resistance of cucumber through conventional breeding is limited by its narrow genetic basis and incompatibility barriers to wild Cucumis species. Therefore, it would be desirable to apply genetic engineering to expand the germplasm base of this crop. In this study, a European genotype EP-6and a Northern China genotype Jinchun4were selected to study the callus fomation, transformation, heterogenous gene transient expression and plant regeneration technology of cucumber.
     1Two kinds of cucumber a-galactosidase-EGFP fusion expression vector controlled by the CaMV35S promoter were constructed. CaMV35S promoter sequence was amplified by polymerase chain reactions (PCR) from vector pCambia1303; The entire coding region of EGFP was amplified by PCR from vector pEGFP-Nl; The entire coding region of cucumber acid a-galactosidase I and alkaline a-galactosidase I were amplified by Reverse transcript PCR using cucumber leaf total RNAs as template. The three above-mentioned fragments were Inserted into the mμltiple cloning sites of expression vector pCambia1381*c. Then two a-galactosidase-EGFP fusion expression vectors were constructed respectively and the EGFP gene was located at the C-terminal of the target genes.
     2To obtain the suitalbe material for transient expression of heterogenous genes, friable calli can be produced on the medium with6-BA1.0mg/L,NAA0.1mg/L,NH4NO32.0g/L and Yeast extrat5g/L. Two recombinant plasmids were transformed into onion epidermal cells and cucumber callus cells by particle bombardment. Green fluorescence signals were monitored by a confocal microscope. The results showed that cucumber acid a-galactosidase I is located in the whole cells includeing the vacuole, while cucumber alkaline a-galactosidase I is located at the nucleus and the peripheral region of the cell.
     3Regeneration of cucumber plants:Cotyledon is a suitable explant for in vitro shoot induction of EP-6, while for Jinchun4, highest shoot induction rate was obtained if stem node was used as explant. The optimal culture medium of shoot induction of EP-6cotyledons was MS+0.5mg/L ABA+2.0mg/L6-BA+2.0mg/L AgNO3, while the best culture medium for Jinchun4shoot induction was MS+0.5mg/L6-BA. The highest root induction rate can be observed when the regenerated shoots were cultured on the medium1/2MS+15g/L sucrose+0.6mg/L IBA.
     4The transfomation system of EP-6cotyledons:After2days of pre-culture on the optimized shoot induction medium, the cotyledons were incubated with the suspension of pCAMBIA2201/EHA105(Agrobacterium tumefacieus stains/binary vector) for20min, then co-cultured for2days on the same medium containing50μmol/L AS in the dark. Explants were further transferred to the plant selection medium(optimal shoot induction medium+400mg/L Cef) for about25d, the antibiotics-resistant shoots were transferred to shoot elongation medium until they were2cm long. Shoots were excised from the explants and placed on the optimal root induction medium. Both shoot elongation medium and rooting-culture medium contained60mg/L Kan and400mg/L Cef.
     5The transfomation system of Jinchun4stem nodes:After2days of pre-culture on the optimized shoot induction medium, the stem nodes were incubated with the suspension of pCAMBIA2201/EHA105(Agrobacterium tumefacieus stains/binary vector) for20min, then co-cultured for2days on the same medium containing50μmol/L AS in the dark. Explants were further transferred to the plant selection medium(optimal shoot induction medium+400mg/L Cef) for about12d, the antibiotics-resistant shoots were transferred to shoot elongation medium until they were2cm long. Shoots were excised from the explants and placed on the optimal root induction medium. Both shoot elongation medium and rooting-culture medium contained80mg/L Kan and400mg/L Cef.
     6From explant co-culture to well rooted putative transgenic plantlets, the transfomation systems of Jinchun4stem nodes and EP-6cotyledons needed42d and59d respectively. The transformation efficiency can be evaluated as0.83%for the Jinchun4stem node system and0.36%for the EP-6cotyledon system by RT-PCR positive plantlets.
     7The highest survival rate of98.7%of transgenic plants can be obtained when the plantlets were rooted in the1/2MS with6%sucrose for4weeks, then transferred to the1/2MS with3%sucrose for1week, and finally transplanted to the substrate peat:perlite:sand=1:1:1.
引文
1张文珠,魏爱民,杜胜利,等.黄瓜农杆菌介导法与花粉管通道法转基因技术.西北农业学报,2009,18(1):217-220.
    2邹金美,张国广,陈亮.黄瓜转基因研究进展.厦门大学学报(自然科学版),2008,47:236-241.
    3王琴芳,薛爱红,黄大防.转基因植物产业化现状与发展趋势.中国农业科技导报,2000,(2):33-36.
    4 Honwong BA, Stout MJ, Attajarusit J, et al. Defensive role of tomato polyphenol oxidases against cotton bollworm(Helicoverpa armigera) and beet armyworm(Spodoptera exigua). Journal of Chemistry Ecology,2009,35:28-38.
    5 Lau JM, Korban SS. Analysis and stability of the respiratory syncytial virus antigen in a T3 generation of transgenic tomato plants. Plant Cell Tissue and Organ Culture,2009, 96:335-342.
    6 Zhang Y, Liu H, Li B, et al. Generation of selectable marker-free transgenic tomato resistant to drought, cold and oxidative stress using the Cre/loxP DNA excision system. Transgenic Reseach,2009,18:607-619.
    7 Malinowski R, Higgins R, Luo Y, et al. The tomato brassinosteroid receptor BRI1 increases binding of systemin to tobacco plasma membranes, but is not involved in systemin signaling. Plant Molecular Biology,2009,70:603-616.
    8 Edelbaum D, Gorovits R, Sasaki S, et al. Expressing a whitefly GroEL protein in Nicotiana benthamiana plants confers tolerance to tomato yellow leaf curl virus and cucumber mosaic virus, but not to grapevine virus A or tobacco mosaic virus. Achives of Virology,2009, 154:399-407.
    9 An SH, Choi HW, Hwang IS, et al. A novel pepper membrane-located receptor-like protein gene CaMRP1 is required for disease susceptibility, methyl jasmonate insensitivity and salt tolerance. Plant Molecular Biology,2008,67:519-533.
    10 Hong JK, Hwang BK. The promoter of the pepper pathogen-induced membrane protein gene CaPIMPl mediates environmental stress responses in plants. Planta,2009,229:249-259.
    11 Lee YH, Jung M, Shin SH, et al. Transgenic peppers that are highly tolerant to a new CMV pathotype. Plant Cell Reports,2009,28:223-232.
    12 An SH, Sohn KH, Choi HW, et al. Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta, 2008,228:61-78.
    13 Bonna AL, Chaparro-Giraldo A, Appezzato-da-Gloria B, et al. Ectopic expression of soybean leghemoglobin in chloroplasts impairs gibberellin biosynthesis and induces dwarfism in transgenic potato plants. Molecular Breeding,2008,22:613-618.
    14 Ahmad R, Kim YH, Kim MD, et al. Development of selection marker-free transgenic potato plants with enhanced tolerance to oxidative stress. Journal of Plant Biology,2008,51(6): 401-407.
    15 Tang L, Kim MD, Yang KS, et al. Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses. Transgenic Reseach,2008,17:705-715.
    16 Kee JJ, Jun SE, Baek SA, et al. Overexpression of the downward leaf curling (DLC) gene from melon changes leaf morphology by controlling cell size and shape in arabidopsis Leaves. Molecules and Cells,2009,28:93-98.
    17 Han JS, Park S, Shigaki T, et al. Improved watermelon quality using bottle gourd rootstock expressing a Ca2+/H+ antiporter. Molecular Breeding,2009,24:201-211.
    18 Wu HW, Yu TA, Raja JAJ, et al. Generation of transgenic oriental melon resistant to Zucchini yellow mosaic virus by an improved cotyledon-cutting method. Plant Cell Reports, 2009,28:1053-1064.
    19 Takada K, Ishimaru K, Kamada H, et al. Anther-specific expression of mutated melon ethyl ene receptor gene Cm-ERS1/H70A affected tapetum degeneration and pollen grain production in transgenic tobacco plants. Plant Cell Reports,2006,25:936-941.
    20 Pak HK, Sim JS, Rhee Y, et al. Hairy root induction in Oriental melon(Cucumis melo) by Agrobacterium rhizogenes and reproduction of the root-knot nematode(Meloidogyne incognita). Plant Cell Tissue and Organ Culture,2009,98:219-228.
    21农业部农业生物基因工程安全管理办公室.1999年第一批农业生物遗传工程及其产品安全性评价申报和审批情况.1999,4:35-37.
    22姜永平,陈惠.蔬菜抗病虫基因工程的研究进展.南京农专学报,2002,18(2):27-31.
    23秦新民,刘佩瑛.蔬菜作物基因工程研究进展.长江蔬菜,1999,11:1-3.
    24 Fischhoff DA, Bowdish KS, Perlak FJ, et al. Insect tolerant transgenic tomato plants. Biotechnology,1987,5:807-813.
    25梁小友,米景九,朱玉骨,等.双抗(抗病毒及抗虫)植物表达载体的构建及番茄的转化鉴定.植物学报,1994,36:849-856.
    26 Rhim SL, Cho HJ, Kim BD, et al. Development of insect resistance in tomato plants expressing the β-endotoxin gene of Bacillus thuringiensis subsp.tenebrionis. Molecular Breeding,1995,1:229-236.
    27 Meiyalaghan S, Jacobs JME, Butler RC, et al. Transgenic potato lines expressing cry1 Bal or cry 1Ca5 genes are resistant to potato tuber moth. Potato Research,2006,49:203-216.
    28 Jouzani GS, Goldenkova IV, Piruzian ES. Expression of hybrid cry3aM-licBM2 genes in transgenic potatoes (Solanum tuberosum). Plant Cell Tissue and Organ Culture,2008, 92:321-325.
    29华学军,陈晓邦,范云六.Bacillus thuringiensis杀虫基因在花椰菜愈伤组织的整合与表达.中国农业科学,1992,25(4):82-87.
    30 Parrott WA, All JN, Adang MJ, et al. Recovery and evaluation of soybean plants transgentic for a Bacillus thuringiensis Var.Kurstaki insecticidal gene. In Vitro Cellular and Development Biology,1994,30:144-149.
    31毛慧珠,郭培福.抗虫转基因甘蓝及其后代的研究.中国科学(C辑),1996,26(4):339-347.
    32 Liu CW, Lin CC, Yiu JC, et al. Expression of a Bacillus thuringiensis toxin (crylAb) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal eYcacy against Plutella xylostella. Theoretical and Applied Genetics,2008,117:75-88.
    33 Iannacone R, Grieco PD, Cellini F. Specific sequencemodification of a cry3 B endotoxin gene result in high levels of expression and insect resistance. Plant Molecular Biology,1997, 34:485-496.
    34方宏筠,李大力,王关林,等.转豇豆胰蛋白酶抑制剂基因抗虫甘蓝植株的获得.植物学报,1997,39(10):940-945.
    35余建明,蔡小宁,朱卫民,等.外源基因在不结球白菜转基因植株后代中的表达.江苏农业学报,2002,18(1):33-36.
    36杨广东,朱祯,李燕娥,等.转修饰豇豆胰蛋白酶抑制剂基因(sck)抗虫甜椒植株的获得术.应用与环境生物学报,2002,8(3):239-244.
    37赵军良,梁爱华,徐鸿林,等.豇豆胰蛋白酶抑制基因改良大白菜抗虫性的研究.西北植物学报,2006,26,(5):878-885.
    38杨朝辉,何凤田,宋明,等。根癌农杆菌介导的豇豆胰蛋白酶抑制剂基因转化芥菜的研究.西南农业学报,2004,17(1):74-77.
    39吕玲玲,雷建军,宋明,等.豇豆胰蛋白酶抑制剂基因转化花椰菜的研究.华南农业大学学报,2004,25(3):78-82.
    40 Benchekroun A, Michaud D, Nguyen-Quoc B, et al. Synthesis of active oryzacystatin I in transgenic potato plants. Plant Cell Reports,1995,14:585-588.
    41 Kondrak M, Kutas J, Szenthe B, et al. Inhibition of Colorado potato beetle larvae by a locust proteinase inhibitor peptide expressed in potato. Biotechnology Letters,2005,27:829-834.
    42张智奇,周音,钟维瑾,等.慈姑蛋白酶抑制剂基因转化小白菜获抗虫转基因植株.上海农业学报,1999,15(4):4-9.
    43张军杰,刘凡,罗晨.大白菜的马铃薯蛋白酶抑制剂基因转化及抗菜青虫性的鉴定.园艺学报,2004,31(2):193-198.
    44 Solleti SK, Bakshi S, Purkayastha J, et al. Transgenic cowpea (Vigna unguiculata) seeds expressing a bean a-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Reports,2008,27:1841-1850.
    45 Sarmah BK, Moore A, Tate W, et al. Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Molecular Breeding,2004,14:73-82.
    46 Williamsom V, Kaloshian I. Cloning, sequence and expression of Mi nematode resistance gene for confering ressistance in transgenic plants. Pct Int Appl WO 9815,171(C1,A01H5/00),1998-04-16, ISAppl.
    47 Powell A, Neison RS, Bavun DE, et al. Delay of disease development in transgenic plants that express the tobacco mosaic coat protein gene. Science,1986,232:738-743.
    48 Okamoto D, Nielsen SVS, Albrechtsen M, et al. General resistance against potato virus Y introduced into a commercial potato cultivar by genetic transformation with PVYN coat protein gene. Potato Research,1996,39:271-282.
    49 Thomas PE, Hassan S, KaniewskiWK, et al. A search for evidence of virus/transgene interactions in potatoes transformed with the potato leafroll virus replicase and coat protein genes. Molecular Breeding,1998,4:407-417.
    50 Barker H, Reavy B, McGeachy KD. High level of resistance in potato to potato mop-top virus induced by transformation with the coat protein gene. European Journal of Plant Pathology,1998,104:737-740.
    51李华平,胡晋生,王敏,等.黄瓜花叶病毒衣壳蛋白基因转化辣椒研究.病毒学报,2000,16(3):276-278.
    52 Yepes LM, Mittak V, Pang SZ, et al. Biolistic transformation of chrysanthemum with the nucleocapsid gene of tomato spotted wilt virus. Plant Cell Reports,1995,14:694-698.
    53郭亚华,徐香玲,邓立平,等.质粒介导和外壳蛋白基因转化甜椒的研究.北方园艺,2000,4:17-19.
    54王慧中,赵培洁,周晓云.转WMV-2CP基因黄瓜植株的再生.植物生理学报,2000,26(3):267-272.
    55王慧中,赵培洁,徐吉臣,等.转WMV-2外壳蛋白基因西瓜植株的病毒抗性.遗传学报,2003,30(1):70-75.
    56 Provvidenti R, Tricoli DM. Inheritance of resistance to squash mosaic vinus in a squash transformed with the coat protein gene of pathotype 1. HortScience,2002,37(3):575-577.
    57赵爽,陈国菊,雷建军,等.蔬菜作物抗病毒基因工程研究进展.中国蔬菜,2006,12:34-37.
    58 Tacke E, Salamini F, Rohde W. Genetic engineering of potato for broad-spectrum protection against virus infection. Nature Biotechnology,1996,14:1597-1601.
    59刘晓玲,宋云枝,刘红梅,等.马铃薯X病毒25kD运动蛋白基因和外壳蛋白基因介导的抗病性研究.作物学报,2005,31(7):827-832.
    60王得元,何晓明,王鸣.蔬菜生物技术概论.北京:中国农业出版社,1999,119-129.
    61 Ehrenfeld N, Romano E, Serrano C, et al. Replocasem ediated resistance against potato leafroll virus in potato desiree plants. Biological Research,2004,37(1):71-82.
    62 Praveen S, Mishra AK, Dasgupta A. Antisense suppression of replicase gene expression recovers tomato plants from leaf curl virus infection. Plant Science,2005, 168(4):1011-1014.
    63 Lindbo JA, Dougherty WG. Untranslatable tuanscripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in tuansgenec plants and protoplasts. Virology,1992,189(2):725-733.
    64 Kawchuk LM, Martin RR, Mcpherson J. Sense and antisense RNA-mediated resistance to potato leafroll virus in Russet Burbank potato plants. Molecular Plant-Microbe Interactions, 1991,4(3):247-253.
    65 Palucha A, Zagorski W, Chrzanowska M, et al. An antisense coat protein gene confers immunity to potato leafroll virus in a genetically engineered potato. European Journal of Plant Pathology,1998,104(3):287-293.
    66 Praveen S, Mishra A, Antony G. Viral suppression in transgenic plants expressing chimeric transgene from tomato leaf curl virus and cucumber mosaic virus. Plant Cell, Tissue and Organ Culture,2006,84(1):49-55.
    67闫新甫.转基因植物.北京:科学出版社,2003:410-411.
    68 Kim SJ, Lee SJ, Kim BD, et al. Satellite-RNA-mediated resistance to cucumber mosaic virus in transgenic plants of hot pepper(Capsicum annuum cv.Golden Tower). Plant Cell Reports, 1997,16(12):825-830.
    69陈集双,金波,覃钥,等.添加卫星RNA对黄瓜花叶病毒寄主反应及其在系统寄主中含量的影响.核农学报,2006,20(3):181-186.
    70 Dinesh-Kumar SP, Whitham S, Choi D, et al. Transposon tagging of tobacco mosaic virus resistance gene N:its possible role in the TMV-N-m ediated signal transduction pathway. Proceedings of the National Academy of Sciences of the USA,1995,92(10):4175-4180.
    71 Spassova MI, Prins TW, Folkertsma RT, et al. The tomato gene Sw-5 is a member of the coiled coil, nucleotide binding leucinerich repeat class of plant resistance genes and confers resistance to TSW V in tobacco. Molecular Breeding New Stuategies in Plant Improvement, 2001,7(2):151-161.
    72曹必好,宋洪元,雷建军,等.结球甘蓝抗TuMV相关基因的克隆.遗传学报,2002,29(7):565-570.
    73 Lanfemeijer FC, Dijkhuis J, Sturre MJG, et al. Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-2 from Lycopersicon esculentum. Plant Molecular Biology,2003,52(5):1037-1049.
    74姜国勇,金德敏,翁曼丽,等.天花粉蛋白基因转化番茄的研究.植物学报,1999,41(3):334-336.
    75叶志彪,李汉霞.两个反义基因在番茄工程植株中的生理抑制效应分析.植物生理学报,1996,22(2):157-160.
    76 Castellano JM, Vioque B. Characterisation of the ACC oxidase activity in transgenic auxin overproducing tomato during ripening. Plant Growth Regulation,2002,38:203-208.
    77 Xiong AS, Yao QH, Peng RH, et al. Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Reports,2005,23:639-646.
    78王春霞,简志英,刘愚,等.合成酶基因及其反义基因对西瓜的遗传转化.植物学报,1997,39(5):445-450.
    79 Shah S, Li JP, Moffatt BA, et al. Isolation and charterization of ACC deminase genes from two different plant growth promoting rhizobacteria. Canadian Journal of Microbiology,1998, 44(9):833-843.
    80鞠戎,田颖川,等.番茄多聚半乳糖醛酸酶cDNA的克隆及其对番茄中PG表达的反义抑制.生物工程学报,1994,10(2):96-100.
    81 Hightower R, Baden C. Penzes E, et al. Expression of antifreeze proteins in transgenic plants. Plant Molecular Biology,1991,17:1013-1021.
    82李银心,常风启,杜立群,等.转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性.植物学报,2000,42(5):480-484.
    83 Stark DM, Timmeman KP, Barry GF, et al. Regulation of starch in plant tissues by ADP glucose pyrophorylase. Science,1992,89:2624-2628.
    84王光清,王蕴珠,杨金水,等.高必需氨基酸转基因马铃薯的研究.植物学报,1995,37(8):655-658.
    85李雷,刘松梅,胡鸢雷,等.导入玉米lOku醇溶蛋白基因提高马铃薯块茎中含硫氨基酸的含量.科学通报,2000,45(12):1313-1317.
    86董伟,吴勇,等.黄瓜白花授粉后外源DNA导人技术研究.园艺学报,1993,20(2):155-160.
    87吕德扬,范云六,俞梅敏,等.苜蓿高含硫氨基酸蛋白转基因植株再生.遗传学报,2000,27(4):331-337.
    88刘敬梅,陈大明,陈杭.甜蛋白基因对莴苣的遗传转化.园艺学报,2001,28(3):246-250.
    89郑回勇,郑金贵,黄碧芳.人乳铁蛋白基因转化胡萝卜研究初报.福建农林大学学报自然科学版,2002,31(2):215-217.
    90 Trulson A J,Simpson R B,Shahin E A. Transformation of cucumber(Cucumis Sativus L)plants with Agrobacterium rhizogenes. Theoretical and Applied Genetics,1986,73:11-15.
    91 Nishibayashi S, Kaneko H, Hayakawa T. Transformation of cucumber plants using Agrobacterium tumefacieus and regenemtion from hypocotyl explants. Plant Cell Reports, 1996,15(11):809-814.
    92 Vasudevan A, Ganapathi A, Selvaraj N, et al. Factors influencing GUS expression in cucumber(Cucumis sativus L.). Indian Journal of Biotechnology,2002,1(4):344-349.
    93李远新,王关林,葛晓光.黄瓜授粉后外源基因直接导入技术研究.华北农学报,2000,15(2):89-94.
    94李晓丹,司龙亭,刘志勇等.黄瓜组织培养中外植体的选择及播种方式.蔬菜,2004,7:30-31.
    95张猛.黄瓜遗传转化体系的建立及Go和Chi/Glu基因的导入.陕西杨凌:西北农林科技大学,2000.
    96杨东霞.黄瓜离体再生系统的建立.丹东纺专学报,2004,11(2):41-42.
    97 Colijin-Hooymans CM, Hakker JC, Tansen JJ, et al. Competence for regeneration of cucumber cotylecons isrestricted to specific developmental stages. Plant Cell Tissue and
    Organ Culture,1994,39:211-217.
    98 Mohiuddin AKM, Chowdhury MKU, et al. Influence of silver nitrate on cucumber in vitro shoot regeneration. Plant Cell Tissue and Organ Culture,1997,51:75-78.
    99杜胜利,魏惠军.苗龄,基因型和外植体类型对黄瓜离体器官发生的影响.天津农业科学,2000,6(4):1-5.
    100 Trulson AJ, Shahin EA. In vitro plant regeneration in the genus Cucumis. Plant Science, 1986,47:35-43.
    101 Lou H, Kako S. Somatic embryogenesis and plant regeneration in cucumber. HortScience, 1994,29(8):906-909.
    102候爱菊,朱延明,杨爱馥,等.诱导黄瓜直接器官发生主要影响因素的研究.园艺学报,2003,30(1):101-103.
    103范爱丽,孙艳,徐凌飞,等.黄瓜子叶节再生体系优化研究.西北农林科技大学学报,2006,34(9):69-73.
    104冯嘉,邹志荣,秦盛华,等.黄瓜子叶节高频再生体系建立及再生植株倍性观察.西北植物学报,2008,28(5):956-962.
    105梅茜,张兴国.黄瓜组织培养研究.西南农业大学学报,2002,24(3):266-26.
    106 Todd CW, Robert DL. In Vitro Adventitious shoot and root formation of cultivar and lines of Cucumis sativas L. HortScience,1981,16(6):759-760.
    107曹利仙,赵鹂等.硝酸银对黄瓜离体子叶培养芽再生的促进效应.甘肃农业大学学 报,2001,36(2):168-171.
    108 Draper J, Parey MR, Freeman JP, et al. Ti plasmid homologous sequences present in tissues from Agrobacterium tumefaciens transformed Petunis tissues. Plant and Cell Physiology, 1982,23:451-458.
    109 Herrera-Estrella L, Vanden BG, Maenhant R, et al. Light-inducible and chloroplast-associated expression of a chimaeric gene introduced into Nicotiana tobacum using a Ti plasmid vector. Nature,1984,310:115-120.
    110王关林,方宏筠主编.植物基因工程原理与技术,科学出版社,1998,281-309.
    111 Hiei Y, Komari T, Kabo T. Transformation of rice mediated by Agrobacterium rumefaciens. Plant Molecular Biology,1997,35:205-218.
    112 Ishida Y, Saito H, Ohta S. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology,1996,14:745-750.
    113 Tingay S, McElroy D, Kalla R. Agrobacterium tumefaciens mediated barely transformation. The Plant Journal,1997,11:1369-1376.
    114徐振彪,许晓明,刘进元.高等植物基因转化研究进展.农业生物技术学报,2000,8(3):29-32.
    115薛红卫,卫志明.通过PEG法转化甘蓝获得转基因植株.植物学报,1997,39(1):28-33.
    116 Klein TM, Wolf ED, Sandford JC, et al. Highly- velocity microprojectiles for delivering nucleic acids into living cells. Nature,1987,327:70-73.
    117 Finer JJ, Vain P, Jones MW, et al. Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Reports.1992,11:323-328.
    118周光宇.从生物化学的角度探讨远缘杂交的理论.中国科学,1993,23(3):256-262.
    119 Greg Hannon. RNAi:A guide to gene silencing. New York:Cold Spring Harbor Laboratory Press.2003,5-21.
    120 Guo S, Kemphues KJ. Par-1,a gene required for establishing polarity in C. elegans embuyos,encodes a putative Ser/Thrkinase that is asymm ertrically distuibuted. Cell,1995, 81:611-620.
    121 Fire A, Xu S, Montgomery CC, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391:806-811.
    122 Daisuke M, Rika I, Ko S. RNA silencing of single and multiple members in a gene family of rice. Plant Physiology,2005,138:1903-1913.
    123 Senthil S, Madge Y, Graham L, et al. RNA interference of Soybean is oflavone synthase gene leads to silencing in tissues distal to the transformation site and euhanced susceptibility to Phytophthom Sojae. Plant Physiology,2005,137(4):1345-1353.
    124 Hirotaka K, Eri K, Robert W, et al. RNAi knock-down of ENOD40s leads to significant suppression of nodule formation in Lotus japonicus. Plant and Cell Physiology,2006, 47(8):1102-1111.
    125张相锋,闫万理.RNAi在植物中的研究进展.伊犁师范学院学报(自然科学版),2009(1):42-46.
    126 Travella S, Klimm TE, Keller B. RNA Interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Physiology,2006,142:6-20.
    127 Richard JI, Craig S. Transgene-induced RNA inferference:a strategy for overcoming gene redundancy in polyploids to generate loss of function mutations. The Plant Journal,2003,36: 114-121.
    128 Waterhouse PM, Graham MW, Wang MB. Virus resistence and gene silencing in plants can be induced bysimultanecus expression of sense and antisense RNA. Proceedings of the National Academy of Sciences of the USA,1998,95(23):13959-13964.
    129 Shimizu T, Yoshii M, Wei T, et al. Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnology,2009,7(1):24-32.
    130 Kamachi S, Mochizuki A, Nishiguchi M, et al. Transgenic Nicotiana benthamiana plants resistant to cucumber green mottle mosaic virus based on RNA silencing. Plant Cell Reports, 2007,26(8):1283-1288.
    131 Tenllado F, Martinez-Garcia B, Vargas M, et al. Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechonlogy,2003, 3(1):3.
    132 Katiyar-Agarwal S, Morgan R, Dahlbeck D, et al. A pathogen-inducible endogenous siRNA in plant immunity, Proceedings of the National Academy of Sciences of the USA,2006, 103(47):18002-18007.
    133 Tang GL, Galili G. Using RNAi to improve plant nutritional value:from mechanism to application. Trends in Biotechnology,2004,22(9):24-29.
    134李加瑞,赵伟,李全梓等Waxy基因的RNA沉默使转基因小麦种子中直链淀粉含量下降.遗传学报,2005,32(8):846-854.
    135 Kusaba M,Miyahara K,Iida S,et al. Low glutelin contentl:a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell, 2003,15:1455-1467.
    136张银波,江木兰,胡小加.油菜PEPase基因的克隆及其对应RNAi载体的构建.中国油料作物学报,2005,27(1):1-4.
    137 Fukusaki E, Kawasaki K, Kajiyama S, et al. Flower color modulations of Torenia hybrida by down regulation of chalcone sythase genes with RNA interference. Journal of Biotechnology,2004,111(3):229-240.
    138赵明敏.RNA干扰及其在植物研究中的应用.中国农学通报,2006,22(4):36-39.
    139 Meilan R, Branner AM, Skinner JS, et al. Modification of flowering intransgenic trees. Molecular Breeding of Woody Plant,2001,41:247-256.
    140 Satoru M, Daisuke M, Masahiro A, et al. RNAi-mediated Silencing of OsGEN-L(OsGEN-like),a new member of the RAD21XPG nuclease family,cause male sterility by defect of microspore development in rice. Plant Cell physiology.2005, 46:699-715.
    141 McClure BA, Haring V, Ebert PR, et al. Style self-incom patibility prouducts of Nicotiana alata are ribonucle-ases. Nature,1989,342:955-957.
    142 Obrien M, Kapfer C, Major G, et al. Molecular analysis of the stylar- expressed Solanum chacoense small asparagines-rich protein family related to the H T modifier of gametophy self-incompatibility in Nicotiana. Plant,2002,32(6):985-991.
    143 Cigan AM, Unger-Wallace E, Haug-Collet, et al. Source transcriptional gene silencing as a tool for uncovering gene function in maize. The Plant Journal,2005,43:929-940.
    144 Ramanjulu S, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs form Arabidopsis. Plant Cell,2004,16:2001-2019.
    145 Fatma K, Guy CL. RNA interference of rabidopsis beta-amylase 8 prevents maltose accumulation upon cold shock and increase sensitivity of PSII photochemical efficiency to freezing stress. The Plant Journal,2005,44:730-734.
    146 Lu J, Zhao HY, He YK, et al. Advances and progresses of high promoter research and its application. Natural Science Progresses,2004,14(8):856-862.
    147 Chua NH, Benfey PN.The cauliflower mosaic virus 35S promoter:combinatorial regulation of transcription on plants. Science,1990,250:959-966.
    148 Lacombe E, Doorsselaere V, Boerjan W, et al. Characterization of cis-elements required for vascular expression of the cinnamoyl CoA reductase gene and for protein- DNA complex formation. The Plant Journal,2000,23(5):663-676.
    149 Buzeli RA, Cascardo JC, Rodrigues LA, et al. Tissue-specific regulation of BiP genes: acis-acting regulatory domain is required for BiP promote ractivity in plant meristems. Plant Molecular Biology,2002,50 (4-5):757-771.
    150 Lu Hai. Regulation of plant growth and wood quality by cambium-specific expressed genes. Ph. D. thesis, Beijing Forestry University,2002.
    151 Yang NS, Russell D. Maize sucrose synthase-1 promoter directs phloem cell-specific expression of Gus gene in transgenic tobacco plants. Proceeding of the National Academy of Sciences of the USA,1990,87 (11):4144-4148.
    152 Chavez-Barcenas AT, Valdez-Alarcon JJ, Martinez-Trujillo M, et al. Tissue-specific and developmental pattern of expression of the rice spsl gene. Plant Physiology,2000,124(2): 641-654.
    153 Oyama T, Okada K. The IRE gene encodes a protein kinase homologue and modulates root hair growth in Arabidopsis. The Plant Journal,2002,30(3):289-299.
    154 Kunst L, Clemens S, Hooker T. Expression of the wax-specific condensing enzyme CUT1 in Arabidopsis. Biochemical Society Transactions,2000,28(6):651-654.
    155 Guan X, Stege J, Kim M, et al. Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcription factors. Proceeding of the National Academy of Sciences of the USA,2002,99(20):13296-13301.
    156 Zhang SZ, Yang BP, Liu FH. Cloning and sequence analysis of a flower-specific expression promoter PchsA. Journal of Agricultural Biotechnology,2002,10 (2):116-119.
    157 Yamagata H, Yonesu K, Hirata A, et al. TGTC AC A motif is a novel cis-regulatory enhancer element involved in fruit-specific expression of the cucumisin gene. Journal of Biology Chemistry,2002,277 (13):11582-11590.
    158 Buchner P, Rochat C, Wuilleme S, et al. Characterization of a tissue-specific and developmentally regulated beta-1,3-glucanase gene in pea(Pisumsativum). Plant Molecular Biology,2002,49(2):171-186.
    159 Batchelor AK, Boutilier K, Miller SS, et al. SCB1, a BURP-domain protein gene, from developing soybean seed coats. Planta,2002,215(4):523-532.
    160 Rossak M, Smith M, Kunst L. Expression of the FAE1 gene and FAE1 promote ractivity in developing seeds of Arabidopsis thaliana. Plant Molecular Biology,2001,46 (6):717-725.
    161 Fraser PD, Romer S, Shipton CA, et al. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proceedings of the National Academy of Sciences of the USA,2002,99 (2):1092-1097.
    162 Dharmapuri S, Rosati C, Pallara P, et al. Metabolic engineering of xanthophyll content in tomato fruits. FEBS Letters,2002,519:30-34.
    163 Ye Al, Babili S, Kloti A, et al. Engineering the provitamin A(β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science,2000,287:303-305.
    164 Mao ZZ, Yu QJ, Zhen W, et al. Effects of ipt gene expression driven by fruit-specific promoter on development in transgenic tomato. Chinese Science Bulletin,2002,47(6):444.
    165 Belbahri L, Boucher C, Candresse T, et al. Local accumulation of the ralstonia solanacearum PopA protein in transgenic tobaccoo renders a compatible plant-pathogen interaction incompatible. The Plant Journal,2001,28(4):419-430.
    166 Mao SJ, Gu HY, Qu LJ, et al. Obtaining transgenic rice resistant to rice fungal blast disease by controlled cell death strategy. Chinese Science Bulletin,2003,48(16):1753-1759.
    167 Gao SQ, Xu HJ, Cheng XG, et al. Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor GmDREB of soybean (Glycine max). Chinese Science Bulletin,2005,50(23):2617-2625.
    168 Stanilaus MA, Cheng CL. Genetically engineered self-destruction:An alternative to herbicides for cover crop systems. Weed Science,2002,50:794-801.
    169 Wang YH, Wu ZY, Zhang XH, et al. Stable transformation of phaC2 gene into bacco chloroplast genome. Journal of Agricultural Biotechnology,2006,14(2):213-218.
    170 Jiang XL, He ZM, Chen Q, et al. Transgenic tomato plant expressing cholera toxin Bprotein specifically in fruit as edible vaccine. Agricultural Sciences in China,2004, 37(8):1188-1192.
    171 Cormack BP, Valdivia R, Falkow S. FACS-optimized mutants of the green fluorescent protein(GFP). Gene,1996,173:371-374.
    172 Prasher DC, Eckenrode VK, Ward WW, et al. Primary structure of the Aequorea vifctoria green fluorescent protein. Gene,1992,111(2):229-233.
    173 Wang M, Oresinic, Casanova D, et al. MUSEAP, a novel reporter gene for the study of long term gene expression in immunofcompetent mifce. Gene,2001,279(1):99-108.
    174 Verkhusha VV, Shaviovsky MM, Nevzglyadova OV, et al. Expression of recombinant GFP-actin fusion protein in the methylotrophic yeast Pichia pastoris. FEMS Yeast Research, 2003,3:105-111.
    175 Yi KS, Chang J, Park KH, et al. Expression system for enhanced green fluorescent protein conjugated recombinant antibody fragment. Hybridoma and Hybridomics,2004, 23(5):279-286.
    176 Kien F, Abraham JD, Schuster C, et al. Analysis of the subcellular localization of hepatitis C virus E2 glycoprotein in live cells using EGFP fusion proteins. General Virology,2003, 84(Pt3):561-566.
    177 O'rourke NA, Meyer T, Chandy G. Protein localization studies in the age of'Omics'. Current Opinion in Chemical Biology,2005,9(1):82-87.
    178 Sampaio KL, Cavignac Y, Stierhof YD, et al. Human cytomegalovirus labeled with green fluorescent protein for live analysis of intracellular particle movements. Virology,2005, 79(5):2754-2767.
    179 Comrack BP, Bertram G, Egerton M, et al. Yeast-enhanced green fluorescent portein (yEGFP):a reporter of gene expression in Candida albicans. Microbiology,1997, 143:303-311.
    180 Siemering KR, Golbik R, Sever R, et al. Mutations that suppress the thermosensitivity of green fluorescent protein. Current Biology,1996,6:1653-1663.
    181 Abedi MR, Caponigro G, Kamb A. Green fluorescent protein as a scaffold for intracellular presentation of peptides. Nucleic Acids Research,1998,26:623-630.
    182 Haseloff J, Siemering KR, Prasher DC, et al. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proceedings of the National Academy of Sciences of the USA,1997,94(6): 2122-2127.
    183 Celli S, Bousso P. Intravital two-photon imagring of T-cellpriming and tolerance in the lymph node. Methods in Molecular Biology,2007,380:355-363.
    184 Ohmura M, Yoshida S, Ide Y, et al. Spatial analysis of germ stem cell development in Oct-4/EGFP transgenic mice. Archives of Histology and Cytology,2004,67(4):285-296.
    185 Hudson LC, Chamberlain D, Stewart JRCN, et al. GFP-tagged pollen to monitor pollen flow of transgenic plants. Molecular Ecology Notes,2001, 1(4):321-323.
    186 Mankin SL, Thompson WF. New green fluorescent protein genes for plant transformation: Intron-containing, ER-localized, and soluble-modified. Plant Molecular Biology Reporter, 2001,19:13-16.
    187 Keller F, Pharr DM. Metabolism of carbohydrates in sinks and sources:galactosyl-sucrose oligosaccharides.In:Photoassimilate distribution in plants and crops (Zamski E and Schaffer, AA),1996, New York:Marcel Dekker.115-184.
    188 Holthaus U, Schmitz K. Distribution of stachyose synthase in Cucumis meio L. Planta,1991, 185:479-486.
    189 Gao Z, Petreilov M, Zamski E, et al. Cardohydrate metalolism during early fruit development of sweet melon(Cucumis melo). Physiologia Plantarum,1999,106:1-8.
    190 Chrost B, Schmitz K. Purification and characterization of multiple forms of alpha-galactosidase in Cucumis melo plants. Journal of Plant Physiology,2000, 156:483-491.
    191 Birendra K, Yandav BP. Studies on metabolic changes like chlorophyll, sugars and amino acids contents induced by virus in cucumber leaf. Annals of Biology,2002,18:147-151.
    192 Schaffer AA, Pharr DM, Madore MA. Cucurbits. In:Photoassimilate Distribution in Plants and Crops(Zamski E, Schaffer AA (eds)),1996, New York:Marcel Dekker.729-757.
    193 Thomas B, Webb JA. Distribution of alpha -galactosidase in Cucurbita pepo. Plant Physiology,1978,62:713-717.
    194 Gaudreault PR, Webb JA. Alkaline a-galactosidases in leaves of Cucurbita pepo. Plant Science Letters,1982,24:281-288.
    195 Gao Z, Schaffer AA. A novel galactosidase from melon fruit with substrate preference for raffinose. Plant Physiology,1999,119:979-988.
    196 Carmi N, Zhang G, Petreikov M, et al. Cloning and functional expression of alkaline a-galactosidase from melon fruit:similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases. The Plant Journal,2003,33:97-106.
    197 Gao Z, Petreikov M, Burger Y, et al. Stachyose to sucrose metabolism in sweetmelon (Cucumis melo) fruit mesocarp during the sucrose accumulation stage. Proceedings of Cucurbitaceae 2004, the 8th EUCARPIA meeting on Cucurbit genetics and breeding, Olomouc, Czech Republic,12-17 July,2004. PalackyUniversity in Olomouc, Olomouc, Czech Republic:2004,471-475.
    198 Bozena C, Klaus S. Purification and characterization of multiple forms of alpha-galactosidase in Cucumis melo. Journal of Plant Physiology,2000,156:483-491.
    199 Thomas P, Andreas R. Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Science Research,2001,11:185-197.
    200 Ishikawa,Fumiyoshi,Suga,et al. Analysis of Arabidopsis thaliana aquaporin SIPs. Plant Cell Physiology,2005,46:159.
    201 Ogin AM, Zalewski K, Piotrowicz-Cieslak AI. Alpha-Galactosidase activity in yellow lupin seeds during maturation. Folia Universitatis Agriculturae Stetinensis,Agricultura. Poland: 2001,88:153-157.
    202 Tchorbanov B. New food grade peptidases from plant sources. Proceedings of the EUROFOODCHEM XI Meeting, Norwich, UK,26-28 September 2001.Royal Society of Chemistry.
    203 Lima EE, Rezende ST, et al. Characterization of alpha-galactosidase in embryonic axis and cotyledons of Platymiscium pubescens seeds. Revista Brasileira de Sementes. Associacao Brasileira de Tecnologia de Sementes ABRATES, Brasilia,Brazil:2004,26:82-90.
    204 Marraccini P, Rogers WJ, Caillet V, et al. Biochemical and molecular characterization of alpha-D-galactosidase from coffee beans. Plant Physiology Biochemistry,2005,43: 909-920.
    205 Soh CP, Ali ZM, Lazan H. Characterisation of an alpha-galactosidase with potential relevance to ripening related texture changes. Phytochemistry,2006,67:242-254
    206 Karakurt Y, Huber DJ. Cell wall-degrading enzymes and pectin solubility and deploymeri-zation in immature and ripe watermelon (Citrullus lanatus) fruit in response to exogenous ethylene. Physiologia Plantarum,2002,116:398-405.
    207 Jagadeesh BH, Prabha TN, Srinivasan K. Activities of glycosidases during fruit 62 development and ripening of tomato (Lycopersicum esculantum L.):implication in fruit ripening. Plant Science,2004,166:1451-1459.
    208 Pennycooke JC, Vepachedu R, Stushnoff C, et al. Expression of an alpha-galactosidase gene in petunia is upregulated during low-temperature deacclimation. Journal of the American Society for Horticultural Science,2004,129:491-496.
    209 Pennycooke JC, Jones ML, Stushnoff C. Down-regulating alpha -galactosidase enhances freezing tolerance in transgenic petunia. Plant Physiology,2003,133:901-909.
    210 Evers D, Ghislain M, Hoffmann L, et al. A late blight resistant potato plant overexpresses a gene coding for alpha-galactosidase upon infection by Phytophthora infestans. Biologia Plantarum,2006,50:265-271.
    211 Chrost B, Krupinska K. Genes with homologies to known alpha -galactosidases are expressed during senescence of barley leaves. Physiologia Plantarum,2000,110:111-119.
    212 Lee RH, Lin MC, Chen SC. A novel alkaline alpha-galactosidase gene is involved in rice leaf senescence. Plant Molecular Biology,2004,55:281-295.
    213 Matella NJ, Dolan KD, Stoeckle AW, et al. Use of hydration, germination, and alpha-galactosidase treatments to reduce oligosaccharides in dry beans. Journal of Food Science,2005,70:203-207.
    214 Eric F, Bernard W, Yves B, et al. Improvement of lupin seed valorisation by the pig with the addition of alpha-galactosidase in the feed and the choice of a suited variety. Biotechnologie Agronomie Societe et Environnement,2005,9:225-235.
    215 Pugalenthi M, Vadivel V. Nutritional evaluation and the effect of processingmethods on antinutritional factors of sword bean (Canavalia gladiata (Jacq.) DC). Journal of Food Science and Technology,2005,42:510-516.
    216章扬培,季守平,杨军,等.血型转变.中国实验血液学杂志,1998,6:91-97.
    217 Zhu A, Leng L, Monahan C, et al. Characterization of recombinant alpha-galactosidase for use in seroconversion from blood group B to O of human erythrocytes. Archives of Biochemistry and Biophysics,1996,327:324-329.
    218 Yoshimitsu, Makoto, Siatskas C, et al. Long-term and sustained correction of the alpha-galactosidase A deficiency in Fabry mice and patient cells receiving lentivirally transduced hematopoietic stem/progenitor cells. Blood,2005,106:374.
    219 Linthorst GE, Vedder AC, Ormel EE, et al. Home treatment for Fabry disease:practice guidelines based on 3 years experience in The Netherlands. Nephrology Dialysis Transplantation,2006,21:355-360.
    220 Schindler D, Bishop DF, Wolfe DE, et al. Neuroaxonal dystrophy due to lysosomal alpha-N-acetylgalactosaminidase deficiency. New England Journal of Medicine,1989,320: 1735-1740.
    221奥斯伯FM,金斯顿RE,塞德曼JG,等.精编分子生物学实验指南(第四版).北京:科学出版社,2005:22-28.
    222 Esther M, Tapernoux L, Thomas S, et al. The C-terminal sequence from common bugle leaf galactan:galactan galactosyl transferase is a non-sequence-specific vacuolar sorting determinant. FEBS Letters,2007,581:1811-1818.
    223方强,乔勇进.黄苓愈伤组织诱导和细胞培养研究进展.天然产物研究与开发,2008,20:187-192.
    224 Zhu A, Wang ZK. Expression and characterization of recombinant a-galactosidase in Baculovirus-infected insect cells. Biochemistry,1996,235:332-337.
    225 Keller F, Pharr DM. Metabolism of carbohydrates in sinks and sources:galactosyl-sucrose oligosaccharides. In:Photoassimilate distribution in plants and crops. Marcel Dekker,1996, 157-184.
    226姚峰,周军媚,王佐,等.SDF-la基因与绿色荧光蛋白融合载体的构建及亚细胞定位.中国比较医学杂志,2008,18(3):1-4.
    227 Tian GW, Mohanty A, Chary SN, et al. High-throughput fluorescent tagging of full length Arabidopsis gene products in planta. Plant Physiology,2004,135:25-38.
    228 Kamigaki A,Mano S, erauchi K, et al. Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor. Plant,2003,33(1):161-175.
    229贾芸,赵巨东,吕军.基于N端信号的蛋白质亚细胞定位识别.内蒙古工业大学学报.2008,27(2):81-86.
    230 Murashige T, Skoog F. Revise medium for rapid growth and bioassays with tobacco tissues cultures. Physiologia Plantarum,1962,15:473-479.
    231李泠,潘俊松,何欢乐,等.黄瓜离体培养再生技术及农杆菌介导的ACS1转化.上海交通大学学报(农业科学版),2007,25(1):17-23.
    232 Chi GL, Pua EC. Ethylene inhibitors enhanced de novo shoot regeneration from cotyledons of Brassica campestris ssp. Chinensis (Chinese cabbage) in vitro. Plant Science,1989,64: 243-250.
    233张鹏,傅爱根,王爱国.AgN03在植物离体培养中的作用及可能的机制.植物生理通讯,1997,33(5):376-379.
    234梅茜,张兴国.黄瓜组织培养研究.西南农业大学学报,2002,24(3):266-267.
    235 Tabei Y, Kitade S, NishizawaY, et al. Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Reports,1998, 17:159-164.
    236赵隽,王华,潘俊松,等.黄瓜子叶节离体再生体系的研究.上海交通大学学报(农业科学版),2004,22(1):43-47.
    237曹孜义,刘国民.实用植物组织培养技术教程(修订本).甘肃科学技术出版社,2001.
    238 Horsch RB, Fry JE, Hoffmann NL, et al. A simple and general method for transferring genes into plants. Science,1985,227:1229-1231.
    239陈丽梅.黄瓜的高效再生和根癌农杆菌介导的遗传转化.甘肃:西北师范大学,2004.
    240陈峥,金红,程奕.提高黄瓜农杆菌遗传转化体系再生频率的研究.天津农业科学,2001,4(7):47-49.
    241徐淑平,卫志明,黄健秋.青菜的高效再生和农杆菌介导Bt和CpTI基因的转化.植物生理与分子生物学报,2002,28(4):253-260.
    242张猛.黄瓜遗传转化体系的建立及Go和Chi/Glu基因的导入.陕西杨凌:西北农林科技大学,2000.
    243王顺才.Mn-SOD基因转化猕猴桃Actinidiadeliciosa的研究.陕西杨凌:西北农林科技大学,2004.
    244 Staub JE, Bacher J, Poetter K. Sources of otential errors in the application of random amplified cucumber. HortScience,1996,31:262-266.
    245钱忠英,蔡润,潘俊松,等.黄瓜RAPD体系的优化与应用.上海交通大学学报(农业科学版),2003,21(3):208-213.
    246苏绍坤,刘宏宇,秦智伟.农杆菌介导iaaM基因黄瓜遗传转化体系的建立.东北业大学学报,2006,37(3):289-293.
    247王艳蓉,陈丽梅,潘俊松,等.黄瓜子叶高效再生体系的建立与遗传转化.上海交通大学学报(农业科学版),2006,24(2):152-156.
    248赵世杰,刘华山,董新纯.植物生理学实验指导.北京:中国农业出版社,1998:10.
    249谢冰,王秀峰,樊治成.西葫芦组培苗强化和移栽影响因素分析.中国瓜菜,2006,4:4-7.
    250孙磊.莲藕组培苗市郊驯化技术研究.扬州大学硕士论文,2005:17-18.
    251 Kozai T, Kubota C, Jeong BR. Environmental control for the large-scale production of Plants through in vitro techniques. Plant Cell, Tissue and Organ Culture,1997,51:49-56.
    252 Van Huylenbroeck JM, Debergh PC. Impact of sugar concentration in vitro on photosynthesis and carbon metabolism during ex vitro acclimatization of spathiphyllum plantlet. Physiologia Plnatarum,1996,96:298-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700