用户名: 密码: 验证码:
冰晶动力学行为与粒径分布演化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展展冰浆动态蓄能技术是解决电网负荷的供需平衡与太阳能的高效连续开发利用的有效途径。冰浆的生成、存储及应用过程与冰晶粒径及分布密切相关。由于冰晶的微观性及其生成与存储所经历的复杂物理过程,无论是其形成过程与机理,还是在形成与演变过程中的微尺度动力学行为特点与演化规律,都缺乏相关的理论描述和定量描述。因此,本文重点研究冰浆制备与存储过程中冰晶颗粒动力学行为与粒径分布演化规律,为更深层次地揭示冰晶的形成、存储与控制的机理与规律提供理论依据与科学参考。
     本文首先从微观角度分析了冰晶成核的机理,并对影响成核的影响因素进行讨论;再通过建立冰层生长控制模型,从宏观角度对间接式冰浆制备过程冰层生成进行了研究,并探讨影响冰层生成的主要因素。结果表明:1)接触角与界面粗糙度的增加会降低溶液临界成核能;添加剂能够增加溶液内部临界成核能差,抑制异质成核;临界成核能差随着过冷度的增加而减小;过冷度的增加会减少临界成核能,从而增强异质成核,且过冷度对成核的影响比接触角更为明显。2)冰层生长控制模型计算结果与文献实验结果基本一致,表明模型可用于定量描述间接式冰浆制备冰层生长过程。3)乙二醇(EG)溶液比氯化钠(SC)溶液具有更强的抑制冰层生长的作用,增加添加剂浓度会降低冰层生长厚度,溶液流速过低或过高会破坏冰层形成时生长作用与剥离作用之间的平衡。
     搭建包含冰浆制备与冰晶图像采集的实验平台,对冰晶粒径分布规律进行实验研究。针对实验过程中发现的冰堵问题,提出间接式冰浆制备系统冰堵判定条件,并进行了实验验证。实验获取了冰晶颗粒图像,采用基于颗粒图像处理技术的数字图像测量方法,研究选取合适的数字图像处理算法,提取冰晶颗粒图像的特征参数。对冰晶颗粒图像的特征参数进行统计,并进行拟合优度检验,结果表明冰晶粒径分布的最优分布函数为Log-Normal分布函数。实验获得了冰晶粒径分布规律,为本文模拟研究中冰晶粒径分布拟合提供了可靠依据。
     通过冰晶动力学行为非平衡热力学分析,建立了描述冰晶动力学行为与粒径分布演化的数群平衡模型,运用改进有限容积法(IFMV)对模型进行求解,并利用文献中的实验结果对模型进行了验证。结果表明:1)通过算法比较分析发现,IFMV算法能较好的消除方程中对流项的影响,减小了生长动力学行为条件下数值解的失真,而在团聚动力学行为中,两种算法计算结果与分析解基本一致。2)冰晶粒径数量密度分布和平均粒径的模拟结果与实验结果的一致性,验证了模型的可靠性,表明该模型可用于冰晶动力学行为与粒径分布演化问题的分析研究。3)分析指出动力学行为核模型参数、冰晶粒径的初始分布、模型的边界条件、模型中冰晶粒子形状以及载流溶液与外部环境等因素是导致模型误差的主要原因。
     基于冰晶颗粒数群平衡模型,研究了破碎与团聚两个动力学行为对冰晶存储的影响,阐述了破碎与团聚对冰晶存储的作用机理与规律;再综合考虑冰晶的成核、生长、团聚与破碎等动力学行为,系统研究了添加剂种类与浓度、含冰率与耗损率等外因对破碎率与团聚率、冰晶粒径分布密度及平均粒径的影响。结果表明:1)团聚和破碎动力学行为是影响冰浆存储过程冰晶粒径演化的两个重要因素,两者“作用方向”相反,且破碎与团聚经历从最初的破碎与团聚“均衡作用”发展成团聚“主导”的过程。2)同浓度下,添加剂乙醇与乙二醇对冰晶粒径增长速度抑制效果比氯化钠好;减少溶液的浓度会降低冰晶粒径增长的速度;含冰率越低,冰浆溶液中冰晶粒径增长越慢;耗损率越高,冰浆溶液中冰晶粒径增长越慢。
ABSTRACT:Development of ice slurry dynamic storage technology is considered as a promising way to keep the supply and demand balance of grid load and improve the efficiency and continuity of solar energy thermal utilization. Formation, storage and application of ice slurry have a close relationship with ice crystals particle size distribution and evolution. However, since the microscopic features of ice crystals and the evolution processes of complex dynamics behavior, neither the physical process of the formation and storage of ice slurry, nor the mechanism and evaluation law of dynamics behavior are lack of relevant theoretical and quantitative description. Hence, this study mainly focuses on dynamics behaviors and evolution of ice crystals during the process of ice slurry's formation and storage. This research is expected to be a theoretical basis and scientific reference to reveal the mechanisms and laws of ice crystals formation, storage and control.
     Firstly, mechanisms of ice nucleation were analyzed from the microscopic point of view and influence factors of nucleation were discussed. The growth control model of ice layer was developed to studied ice layer growth of indirect ice slurry system from a macro point of view, and influence factors of ice layer growth were discussed. The results shows that the increase of contact angle and surface roughness can reduce the critical energy of nucleation, additives can increase the critical energy of nucleation, inhibiting heterogeneous nucleation; the critical energy of nucleation increases with the decreases of degree of supercooling; increase of the degree of supercooling can reduce critical to the critical energy of nucleation, thereby increasing the heterogeneous nucleation, and effect of the degree of supercooling on the nucleation is more obvious than that of the contact angle.2) The results of growth control model are consistent with experimental results, which show that this model can be used to describe the process of ice layer growth of indirect ice slurry system.3) EG solution has stronger effect on inhibiting the growth of ice layer than SC, the increase of additive concentration can reduce the thickness of ice growth, and higher or lower solution flow can break the balance of growth and stripping effect on the process of ice layer formation.
     Then, particle size distribution of ice crystals was experimentally studied with the experimental platform, which included systems of ice slurry production and ice crystals image acquisition. Judgment conditions for ice blockage of indirect ice slurry system was proposed and then experimentally verified. The images of the ice crystals were obtained from the experiments, and digital image processing algorithm was used to extract the characteristic parameters of ice crystals. Optimal distribution function for the ice crystal size distribution was confirmed as the Log-Normal distribution function through the analysis of the ice crystal size distribution experimental results and the test of goodness of fit, so as to provide a reliable basis for the simulation of ice particle size distribution fitting in the next chapter.
     Next, population balance model of ice crystals was developed to describe dynamic behavior of ice crystals as well as the distribution and evolution of particle size through analyzing the non-equilibrium thermodynamics on dynamic behaviors of ice crystals. Improved finite volume method (IFMV) was used to solve the PBM, and then the PBM was validated by using the experimental results in references. The results indicate that1) Comparative results of the algorithm shows IFMV algorithm can eliminate the influence of the equation of convective terms, and reduce the distortion of the numerical solution for the growth kinetics behavior, but in the aggregation dynamic behavior, the results of both numerical method keep consistent with the analytical solution.2) The reliability of the model was verified by the agreement of both model prediction and experimental results of number density of ice crystals and average particle size, which stated that the PBM can be used for the research of ice dynamic behaviors and the particle size distribution and evolution of ice crystals.3) Possible reasons of deviation between the model prediction and experimental results could be kernels of the dynamic behavior, the initial particle size distribution of ice crystals, the boundary condition of the model, the shape of ice particle and the carrier solution and the external environment.
     At last, the dynamical behaviors of breakage and aggregation influencing on the ice crystals storage were analyzed based on population balance model of ice crystals, the mechanisms and laws of breakage and aggregation dynamic behaviors were explained. The effect of additive type and concentration, ice packing factor and dissipation rate on the rate of breakage and aggregation, the number density of ice crystal size distribution and the average ice crystal size were studied under the comprehensive consideration of the ice crystal dynamic behaviors such as nucleation, growth, breakage and aggregation. The results show that:1) the dynamic behaviors of aggregation and breakage are considered to be two important factors influencing the evolution of ice crystals size during ice slurry storage. The two dynamic behaviors have opposite effect and the processes of ice slurry storage experience from "breakage-aggregation in equilibration" in the initial phase to "aggregation in dominant" at last.2) effect of EA and EG on inhibition of the ice crystal growth is stronger than SC; reducing the concentration of the solution can reduce the growth of ice crystals; the lower the rate of ice is, the slower can the growth of ice crystal be in the ice slurry solution; The higher loss rate is, the slower can the growth of ice crystals be in the ice slurry solution.
引文
[1]Liu Z Q, Xu A X, Lv Y Y, et al. Promoting the development of distributed concentrated solar thermal technology in China. Renewable and Sustainable Energy Reviews,2012,16(2):1174-1179.
    [2]Kauffeld M, Wang M J, Goldstein V, et al. Ice slurry applications [J]. International Journal of Refrigeration,2010,33(8):1491-1505.
    [3]Kauffeld M, Kawaji M, Egolf P W. Handbook on Ice Slurries-Fundamental and Engineering[M]. Paris:International Institute of Refrigeration,2005.
    [4]Stamatiou E, Meewisse J W, Kawaji M. Ice slurry generation involving moving parts[J]. International Journal of Refrigeration,2005,28(1):60-72.
    [5]Frank G F, Chen X D, Free K. Freezing on subcooled surfaces, phenomena, modeling and applications[J]. International Journal of Heat and Mass Transfer, 2009,52(5-6):1245-1253.
    [6]Wijeysundera N E, Hawlader M N A, Andy C W B. Ice-slurry production using direct contact heat transfer [J]. International Journal of Refrigeration,2004, 27(5):511-519.
    [7]Hawlader M N A, Wahed M A. Analyses of ice slurry formation using direct contact heat transfer[J]. Applied Energy,2009,86(7-8):1170-1178.
    [8]Meewisse W, Ferrera C A I. Fluidized bed ice slurry generator operating rang[C]//Melinder, A.5th Workshop on Ice Slurries of the International Institute of Refrigeration, Paris:International Institute of Refrigeration, 2002:30-31.
    [9]Matsumoto K, Suzuki Y. Study on continuous ice slurry formation using functional fluid for ice storage Discussion of optimal operating conditions [J]. International Journal of Refrigeration,2006,29(7):1208-1217.
    [10]Pierre J, David T, Jean C. Lasvignottes. Ice slurry production using supercooling phenomenon[J]. International Journal of Refrigeration,2010,33(1):196-204.
    [11]Kim B S, Shin H T, Lee Y P. Study on ice slurry production by water spray[J]. International Journal of Refrigeration,2001,24(2):176-18.
    [12]Shina H T, Leea Y P. Spherical-shaped ice particle production by spraying water in a vacuum chamber [J]. Applied Thermal Engineering,2000,20(5):439-454.
    [13]陶乐仁.水溶液冻结过程的显微实验研究[D].上海:上海理工大学,2000.
    [14]曲凯阳.过冷水制取的基础与应用研究[D].北京:清华大学,2000.
    [15]王军,张定才.过冷却水制冰蓄冷性能的实验研究[J].制冷学报,2002,23(3):45-47.
    [16]Li X.W, Zhang X.S, Cao R.Q. A novel ice slurry producing system:Producing ice by utilizing inner waste heat[J]. Energy Conversition Manage,2009,50(12): 2893-2904.
    [17]彭正标,陈磐,何张陈,等.液-液循环流化床动态制冰特性[J].制冷学报,2009,30(1):7-13.
    [18]Peng Z, Yuan Z, Wu X, et al. Experimental study on drop formation in liquid-liquid fluidized bed[J]. Chemical Engineering Science,2009,64(6): 1249-1259.
    [19]梁坤峰,彭正标,袁竹林.液-液雾化特征与粒径分布规律[J].化工学报,2007,58(9):1457-1463.
    [20]刘志强,徐爱祥,刘良泉.一种制备流体冰真空装置.中国.200920064851.7[P],2009.
    [21]徐爱祥.新型真空液滴制冰特性研究[D].长沙:中南大学,2010.
    [22]Wang M J, Kumusoto N. Ice slurry based thermal storage in multifunctional buildings[J]. International Journal of Heat and Mass Transfer,2001,37(6): 597-604.
    [23]Inada T, Modak P R. Growth control of ice crystals by poly(vinyl alcohol) and antifreeze protein in ice slurries. Chemical Engineering Science.2006,61(10) 3149-3158
    [24]Youssef Z, Delahaye A, Huang L, et al. State of the art on phase change material slurries[J]. Energy Conversion and Management,2013,65(1):120-132.
    [25]Ayel V, Lottin O, Peerhossaini H. Rheology, flow behavior and heat transfer of ice slurries:a review of the state of the art[J]. International Journal of Refrigeration,2003,26(1):95-107.
    [26]Egolf P W, Kitanovski A. Thermodynamics and heat transfer of ice slurries[J]. International Journal of Refrigeration,2005,28(1):51-59.
    [27]Doron P, Granica D, Barnea D. Slurry flow in horizontal pipes-experimental and modeling[J]. Multiphase Flow,1987,13(4):535-547.
    [28]Doron P, Barnea D. A three-layer model for solid-liquid flow in horizontal pipes[J]. Multiphase Flow,1993,19(6):1029-1043.
    [29]Frei B, Egolf P W. Viscometry applied to the Bingham Substance Ice Slurry[C]// Guilpart J, Fournaison L. Second Workshop on Ice Slurries of the International Institute of Refrigeration, Paris:International Institute of Refrigeration, 2000:48-59.
    [30]Hansen T M, Radosevic M, Kauffeld M. Behavior of Ice Slurry in Thermal Storage Systems[R], Danish Technological Institute, ASHRAE,2002.
    [31]Renaud-Boivin S, Poirier M, Galanis N. Experimental study of hydraulic and thermal behavior of an ice slurry in a shell and tube heat exchanger[J]. Experimental Thermal and Fluid Science,2012,37(1):130-141.
    [32]Matsumoto K, Suzuki T. Measurement of thermal conductivity of ice slurry made from solution by transient line heat-source technique (analytical discussion on influence of latent heat of fusion)[J]. Refrigeration,2007,30(1):187-194.
    [33]明岗,陈沛霖.冰浆管内流动的絮网结构设想及阻力计算模型[J].同济大学学报,2001,29(3):347-351.
    [34]刘永红.水平管道中冰浆流动的三层模型[J].上海水产大学学报,1997,6(3):180-185.
    [35]卢文强,白凤武,马重芳.一类潜热型功能液固两相流体的定压比热研究[J].工程热物理学报,2002,23(1):91-93.
    [36]Mika L. Ice slurry flow in a poppet-type flow control valve [J]. Experimental Thermal and Fluid Science,2013,45(1):128-135.
    [37]Yoshiyuki N A, Masayuki T. Study on ice storing charcteristics in dynamic-type ice storage system by using supercooled water. Effects of the supplying conditions of ice-slurry at deployment todistrict heating and cooling system[J]. International Journal of Refrigeration,2005,28(10):73-82.
    [38]Masayuki Y K. Ice water two-phsse flow behavior in ice heat storage system[J]. International Journal of Refrigeration,2001,24(7):639-651.
    [39]Frei B, Huber H, Characteristics of different pump types operating with ice slurry[J]. International Journal of Refrigeration,2005,28(1):92-97
    [40]Kozawa Y, Aizawa N, Tanino M. Study on ice storing characteristics in dynamic type ice storage system by using supercooled water. Effects of the supplying conditions of ice-slurry at deployment to district heating and cooling system [J]. International Journal of Refrigeration,2005,28(1):73-82.
    [41]Lua S S, Inadab T. Microscale study of poly(vinyl alcohol) as an effective additive for inhibiting recrystallization in ice slurries [J]. International Journal of Refrigeration,2002,25(5):562-568.
    [42]Hiroyuki K, Hirata T, Hagiwara Y, Tamura F. Effects of storage on flow and heat transfer characteristics of ice slurry[J]. International Journal of Refrigeration, 2012,35(1):122-129.
    [43]Delahaye A, Fournaison L, Guilpart J. Characterisation of ice and THF hydrate slurry crystal size distribution by microscopic observation method[J]. International Journal of Refrigeration,2010,33(8):1639-1947.
    [44]Chegnimonhan V, Josset C, Peerhossaini H. Ice slurry crystallization based on kinetic phase-change modeling[J]. International Journal of Refrigeration,2010, 33(8):1559-1568.
    [45]Pronk P, Hansen T M, Ferreira C A I, et al. Time-dependent behavior of different ice slurries during storage[J]. International Journal of Refrigeration,2005,28(1): 27-36.
    [46]Pronk P, Ferreira C A I, Witkamp G J, A dynamic model of Ostwald ripening in ice suspensions [J]. Journal of Crystal Growth,275(1-2):e1355-e1361.
    [47]Yarranton H W, Masliyah J H. Numerical Simulation of Ostwald Ripening in Emulsions[J]. Journal of Colloid and Interface Science,1997,196(2):157-169.
    [48]Verma S, Kumar S, Gokhale R, et al. Physical stability of nanosuspensions: Investigation of the role of stabilizers on Ostwald ripening[J]. International Journal of Pharmaceutics,2011,406(1):145-152.
    [49]Pronk P, Ferreira C A I, Witkamp G J. Circulating fluidized bed heat exchanger for ice slurry production[C]. The IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants, Vicenza, Italy,2005:411-418.
    [50]赵海波,郑楚光.描述离散系统动力学演变的Monte Carlo方法分析[J].工程热物理学报,2006,27(S1):213-216.
    [51]Hounslow M J. Population balance modelling of particulate systems[J]. Chemical Engineering Science,2002,57(12):2123-2123.
    [52]顾兆林,苏军伟,李云.两相及多相体系的离散相行为与群体平衡模型[J].化学反应工程与工艺,2010,2(40):144-160.
    [53]苏军伟,顾兆林,李云.各向同性颗粒系统数量平衡方程直接矩积分求解法的研究[J].化学反应工程与工艺,2006,22(4):162-167.
    [54]Lee K W, Lee Y J, Han D S. The log-normal size distribution theory for Brownian coagulation in the low Knudsen number regime[J]. Journal of Colloid and Interface Science,1997,188(2):486-492.
    [55]Williams M M R. Some exact and approximate solutions of the nonlinear Boltzmann equation with applicatios to aerosol coagulation[J]. Journal of Physics A:Mathematical and General,1981,14(8):2073-2089.
    [56]苏军伟,顾兆林,李云.以体积为内部坐标数量平衡模型的矩直接积分方法[J].西安交通大学学报,2007,5(41):621-630.
    [57]Lee K, Matsoukas T. Simultaneous coagulation and breakage using constant-N Monte Carlo[J]. Powder Technology,2000,110(1-2):82-89.
    [58]Fichthorn K A, Weinberg W H. Theoretical foundations of dynamical Monte Carlo simulations[J]. Chem. Phys.,1991,95 (2):1090-1096
    [59]Hill P J, Ng K M. New discretization procedure for the breakage equation[J]. AIChE Journal,1995,41(5):1204-1216.
    [60]Everson R C, Eyre D, Campbell Q P. Spline method for solving continuous batch grinding and similarity equations[J]. Computers & Chemical Engineering,1997, 21(12):1433-1440.
    [61]Qamar S, Warnecke G, Elsner M P. On the solution of population balances for nucleation, growth, aggregation and breakage processes [J]. Chemical Engineering Science,2009,64(9):2088-2095.
    [62]Seinfeld J H, Pandis S N. Atmospheric chemistry and physics[M]. New York: Wiley-Interscience,1998.
    [63]Friedlander S K. Smoke, dust and haze:fundamentals of aerosol behavior[M]. New York:Wiley,1997.
    [64]Huige N, Thijssen H. Production of large crystals by continuous ripening in a stirrer tank[J]. Journal of Crystal Growth,1972,13(14):483-487.
    [65]Pronk P. Fluidized Bed Heat Exchangers to Prevent Fouling in Ice Slurry Systems and Industrial Crystallizers [D]. DELFT:Delft University of Technology,2006.
    [66]Smoluchowski M Z. Versuch Einer Mathematischen Theorie Der Koagulation skinetik Kolloider Losunger[J]. Zeitschrift fur Physikalische Chemie,1917, 92(2):129-142.
    [67]Adachi Y, Cohen Stuart M A, Fokkink R. Kinetics of turbulent coagulation studied by means of end-over-end rotation[J]. Journal of Colloid and Interface Science,1994,165(2):310-317.
    [68]Biscans B, Guiraud P, LaguerieC,et al. Abrasion and Breakage phenomena in Mechanically Stirred Crystallizers[J]. The Chemical Engineering Journal,1996, 63(2):85-91.
    [69]赵海波.颗粒群平衡模拟的随机模型与燃煤可吸入颗粒物高效脱除的研究[D].武汉:华中科技大学,2007.
    [70]Gerstlauer A, Mitrovic A, Motz S, et al. A population model for crystallization processes using two independent particle properties[J].Chemical Engineering Science,2002,56(7):2553-2565.
    [71]Madras G, McCoy B J. Distribution kinetics of Ostwald ripening at large volume fraction and with coalescence[J]. Journal of Colloid and Interface Science,2003, 261(2):423-433.
    [72]Bellas I, Tassou S A, Present and future applications of ice slurries [J]. International Journal of Refrigeration,2005,28(1):115-121.
    [73]Ayel V, Lottin O, Peerhossaini H. Rheology flow behaviour and heat transfer of ice slurries:a review of the state of the art[J]. International Journal of Refrigeration,2003,26(1):95-107.
    [74]Braga S L, Milon J J. Visualization of dendritic ice growth in supercooled water inside cylindrical capsules [J]. International Journal of Heat and Mass Transfer, 2012,55(13-14):3694-3703.
    [75]Pronk P, Ferreira C A I, Witkamp G J. Prevention of fouling and scaling in stationary and circulating liquid-solid fluidized bed heat exchangers:Particle impact measurements and analysis [J]. International Journal of Heat and Mass Transfer,2009,52(15-16),3857-3868.
    [76]Matsumoto K, Kobayashi T. Fundamental study on adhesion of ice to cooling solid surface[J]. International Journal of Refrigeration,2007,30(5):851-860.
    [77]Hong H, Peck J H, Kang C D. Ice adhesion of an aqueous solution including a surfactant with stirring on cooling wall:ethylene glycol-a silane coupling agent aqueous solution[J]. International Journal of Refrigeration,2004,27(8): 985-992.
    [78]Stamatiou E, Meewisse J, Kawaji M. Ice slurry generation involving moving parts[J]. International Journal of Refrigeration,2005,28(1):60-72.
    [79]刘良泉,刘志强,王小倩,等.冰浆生成器中抑制冰粘附的研究[J].真空与低温,2011,17(3):140-144.
    [80]何国庚,吴锐,柳飞.冰浆生成技术研究进展及实验初探[J].建筑热能通风空调,2006,25(8):22-34.
    [81]张承虎.提取冷水凝固潜热的换热理论与装置[D].哈尔滨:哈尔滨工业大学,2008.
    [82]Drew Myers著,吴大诚,朱普新等译.表面、界面和胶体一原理及应用[M].北京:化学工业出版社,2005:95-107.
    [83]Du Ning. How does antifreeze protein stop ice nucleation[D]. Singapore: National University of Singapore,2004.
    [84]Robert N. Wenzel. Resistance of solid surface to wetting by water[J]. Industrial and Engineering Chemistry,1936,28(8):988-994.
    [85]Myerson A. S. Handbook of industrial crystallization[M]. Oxford:Butterworth Heinemann,1993:178-183.
    [86]Mersmann A, Eble A, Heyer C. Crystallization technology handbook, second edition[M]. New York:Marcel Dekker,2001:112-117.
    [87]Huige N J. Nucleation and growth of ice crystals from water and sugar solutions in continuous stirred tank crystallizers[D], The Netherlands:Eindhoven University of Technology,1972.
    [88]叶铁林.化工结晶过程原理及应用[M].北京:北京工业大学出版社,2006:51-58.
    [89]刘良泉.冰浆生成器壁面冰层形成机理研究[D].长沙:中南大学,2012.
    [90]Fukusako S, Yamada M. Freezing characteristics of ethylene glycol solution [J]. Heat and Mass Transfer,1989,24(5):303-309.
    [91]Pronk P, Ferreira C A I. Prevention of crystallization fouling during eutectic freeze crystallization in fluidized bed heat exchangers [J]. Chemical Engineering and Processing,2008,47(12):2140-2149.
    [92]Hong H, Peck J H, Kang C D. Ice adhesion of an aqueous solution including a surfactant with stirring on cooling wall:ethylene glycol-a silane coupling agent aqueous solution[J]. International Journal of Refrigeration,2004,27(8): 985-992.
    [93]Sarkar D K, Farzaneh M. Super hydrophobic coatings with reduced ice adhesion[J]. Journal of Adhesion Science and Technology,2009,23(9): 1215-1237.
    [94]杨晓东,金敬福.冰的粘附机理与抗冻粘技术进展[J].长春理工大学学报,2002,25(4):17-19.
    [95]唐恒,章学来,王海民.基于冰晶结构的二元冰蓄冷系统中添加剂的研究[J].制冷空调与电力机械,2005,26(1):33-35.
    [96]Seppings R.A, Investigation of ice removal from cooled metal surfaces[D]. London:Imperial College London,2005.
    [97]Meewisse J W. Fluidized bed ice slurry generator for enhance secondary cooling systems[D]. Holland:Delft University of Technology,2004.
    [98]蔡小舒,苏明旭,沈建琪,等.颗粒粒度测量技术及应用[M].北京:化学工业出版社,2010.
    [99]Pronk P, Ferreira C A I, Witkamp G J. Effect of long-term ice slurry storage on crystal size distribution[C]//Melinder, A.5th Workshop on Ice Slurries of the International Institute of Refrigeration, Paris:International Institute of Refrigeration,2002:151-160.
    [100]刘柳.气液两相流中气泡动力学特性实验研究[D].长沙:中南大学,2013.
    [101]王红一.水中气泡图像处理方法及运动特性研究[D].天津:天津大学,2011.
    [102]Okawa T, Tanaka T, Kataoka I, et al. Temperature effect on single bubble rise characteristics in stagnant distilled water[J]. International journal of heat and mass transfer,2003,46(5):903-913.
    [103]Celata G P, Cumo M, D'Annibale F, et al. Effect of gas injection mode and purity of liquid on bubble rising in two-component systems [J]. Experimental thermal and fluid science,2006,31(1):37-53.
    [104]Kalman H, Mori Y H. Experimental analysis of a single vapor bubble condensing in subcooled liquid[J]. Chemical Engineering Journal,2002,85(2): 197-206.
    [105]Fan X, Ten P, Clarke C, et al. Direct measurement of the adhesive force between ice particles by Micromanipulation[J]. Powder Technology,2003,131(2-3): 105-110.
    [106]O'Neil M E. A sphere in contact with a plane wall in a slow linear shear flow[J]. Chemical Engineering Science,1968,23(11):1293-1298.
    [107]N(?)rgaard E, S(?)rensen T.A, Hansen T.M, et al. Performance of components of ice slurry systems:pumps, plate heat exchangers and fittings[J]. International Journal of Refrigeration,2005,28(1):83-91.
    [108]张强,王正林.精通MATLAB图像处理[M].电子工业出版社,2009.
    [109]施丽莲,周泽魁,任沙浦.垂直管道中气液两相流参数的图像检测方法[J].流体机械,2004,32(9):4-9.
    [110]李小燕,蔡晋辉.利用数字图像识别技术的两相流参数检测研究[J].原子能科学技术,2006,40(B09):15-18.
    [111]许联锋.水气两相流动的数字图像测量方法及应用研究[D].西安理工大学,2004.
    [112]阮秋琦.数字图像处理学[M].电子工业出版社,2007.
    [113]吴冰,秦志远.自动确定图像二值化最佳阈值的新方法[J].测绘学院学报,2001,18(4):283-286.
    [114]刘荣丽,陈刚.掺气水流数字图像上气泡提取物的二值化阈值确定[J].水力发电,2002,25(11):59-61.
    [115]Wang H, Dong F. Track of rising bubble in bubbling tower based on image processing of high-speed video[C]//Seventh International Symposium on Instrumentation and Control Technology. International Society for Optics and Photonics,2008:1-6.
    [116]梁坤峰,彭正标,袁竹林,等.液-液雾化特性与粒径分布规律[J].化工学报,2007,58(8):1935-1942.
    [117]Barth H G. Modern Methods of Particle Size Analysis[M]. Now York:John Wiley & Sons,1984.
    [118]梁坤峰,高春艳,王林.液-液直接接触式制取流体冰的液滴形成特性[J].应用基础与工程科学学报,2012,20(2):311-320.
    [119]Macias G A, Cuerda C E M, Diaz D M. Application of the Rosin-Rammler and Gates-Gaudin-Schuhmann models to the particle size distribution analysis of agglomerated cork [J]. Materials Characterization,2004,52(2):159-164.
    [120]梁坤峰,高春艳,王林.基于制取流体冰的液-液雾化液滴粒径分布研究[J].热能动力工程,2011,26(4):457-460.
    [121]杨宝柱,王靖岱,阳永荣.气相流化床聚乙烯颗粒粒径分布的定制[J].高校化学工程学报,2006,20(5):712-716.
    [122]Yoshiyuki N A, Masayuki T. Study on ice storing charcteristics in dynamic-type ice storage system by using supercooled water. Effects of the supplying conditions of ice-slurry at deployment todistrict heating and cooling system[J]. International Journal of Refrigeration,2005,28(2):73-82.
    [123]青春耀,肖睿,宋文吉,等.冰浆在蓄冰槽内的蓄冰特性及其均匀度研究[J].低温与超导,2009,37(5):41-46.
    [124]Qamar S, Warnecke G. Numerical solution of population balance equations for nucleation, growth and aggregation processes [J]. Computs & Chemical Engineering,2007,31(12):1576-1589.
    [125]Ramkrishna, D. and A. Mahoney, Population Balance Modeling. Promise for the Future[J]. Chem. Eng. Sci.,2002,57(4):595-606.
    [126]Lee K, Matsoukas T. Simultaneous coagulation and breakage using constant-N Monte Carlo[J]. Powder Technology,2000,110(1-2):82-89.
    [127]Marchisio D L, Vigil R D, Fox R O. Quadrature method of moments for aggregation-breakage processes[J]. Journal of Colloid and Interface Science. 2003,258(2):322-334.
    [128]Aixiang Xu, Zhiqiang Liu, Xiaoiao Wang, Naping He, Pei Liu. Numerical methods for population balance equations on IFVM and FVM[C]//Zhang Q, Yang H X, Medina M A. APEC Conference on Low-carbon Towns and Physical Energy Storage, Singapore:Asia-Pacific Economic Cooperation,2013:25-26.
    [129]Jones A G, Crystallization process systems [M]. London, University College London,2002.
    [130]Smoluchowski M Z. Versuch Einer Mathematischen Theorie Der Koagulation skinetik Kolloider Losunger[J]. Zeitschrift fur Physikalische Chemie,1917, 92(2):129-142.
    [131]Madras G, McCoy B J. Reversible crystal growth-dissolution and aggregation breakage:numerical and moment solutions for population balance equations[J]. Powder Technology,2004,143-144(3):297-307.
    [132]Coulaloglou C A, Tavlarides L L. Description of interaction processes in agitated liquid-liquid dispersions [J]. Chemical Engineering Science,1977,32(11): 128-129.
    [133]Narsimhan G, Gupta J P, Ramkrishna D. A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersion[J]. Chemical Engineering Science,1979,34(2):257-265.
    [134]Luo H, Svendsen H F. Theoretical model for dropand bubble breakupin turbulent dispersion[J].AIChE Journal,1996,42(5):1225-1233.
    [135]Ayazi S P, Stravrinides S, Titchener H N, et al. Growth-independent breakage frequency of protein precipitates in turbulently agitated bioreactors[J]. Chemical Engineering Science,1994,49(16):2647-2656.
    [136]Mrachisio D L, Vigil R D, Fox R O. Implementation of the quadrature method of moments in CFD codes for aggregation—breakage problems [J]. Chemical Engineering Science,2003,58(15):3337-3351.
    [137]王小倩,刘志强,刘良泉.冰浆存储期间冰晶演化研究进展[J].制冷与空调,2012,26(4):324-329.
    [138]赵海波,郑楚光.离散系统动力学演变过程的颗粒群平衡模拟[M].北京:科学出版社,2008:13-18.
    [139]Kramer T A, Clark M M. Incorporation of aggregate breakup in the simulation of orthokinetic coagulation[J]. Journal of Colloid and Interface Science,1999, 216(1):116-126.
    [140]Perry R H, Green D W. Perry's Chemical Engineers'Handbook.7th ed[M]. New York:McGraw-Hill,1997.
    [141]Filbet F, Laurencot P. Numerical simulation of the Smoluchowski coagulation equation[J]. SIAM Journal Scientific Computing,2004,25 (6):2004-2028.
    [142]Kumar J, WarnecKe G, Peglow M, et al. Comparison of numerical methods for solving population balance equations incorporating aggregation and breakage [J]. Power Technology,2009,189(2):218-299.
    [143]Kumar S, Ramkrishna D. On the solution of population balance equations by discretization-Ⅲ. Nucleation, growth and aggregation of particles [J]. Chemical Engineering Science,1997,52(24):4659-4679.
    [144]Ramabhadran T E, Peterson T W, Seinfeld J H. Dynamicsof aerosol coagulation and condensation[J]. AIChE Journal,1976,22(5):840-851.
    [145]Kumano H, Hirata T, Hagiwara Y, et al. Effects of storage on flow and heat transfer characteristics of ice slurry [J]. International Journal of Refrigeration, 2012,35(1):122-129.
    [146]徐爱祥,刘志强,王小倩,等.破碎与团聚对冰浆存储过程冰晶粒径演化的影响,中南大学学报:自然科学版,2013,44(11):4720-4725.
    [147]王肖肖,刘志强,王小倩,等.冰浆存储过程中冰晶粒径动力学演化影响因素研究[J].热科学与技术,2013,12(4):307-312.
    [148]王小倩.冰浆存储过程冰晶粒径演化研究[D].长沙:中南大学,2012.
    [149]Bel O, Lallemand A. Study of a two phase secondary refrigerant-Intrinsic thermophysical properties of an ice slurry [J]. International Journal of Refrigeration,1999,22(3):164-174.
    [150]Lottin O, Epiard C. Dependence of the thermodynamic properties of ice slurries on the characteristics of marked antifreezes[J]. Int. J. Refrigeration,2001,24(6): 455-467.
    [151]Hyland W, Wexler A. Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K[J]. ASHRAE Transactions, 1983,89(2):500-519.
    [152]Melinder A. Thermophysical Properties of Aqueous Solutions Used as Secondary Working Fluids[D]. Sweden:School of Industrial Engineering an Management Royal Institute of Technology, KTH Stockholm,2007.
    [153]Melinder A. Acurrate thermophysical property values of water solutions are important for ice slurry modelling and calculations[C]. In:Proceedings of the Third Workshop on Ice Slurries of the International Institute of Refrigeration. Switzerland:International Institute of Refrigeration,2001:11-18
    [154]Egolf P W, Frei B. The continuous-properties model for melting and freezing applied to fine-crystalline ice slurries[C]. In:Proceedings of the First Workshop on Ice Slurries of the International Institute of Refrigeration. Switzerland: International Institute of Refrigeration,2001:25-40
    [155]Lakhdar M A B. Thermal hydraulic behavior of a two phase mixture:The ice slurry[D]. Lyon:Theoretical and experimental studies(France),1998
    [156]Melinder A. Comparing properties of aqueous solutions for liquid only and ice slurry applications of indirect systems [C]. In:Proceedings of the 21th International Congress of Refrigeration, Washington:International Institute of Refrigeration 2003,28:13-19
    [157]Egolf P W, Kauffeld M. From physical properties of ice slurries to industrial ice slurry applications[J]. International Journal of Refrigeration,2005,28(1):4-12.
    [158]Melinder A. Equilibrium Properties of Ice Slurry Based on Two Chosen Types of Aqueous Solutions [C]. In:Proceedings of the 7th IIR Conference on Phase Change Materials and Slurries for Refrigeration and Air Conditioning. Paris: International Institute of Refrigeration,2006:55-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700