用户名: 密码: 验证码:
Ⅰ.毛叶丁公藤化学成分及药理活性研究 Ⅱ.砂珍棘豆化学成分及药理活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分毛叶丁公藤化学成分及药理活性研究
     毛叶丁公藤(Erycibe hainanesis Merr)为旋花科(Convolvulaceae)丁公藤属(Erycibe roxb)植物,产于广东、海南和广西。同属植物丁公藤(E.obtusfolia Benth)与光叶丁公藤(E.schmidtii Craib)为传统药物,具有祛风除湿、消肿止痛的功效。
     毛叶丁公藤根和茎的醇提物经萃取分为石油醚层、乙酸乙酯层、正丁醇层和水层4个部分。本实验对其中的乙酸乙酯层和正丁醇层进行了化学成分研究。采用多种色谱手段分离得到52个化合物,并运用光谱方法和化学方法鉴定了它们的结构,其中23个为未见报道的新化合物。这52个化合物包括:eryciboside A (1*),eryciboside B(2*),eryciboside C(3*),eryciboside D(4*),eryciboside E(5*), eryciboside F(6*),eryciboside G(7*),eryciboside H(8*),eryciboside I(9*), eryciboside J(10*),eryciboside K(11*),eryciboside L(12*),eryciboside M(13*), eryciboside N(14*),khaephuoside B(15),albibrissinoside A(16),1-O-[6-O-(5-O-丁香酰基-β-D-呋喃芹糖)-β-D-吡喃葡萄糖]-3,4,5-三甲氧基苯(17),seguinoside E (18),eryciboside O(19*),eryciboside P(20*),eryciboside Q(21*),4-O-丁香酰基-5-O-咖啡酰基奎宁酸(22*),3-O-丁香酰基-5-O-咖啡酰基奎宁酸(23*),4-O-咖啡酰基-5-O-丁香酰基奎宁酸(24*),4-O-香草酰基-5-O-咖啡酰基奎宁酸甲酯(25*),3-O-丁香酰基-5-O-咖啡酰基奎宁酸甲酯(26),4-O-丁香酰基-5-O-咖啡酰基奎宁酸甲酯(27),绿原酸(28),绿原酸甲酯(29),绿原酸乙酯(30),绿原酸丁酯(31),4,5-O-双咖啡酰基奎宁酸乙酯(32),4,5-O-双咖啡酰基奎宁酸丁酯(33),4-{2-[3-(4-hydroxy-3,5-dimethoxyphenyl)-3-O-β-glucopyranosyl-propan-1-ol]}-O-pinoresinol (34*),丁香树脂酚双葡萄糖苷(35),lyoniresinol 3 a-O-β-D-glucopyranoside(36),aketrilignoside B(37),7R,8R,8'S-aketrilignoside B(38),6,6′-二甲氧基-7-羟基-3,7′-O-双香豆素(39*),7,7'-二羟基-6,6'-二甲氧基-3,3′-双香豆素(40),东莨菪素(41),东莨菪苷(42),N-反式-对羟基苯乙基香豆酰胺(43),N-反式-对羟基苯乙基阿魏酰胺(44),N-顺式-对羟基苯乙基阿魏酰胺(45),咖啡酸(46),3-(2,4,5-三羟基苯基)丙酸甲酯(47),3,4-二羟基苯甲酸(48),3-羟基-4-甲氧基苯甲酸(49),β-谷甾醇(50),胡萝卜苷(51),长链脂肪醇(52)。
     采用多种药理模型对毛叶丁公藤的部分粗提物和单体进行了活性筛选,结果显示,乙酸乙酯层在剂量为100 mg/kg时皮下注射给药对巴豆油致小鼠耳部炎症的抑制率为38.9%;石油醚层对人结肠癌细胞和人肺腺癌细胞具有细胞毒活性,IC50分别为42.02和33.27μg/mL;乙酸乙酯层对人胃癌细胞具有选择性细胞毒活性,IC50为42.51μg/mL;正丁醇层对人结肠癌细胞具有选择性细胞毒活性,IC50为2.27μg/mL;化合物2,6,10,12-14,19,21,34,37,39,42对D-GalN引起的肝细胞损伤有保护作用(在浓度1×10-4 M或1×10-5M时,细胞成活率为34~61%);化合物2,6和7在10-6M浓度水平对小鼠腹腔巨噬细胞NO的生成均有明显的抑制作用,抑制率分别为54.30,46.24和123.58%;化合物2和24在10-5M浓度水平对PAF刺激的多形核白细胞β葡萄糖苷酸酶释放具有抑制作用,抑制率分别为52.6和55.7%;化合物22和30显示了对流感病毒神经氨酶的抑制作用,IC50分别为30.65和38.81/μg/mL;化合物28和39分别对人卵巢癌细胞(A2780,IC50为9.60×10-6M)和人肝癌细胞(Bel-7402,IC50为7.67×10-6M)具有选择性细胞毒活性;化合物43和44在31.25μM浓度水平显示了对alpha-葡萄糖苷酶的抑制作用,抑制率分别为92.6%和44.1%。
     第二部分砂珍棘豆的化学成分及药理活性研究
     砂珍棘豆(Oxytropis racemosa Turcz.)是豆科(Leguminosae)棘豆属(OxytropisDC.)多年生草本植物,产于甘肃、宁夏、内蒙古、陕西。砂珍棘豆在藏药和蒙药中应用广泛,具有消食健脾的功效,主治小儿消化不良,它的化学成分和现代药理研究暂无报道。
     采用各种分离手段从砂珍棘豆全草的乙醇提取物中分离得到19个化合物,其中3个是新的连有酰基的黄酮醇苷类化合物。运用光谱方法和化学方法鉴定它们的结构为:鼠李黄素3-O-[3-羟基-3-甲基戊二酸单酰基(1→6)]-β-葡萄糖苷(1*),鼠李柠檬素3-O-[3-羟基-3-甲基戊二酸单酰基(1→6)]-β-葡萄糖苷(2*),异鼠李黄素3-O-{[3-羟基-3-甲基戊二酸单酰基(1→6)]-[α-鼠李糖(1→2)]}-β-葡萄糖苷(3*),刺槐素7-O-芸香糖苷(4),鼠李柠檬素3-O-葡萄糖苷(5),槲皮索3-O-β-葡萄糖苷(6),芦丁(7),鼠李黄素3-O-β-葡萄糖苷(8),异鼠李素3-O-β-葡萄糖苷(9),异鼠李黄素3-O-β-芸香糖苷(10),鼠李黄素3-O-α-阿拉伯糖苷(11),槲皮素3-O-α-吡喃阿拉伯糖苷(12),(2R,3R)-二氢山奈酚4′-O-β-葡萄糖苷(13),染料木黄酮4′-O-β-葡萄糖苷(14),尿嘧啶(15),腺苷(16),β-谷甾醇(17),胡萝卜苷(18),长链脂肪酸酯(19)。
     对砂珍棘豆的部分单体化合物进行了药理活性筛选,结果显示,化合物2对D-GalN引起的肝细胞损伤具有保护作用,在1×10-4 M浓度下,成活率为50%;化合物2和9分别对人结肠癌细胞(HCT-8)和人肺腺癌细胞(A549)具有选择性细胞毒作用,IC50分别为6.38×10-6M和5.20×10-6M。
Erycibe hainanesis Merr. (family Convolvulaceae) is distributed in Guangdong, Hainan, and Guangxi Provinces of the People's Republic of China. E. obtusfolia Benth and E. schmidtii Craib which belong to the same genus as E. hainanesis are used in traditional medicine to relieve symptoms of rheumatoid arthritis.
     The EtOH extract of the roots and stems of E. hainanesis was suspended in H2O, and then sequentially partitioned with petroleum ether, EtOAc, and n-BuOH. The n-BuOH and EtOAc fractions were subjected to separation using various column chromatographic techniques to afford 52 compounds, including 23 new compounds. On the basis of spectroscopic and chemical methods, their structures were established as follows:eryciboside A (1*), eryciboside B (2*), eryciboside C (3*), eryciboside D (4*), eryciboside E (5*), eryciboside F (6*), eryciboside G (7*), eryciboside H (8*), eryciboside I (9*), eryciboside J (10*), eryciboside K (11*), eryciboside L (12*), eryciboside M (13*), eryciboside N (14*), khaephuoside B (15), albibrissinoside A (16), 1-O-[6-O-(5-O-syringoyloyl-β-D-apiofuranosyl)-β-D-glucopyranosyl]-3,4,5-trimethoxybenzene (17), seguinoside E (18), eryciboside O (19*), eryciboside P (20*), eryciboside Q (21*),5-O-caffeoyl-4-O-syringoylquinic acid (22*), 5-O-caffeoyl-3-O-syringoylquinic acid (23*),4-0-caffeoyl-5-Osyringoylquinic acid (24*),5-O-caffeoyl-4-O-vanilloylquinic acid methyl ester (25*),5-O-caffeoyl-3-O-syringoylquinic acid methyl ester (26),5-O-caffeoyl-4-O-syringoylquinic acid methyl ester (27), chlorogenic acid (28), methyl chlorogenate (29), ethyl chlorogenate (30), butyl chlorogenate (31), ethyl 3,4-dicaffeoylquinate (32), butyl 3,4-dicaffeoylquinate (33),4-{2-[3-(4-hydroxy-3,5-dimethoxyphenyl)-3-O-β-glucopyranosyl-propan-l-ol]}-O-pinoresinol (34*), syringaresinol-di-O-β-D-glucopyranoside (35), lyoniresinol 3a-O-β-D-glucopyranoside (36), aketrilignoside B (37),7R,8R,8'S-aketrilignoside B (38),7-hydroxy-6,6'-dimethoxy-3,7'-O-bis-coumarin (39*),7,7'-dihydroxy-6,6'-dimethoxy-3,3'-bis-coumarin (40), scopoletin, (41), scopolin (42), trans-.N-(p-coumaroyl)tyramine (43), trans-N-feruloyltyramine (44), cis-N-feruloyltyramine (45), caffeic acid (46), methyl 3-(2,4,5-trihydroxyphenyl)propanoate (47),3,4-dihydroxybenzoic acid (48), 3-hydroxy-4-methoxy benzoic acid (49),β-sitosterol (50), daucosterol (51), long-chain fatty alcohol (52).
     Bioacitivities of some fractions and compounds from E. hainanesis were screened by various pharmaceutical models. The EtOAc fraction of EtOH extract of E. hainanesis showed obvious anti-flammatory activity against croton oil-induced rat ear edema with a inhibitory rate of 38.9% at 100 mg/kg; the petroleum ether fraction exhibited selective cytotoxicities with IC50 values of 42.02μg/mL against HCT-8 and 33.27μg/mL against A549; the EtOAc and n-BuOH fractions showed selective cytotoxicities, with IC50 values of 42.51μg/mL against BGC-823 and 2.27μg/mL against HCT-8, respectively; compounds 2,6,10,12-14,19,21,34,37,39, and 42 showed hepatoprotective effects against D-galactosamine-induced toxicity in WB-F344 cells, with cell survival rates of 34-61% at 1×10-5-1×10-4 M; compounds 2, 6, and 7 displayed inhibitory effects on nitric oxide production by macrophages stimulated with LPS, with inhibitory rates of 54.30,46.24, and 123.58%, respectively, at a concentration of 10"6 M; compounds 2 and 24 exhibited inhibitory effects on the release ofβ-glucuronidase rat polymorphous nuclear leukocytes activated by platelet activating factor (PAF), with inhibitory rates of 52.6 and 55.7%, respectively, at a concentration of 10"5 M; compounds 22 and 30 showed inhibitory effects on influenza neuraminidase, and they gave IC50 values of 30.65 and 38.81μg/mL, respectively; compounds 28 and 39 showed selective cytotoxicities, with IC50 values of 9.60×10-6 M against A2780 and 7.67×10-6 M against Bel-7402, respectively; compounds 43 and 44 showed moderate a-glucosidase enzyme inhibition with IC50 values of 92.6% and 44.1%, respectively, at a concentration of 31.25μM.
     Oxytropis racemosa Turcz (family Leguminosae) is distributed in the provinces of Gansu, Ningxia, Inner Mongolia, and Shanxi. It is an important Mongolian and Tibetan medicine, and its promoting digestion and invigorating the spleen properties have been applied to children's indigestion. However, studies on the chemical constituents and bioactivities have not been reported so far.
     The EtOH extract of the whole plant of O. racemosa was subjected to separation using various separation techniques to afford 19 compounds, three of which are new acylated flavonol glycosides. On the basis of spectroscopic and chemical methods, their structures were established as follows:rhamnetin 3-O-[3-hydroxy-3-methylglutaroyl(1→6)]-β-glucopyranoside (1*), rhamnocitrin 3-O-[3-hydroxy-3-methylglutaroyl(1→6)]-β-glucopyranoside (2*), isorhamnetin 3-O-{[3-hydroxy-3-methy lglutaroyl(1→6)] [α-rhamnopyranosy1(1→2)]}-β-glucopyranoside (3*), acacetin 7-O-rutinoside, (4), rhamnocitrin 3-O-β-glucopyranoside (5), quercetin 3-O-β-glucopyranoside (6), rutin (7), rhamnetin 3-O-β-glucopyranoside (8), isorhamnetin 3-O-β-glucopyranoside (9), isorhamnetin 3-O-β-rutinoside (10), isorhamnetin 3-O-α-arabinopyranoside (11), quercetin 3-O-α-arabinopyranoside (12), (2R,3R)-dihydrokaempferol 4'-O-β-glucopyranoside (13), genistein 4'-O-β-glucopyranoside (14), uracil (15), adenosine (16),β-sitosterol (17), daucosterol (18), long-chain fatty acid ester (19).
     Bioacitivities of some compounds from O. racemosa were screened by various pharmaceutical models. Compound 2 showed hepatoprotective effects against D-galactosamine-induced toxicity in WB-F344 cells, with cell survival rate of 50% at 1×10-4 M; compounds 2 and 9 showed selective cytotoxicities, with IC50 values of 6.38×10-6 M against A2780 and 5.20×10-6 M against A549, respectively.
引文
[1]刘建.丁公藤化学成分与药理活性研究[D].北京:中国医学科学院-北京协和医学院药物研究所,2007.
    [2]方瑞征,黄素华.中国植物志[M].北京:科学出版社,1979,64(1):15-16.
    [3]国家药典委员会.中华人民共和国药典[M].北京:化工工业出版社,2005:3.
    [4]Lin C. C., Chen J. C. Medicinal herb Erycibe henri Prain ("Ting Kung Teng") resulting in acute cholinergic syndrome [J]. Clin. Toxicol.2002,40(2):185-187.
    [5]Huang H. H., Yen D. H. T., Wu M. L. Acute Erycibe henryi Prain ("Ting Kung Teng") poisoning [J]. Clin. Toxicol.2006,44(1):71-75.
    [6]Tanawan K., Pornchai O., Weena J., et al. Antiproliferative effect of Erycibe elliptilimba on human breast cancer cell lines [J]. J. Ethnopharmacol.2007, 110(3):439-443.
    [7]Matsuda H., Yoshida K., Miyagawa K., et al. Rotenoids and flavonoids with anti-invasion of HT1080, anti-proliferation of U937, and differentiation-inducing activity in HL-60 from Erycibe expansa [J]. Bioorgan. Med. Chem.2007,15(3): 1539-1546.
    [8]Liu, J., Feng, Z. M.; Xu, J. F., et al. Rare biscoumarins and a chlorogenic acid derivative from Erycibe obtusifolia [J]. Phytochemistry,2007,68(13): 1775-1780.
    [9]姚天荣,陈泽乃.包公藤的化学成分研究[J].药学学报,1979,14(12):731-734.
    [10]陈泽乃,徐佩娟,姚天荣.包公藤(丁公藤)的化学研究[J].中草药,1986,17(9):2-3.
    [11]陆阳,姚天荣,陈泽乃.凹脉丁公藤化学成分的研究[J].药学学报,1986,21(11):829-835.
    [12]Matsuda H., Morikawa T., Xu F. M., et al. New isoflavones and pterocarpane with hepatoprotective activity from the stems of Erycibe expansa [J]. Planta Med. 2004,70(12):1201-1209.
    [13]Matsuda H., Xu F. M., Matsuda H., et al. Structures of new flavonoids, erycibenins D, E, and F, and NO Production Inhibitors from Erycibe expansa originating in Thailand [J]. Chem. Pharm. Bull.2006,54(11):1530-1534.
    [14]宋蔚,金蓉鸾,刘继华.光叶丁公藤化学成分的研究[J].中国中药杂志,1997,22(6):359—360.
    [15]王朴,姚天荣,陈泽乃.毛叶丁公藤化学成分的研究[J].植物学报,1989,31(8):616-619.
    [16]叶文博,姜芳,丁韶萍,等.丁公藤注射液对牛蛙坐骨神经结构和传导的影响[J].上海师范大学学报:自然科学版,1999,28(1):82.
    [17]郭福丽.丁公藤注射液治疗肾绞痛[J].四川中医,1986,(4):32.
    [18]周小祥,金永言.丁公藤治疗腹痛50例疗效观察[J].辽宁中级医刊,1977,(9):34.
    [19]王心田,黄明月,梁舜薇.丁公藤缩瞳的药理研究[J].新医学,1978,9(6):279-280.
    [20]Hsu H. Y., Lin C. C., Chen J. Y., et al. Toxic effects of Erycibe obtusifolia, a Chinese medicinal herb, in mice [J]. J. Ethnopharm,1998,62(2):101-105.
    [21]叶惠珍,范椰新,刘植蔚,等.丁公藤抗风湿有效成分的研究[J].中草药,1981,12(5):5-7.
    [22]朱惠兰,黄金城.丁公藤结晶I(东莨菪素)抗炎作用[J].中草药,1984,15(10):30-33.
    [23]Silvan A. M., Abad M. J., Bermejo P., et al. Effects of compounds extracted from Santolina oblongifolia on TXB2 release in human platelets [J]. Inflammopharm. 1998,6(3):255-263.
    [24]Silvan A. M., Abad M. J., Bermejo P., et al. Antiinflammatory activity of coumarins from Santolina oblongifolia [J]. J. Nat. Prod.1996,59(12): 1183-1185.
    [25]Li Y., Dai Y., Liu M., et al. Scopoletin induces apoptosis of fibroblast-like synoviocytes from adjuvant arthritis rats by a mitochondrial-dependent pathway [J]. Drug Develop. Res.2009,70(5):378-385.
    [26]Kim H. J., Jang S. I., Kim Y. J., et al. Scopoletin suppresses pro-inflammatory cytokines and PGE2 from LPS-stimulated cell line, RAW 264.7 cells [J]. Fitoterapia,2004,75(3-4):261-266.
    [27]Pan R., Dai Y., Gao X. H., et al. Scopolin isolated from Erycibe obtusifolia Benth stems suppresses adjuvant-induced rat arthritis by inhibiting inflammation and angiogenesis [J]. Int. Immunopharmacol.2009,9(7-8):859-869.
    [28]Ding Z. Q., Dai Y, Wang Z T. Hypouricemic action of scopoletin arising from xanthine oxidase inhibition and uricosuric activity [J]. Planta Med.2005,71(2): 183-185.
    [29]Ojewole J. A. O., Adesina S. K. Mechanism of the hypotensive effect of scopoletin isolated from the fruit of Tetrapleura tetrapera [J]. Planta Med.1983, 49(1):46-50.
    [30]Obasi S. C., Njoku O. U., Obidoa O. Effects of single oral doses of scopoletin and aflatoxin B1 on the clotting time, serum cholesterol and phospholipid levels of chicks [J]. Indian J. Physiol. Pharmacol.1994,38(2):89-94.
    [31]Liu X. L., Zhang L., Fu X. L., et al. Effects of scopoletin on PC3 cell proliferation and apoptosis [J]. Acta. Pharmacol. Sin.2001,22(10):929-933.
    [32]Kim E. K., Kwon K. B., Shin B. C., et al. Scopoletin induces apoptosis in human promyeloleukemic cells, accompanied by activations of nuclear factor BNF-κB and caspase-3 [J]. Life Sci.2005,77(7):824-836.
    [33]Manuele M. G., Ferraro G., Arcos M. L. B., et al. Comparative immunomodulatory effect of scopoletin on tumoral and normal lymphocytes [J]. Life Sci.2006,79(21):2043-2048.
    [34]Wu T. S., Leu Y. L., Hsu H. C., et al. Constituents and cytotoxic principies of Nothapodytes foetida [J]. Phytochemistry,1995,39(2):383-385.
    [35]Oliveira E. J., Romero M. A., Silva M. S., et al. Intracellular calcium mobilization as a target for the spasmolytic action of scopoletin [J]. Planta Med. 2001,67(7):605-608.
    [36]杨柯,林启云,赵一,等.东莨菪素对家兔体温的影响[J].广西中医药,2005,28(1):62.
    [37]盛艳梅,龙恰,孟宪丽,等.灯盏花单体成分对体外培养大鼠视网膜神经细胞的影响[J].四川生理科学杂志,2004,26(4):176-177.
    [38]张静,杨文宇,张艺,等.灯盏细辛化学成分及视神经保护活性成分的研究[J].中国药学杂志,2006,41(22):1695-1697.
    [39]Rollinger J. M., Hornick A, Langer T., et al. Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products [J]. J. Med. Chem.2004,47(25):6248-6254.
    [40]Kim A. R, Zou Y. N, Park T. H., et al. Active components from artemisia iwayomogi displaying ONOO scavenging activity [J]. Phytother. Res.2004, 18(1):1-7.
    [41]成柏华,潘翠琴,朱思玲,等.包公藤甲素的环核苷酸作用机制研究[J].上海第二医学院学报,1983,3(3):55-56.
    [42]彭大伟,陈秀琦,周文炳,等.丁公藤碱Ⅱ降眼压和缩瞳作用的研究[J].中山医科大学学报,1988.9(3):27-30.
    [43]黄文勇,彭大伟,曾淑君,等.丁公藤碱对培养的人眼睫状肌细胞内的Ca2+运动的影响[J].眼科学报,1999,15(4):212.
    [44]曾淑君,张延斌,彭大伟,等.丁公藤碱降眼压作用机制的研究[J].中华眼科杂志,1999,35(3):171-173.
    [45]成柏华,唐海铭,李丽等.包甲素对大鼠心缩功能及K+、H+、PO2的影响[J].上海第二医科大学学报,1986,6(2):130-132.
    [46]张景夏,王秀宜,张勇,等.包公藤甲素对在位大鼠心肌细胞电活动的作用[J].上海第二医学院学报,1982,(4):38-39.
    [47]上海第二医学院药理研究组.包公藤甲素对心血管作用的初步研究[J].药学通报,1981,16(4):51-52.
    [48]愈霭瑶,孙琛.包公藤甲素对中枢M-胆碱能效应[J].上海第二医学院学报,1985,(3):189-191.
    [49]Ohnishi M., Morishita H., Iwahashi H., et al. Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis [J]. Phytochemistry.1994, 36(3):579-583.
    [50]Iwahashi H., Negoro Y., Ikeda A., et al. Inhibition by chlorogenic acid of haematin-catalysed retinoic acid 5,6-epoxidation [J]. Biochem. J.1986,239(3): 641-646.
    [51]胡宗福,于文利,赵亚平.绿原酸清除活性氧和抗脂质过氧化的研究[J].食品科学,2006,27(2):128-130.
    [52]Li Y. J., Shi W., Li Y. D., et al. Neuroprotective effects of chlorogenic acid against apoptosis of PC12 cells induced by methylmercury [J]. Environ. Toxicol. Phar.2008,26(1):13-21.
    [53]詹晓如,郑小吉.金银花活性成分绿原酸对制剂的防腐效果研究[J].时珍国医国药,2006,17(1):75.
    [54]Lee J. H., Park J. H., Kim Y. S., et al. Chlorogenic acid, a polyphenolic compound, treats mice with septic arthritis caused by Candida albicans [J]. Int. Immunopharmacol.2008,8(12):1681-1685.
    [55]杨斌,丘岳,王柳萍,等.广西山银花绿原酸体外抗炎作用及分子机制研究[J].中国药理学通报,2009,25(4):542-545.
    [56]盛卸晃,刘文谦,薛霞,等.绿原酸体外抗单纯疱疹病毒作用[J].中国天然药物,2008,6(3):232-234.
    [57]Kazumi Y., Yutaka M., Rieko O., et al. Inhibitory effects of chlorogenic acid and related compounds on the invasion of hepatoma cells in culture [J]. Cytotechnology,2000,33(1-3):229-235.
    [58]张鞍灵,马琼,高锦明,等.绿原酸及其类似物与生物活性[J].中草药,2001,32(2):173-176.
    [59]王乐,李多伟.元宝枫中绿原酸的研究进展[J].西北药学杂志,2009,24(3):230-232.
    [60]陈绍华,王亚琴,罗立新.天然产物绿原酸的研究进展[J].食品科技,2008,33(2):195-199.
    [61]邓良,袁华,喻宗沅.绿原酸的研究进展[J].化学与生物工程,2005,22(7):4-6.
    [1]方瑞征,黄素华.中国植物志[M].北京:科学出版社,1979,64(1):15-16.
    [2]刘建.丁公藤化学成分与药理活性研究[D].北京:中国医学科学院-北京协和医学院药物研究所,2007.
    [3]王朴,姚夭荣,陈泽乃.毛叶丁公藤化学成分的研究[J].植物学报,1989,31(8):616-619.
    [4]Kitagawa I., Sakagami M, Hashiuchi F., et al. Apioglycyrrhizin and araboglycyrrhizin, two new sweet oleanene-type triterpene oligoglycosides from the root of Glycyrrhiza inflate [J]. Chem. Pharm. Bull.1989,37(2):551-553.
    [5]Otsuka H., Takeda Y., Yamasaki K., et al. Structural elucidation of dendranthemosides A and B:two new β-ionone glucosides from Dendranthema shiwogiku [J]. Planta Med.1992,58(4):373-375.
    [6]Perez C., Trujillo J., Almonacid L. N., et al. Absolute structures of two new C13-norisoprenoids from Apollonias barbujana [J]. J. Nat. Prod.1996,59(1): 69-72.
    [7]Yu Q., Otsuka H., Hirata E., et al. Turpinionosides A-E:megastigmane glucosides from leaves of Turpinia ternata Nakai [J]. Chem. Pharm. Bull.2002,50(5): 640-644.
    [8]Otsuka H., Kamada K., Ogimi, C., et al. Alangionosides A and B, ionol glycosides from leaves of Alangium premnifolium [J]. Phytochemstry,1994,35 (5): 1331-1334.
    [9]Hideaki O., Eiji H., Takakazu S., et al. Stereochemistry of megastigmane glucosides from Glochidion zeylanicum and Alangium premnifolium [J]. Phytochemstry,2003,62(5):763-768.
    [10]Kanchanapoom T., Kasai R., Yamasaki K. Phenolic glycosides from Barnettia kerri [J]. Phytochemistry,2002,59(5):565-570.
    [11]da Silva V. C., Bolzani V. da S., Young M. C. M., et al. A new antifungal phenolic glycoside derivative, iridoids and lignans from Alibertia sessilis (Vell.) K. Schum. (Rubiaceae) [J]. J. Braz. Chem. Soc.2007,18 (7):1405-1409.
    [12]Jung M. J., Kang S. S., Jung Y. J., et al. Phenolic Glycosides from the Stem Bark of Albizzia julibrissin [J]. Chem. Pharm. Bull.2004,52(12):1501-1503.
    [13]Zhong X. N., Otsuka H., Ide T., et al. Hydroquinone glycosides from leaves of Myrsine seguinii [J]. Phytochemistry,1998,49(7):2149-2153.
    [14]Nakatani N., Kayano S. I., Kikuzaki H., et al. Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in Prune (Prunus domestica L.) [J]. J. Agric. Food. Chem.2000,48(11):5512-5516.
    [15]陈国良,李新莉,石凌刚,等.烟管蓟地上部分化学成分研究[J].中药材,2007,30(3):291-294.
    [16]尹凯,高慧媛,李行诺,等.皱皮木瓜的化学成分[J].沈阳药科大学学报,2006,23(12):760-763.
    [17]谢韬,梁敬钰,刘净,等.滨蒿化学成分的研究[J].中国药科大学学报,2004,35(5):401-403.
    [18]Lin Y. L., Wang W. Y. Chemical constituents of Vernonia patula [J]. Chin. Pharm. J.2002,54(3):187-192.
    [19]Um B. H., Polat M., Lobstein A., et al. A new dicaffeoylquinic acid butyl ester from Isertia pittieri [J]. Fitoterapia,2002,73(6):550-552.
    [20]Tian J. M., He H. P., Di Y. T., et al. Three new lignan glycosides from Mananthes patentiflora [J]. J. Asian Nat. Prod. Res.2008,10(3):228-232.
    [21]Hattori M., Hada S., Shu V. Z., et al. New acyclic bis-phenylpropanoids from the aril of Myristica fragrans [J]. Chem. Pharm. Bull.1987,35(2):668-674.
    [22]张淏,李行诺,孙博航,等.苦楝皮的化学成分[J].沈阳药科大学学报,2008,25(7):534-536.
    [23]霍长虹.老鼠簕和山矾的化学成分及抗乙肝病毒生物活性研究[D].北京:北京大学,2005.
    [24]Guan S. H., Xia J. M., Lu Z. Q., et al. Structure elucidation and NMR spectral assignments of three new lignan glycosides from Akebia trifoliate [J]. Magn. Reson. Chem.2008,46(2):186-190.
    [25]常小龙,李军,吴立军,等.白花银背藤化学成分的研究[J].中草药,2006,37(2):178-181.
    [26]刘杰,陈海生,徐一新,等.中药刺蒺藜化学成分的研究[J].第二军医大学学报,2003,24(2):221-222.
    [27]Fukuda N., Yonemitsu M., Kimura T. Studies on the constituents of the stems of Tinospora tuberculata Beumee. I. N-trans-and N-cis-feraloyl tyramine, and a new phenolic glucoside, Tinotuberide. [J]. Chem. Pharm. Bull.1983,31(1): 156-161.
    [28]尹永芹,沈志滨,孔令义.巴西甘薯叶化学成分研究[J].中药材,2008,31(10):1501-1503.
    [29]Lia J. Y, Zhang F. J., Christensen B. M. Involvement of lactones in the formation of 6-hydroxydopa and 6-hydroxyhydrocaffeic acid during oxidation of dopa and hydrocaffeic acid [J]. J. Electroanal. Chem.1996,412(1-2):19-29.
    [30]汪琼,王易芬,鞠鹏,等.锥序蜜心果中酚性成分的研究[J].天然产物研究与开发,2008,20(4):641-643.
    [31]李春远,丁唯嘉,渠桂荣.五倍子化学成分研究[J].中草药,2008,39(8):1129-1132.
    [1]侯作贤,张汝学,贾正平.棘豆属植物化学成分和药理作用的最新研究进展[J].中华中医药学刊,2008,26(2):320-322.
    [2]确生,才让卓玛.棘豆属植物研究综述[J].中国民族医药杂志,2006,(2):102-104.
    [3]李玉林,廖志新,杜玉枝,等.棘豆属植物化学成分研究概况[J].天然产物研究与开发,2002,14(2):75-79.
    [4]徐超,刘斌,石任兵.棘豆属植物化学成分与药理作用[J].国外医药·植物药分册,2008,23(1):1-7.
    [5]刘斌.中国棘豆属药用植物及其现代研究[J].中国野生植物资源,1997,16(2):15-18.
    [6]游美[石羡],Purevsuren Sodnomtseren,胡昌奇.棘豆属植物Oxytropis pseudoglandulosa化学成分研究[J].天然产物研究与开发,2008,20(4):647-649
    [7]闫海燕.镰形棘豆中两种黄酮的结构及生物活性研究[J].宝鸡文理学院学报(自然科学版),2008,28(2):120-122,126.
    [8]马彦梅.宽苞棘豆化学成分的研究[D].陕西杨凌:西北农林科技大学,2004.
    [9]李玉林,序志新,孙洪发,等.急弯棘豆化学成分的研究[J].中草药,1998,29(3):149-151.
    [10]于荣敏,李铣,朱廷孺,等.小花棘豆中黄酮醇和黄酮醇苷的分离鉴定[J].中国中药杂志,1989,14(8):452-484.
    [11]Yu R. M., Li X., Zhu T. R.2D-NMR Spectroscopic studies of flavonoid from Oxytropis glabra [J]. Chin. J. Magn. Resonance,1991,8(1):99-106.
    [12]于荣敏,李铣,张海军,等.小花棘豆化学成分的研究[J].植物学报,1992,34(5):369-377.
    [13]Lu J. H., Liu Y., Zhao Y. Y., et al. New flavonoid from Oxytropis myriophylla [J]. Chem. Pharm. Bull.2004,52(2):276-278.
    [14]Sakanyan E. I., Blinova K. F. Flavonoid aglycons of some Transbaikal species of Oxytropis [J]. Khim. Prir. Soedin.1986, (6):785-786.
    [15]Somphon P. A. Flavonoid of Oxytropis strobilacea [J]. Khim. Prir. Soedin.1991, (5):721.
    [16]李平,俞惟乐,路英华,等.黄花棘豆种子中化学成分的研究[J].化学学报,1991,49(12):1510-1513.
    [17]程东亮,孙荣奇,李小瑞,等.黄花棘豆中黄酮醇及黄酮苷的分离与鉴定[J].植物学报,1986,28(4):404-408.
    [18]李平,张仁斌,俞惟乐,等.黄花棘豆两种黄酮成分研究[J].植物学报,1991,33(8):593-596.
    [19]姚淑英,马云保,唐亚,等.镰形棘豆的化学成分研究[J].中国中药杂志,2008,33(5):1418-1421.
    [20]吕芳,徐筱杰.藏药镶形棘豆中黄酮类化学成分研究[J].中国中药杂志,2007,32(4):318-320.
    [21]王栋,杨欢,戴衍鹏,等.镰形棘豆的化学成分研究(Ⅱ)[J].中国药学杂志,2008,43(17):1292-1294.
    [22]于荣敏,李铣,朱廷孺.小花棘豆中两个新化合物的结构测定[J].沈阳药学院学报,1989,6(4):283.
    [23]杨欢,王栋,童丽,等.镰形棘豆的化学成分研究(Ⅳ)[J].中国药学杂志,2008,43(20):1538-1540.
    [24]杨欢,王栋,童丽,等.镰形棘豆的化学成分研究(Ⅰ)[J].中国药学杂志,2008,43(5):338-340.
    [25]梁斌,颜世芬,陈茂奇,等.甘肃棘豆挥发成分研究Ⅰ.精油成分分离与鉴定[J].分析测试学报,1994,13(1):37-43.
    [26]付聘宇,白红进,张波,等.宽苞棘豆的化学成分及其生物活性研究初报[J].西北农林科技大学学报(自然科学版),2004,32(9):97-100.
    [27]孙荣奇,贾忠建,程东亮,等.黄花棘豆化学成分的研究(Ⅲ)[J].高等学校化学学报,1989,10(9):901-904.
    [28]孙荣奇,程东亮,贾忠建,等.黄花棘豆化学成分的研究Ⅱ.两种三萜皂苷 的结构[J].化学学报,1987(45):145-149.
    [29]Sun R. Q., Jia Z. J., Cheng D. L., et al. Three saponins from Oxytropis species [J]. Phytochemistry,1991,30(8):2707-2709.
    [30]Sun R.Q., Jia Z.J. saponins from Oxytropis glabra [J]. Phytochemistry,1990, 29(6):2032-2034.
    [31]孙荣奇,贾忠建,朱子清.棘豆属植物中几个新的三萜皂苷[J].科学通报,1989,(18):1425-1428.
    [32]Okawa M., Yamaguchi R., Delger H., et al. Five glycoside from Oxytropis myriophylla [J]. Cham. Pharm. Bull.,2002,50(8):1097-1099.
    [33]确生.藏药镰形棘豆化学成分的研究[D].兰州:西北师范大学,2003.
    [34]Sun R. Q., Jia Z. J. A triterpenoid saponin from Oxytropis bicolor [J]. Phytochemistry,1991,30(10):3480-3482.
    [35]孟协中,胡向群,张如明,等.黄花棘豆毒性生物碱的分离与鉴定[J].中草药,1994,25(2):61-63.
    [36]董云发,丁云梅,宇健,等.黄花棘豆的喹诺里西啶生物碱[J].植物资源与环境,1993,2(1):58-59.
    [37]于荣敏,李铣,宋丽艳,等.小花棘豆毒性生物碱的研究[J].中国中药杂志,1991,16(3):160-163.
    [38]Akhmedzhanova V. I., Moldagulov M. A., Skakirov R. S. Alkaloids of Oxytropis puberula [J]. Khim. Prir. Soedin.1993, (1):90-91.
    [39]童德文,曹光荣,李绍军.甘肃棘豆中苦马豆素的分离与鉴定[J].西北农林科技大学学报(自然科学版),2001,29(3):5-8.
    [40]Akhmedzhanova V. I., Batsuren D. Alkaloids and flavonoids of Oxytropis muricata [J]. Chem. Nat. Compd.1997,33(3):326-328.
    [41]Akhmedzhanova V. I. Oxytropis alkaloids. Ⅲ. Trichophidine [J]. Khim. Prir. Soedin.1994, (3):414-416.
    [42]Keisuke K., Purevsuren S., Narantuya S., et al. Alkaloids from Oxytropis myriophylla (Pall.) DC [J]. Sci. Pharm.2001,69(4):383-388.
    [43]Akhmedzhanova V. I., Batsuren D., Skakirov R.S. Oxytropis alkaloids. Ⅱ. Structure of oxytriphine [J]. Khim. Prir. Soedin.1993, (6):873-876.
    [44]谭远友,王建华,李勤凡,等.冰川棘豆中2,2,6,6-四甲基-4-哌啶酮的含量测定[J].武汉科技学院学报,2002,15(5):63-65.
    [45]郑尚珍,确生,许先芳,等.GC/MS联用法测定镶形棘豆石油醚部位的化学成分[J].西北师范大学学报,2003,39(2):51-53.
    [46]Lu J. H., Liu Y., Tu G. Z., et al. Phenolic glucosides from Oxytropis myriophylla [J]. J. Asian Nat. Prod. Res.2002,4(1):43-46.
    [47]于荣敏,杨桂云.小花棘豆毒性成分的研究[J].沈阳药学院学报,1991,8(2):113-116.
    [48]喻梅辉,窦强,胡冰,等.小花棘豆溶血毒素的分离纯化及其性质的研究 [J].生物化学与生物物理学报,1985,17(4):495-500.
    [49]赵燕燕,杨更亮,孙素芳,等.电感藕合等离子体光谱法测定黄花棘豆中微量元素[J].分析化学,2003,31(4):506.
    [50]李学勤,王建华,耿果霞,等.冰川棘豆提取物的体外抑菌实验[J].甘肃畜牧兽医,2005,(3):2-4.
    [51]李勤凡,王建华,张耀相,等.TMPD体外抑菌实验[J].黑龙江畜牧兽医,2006,(11):97-98.
    [52]付骋宇,白红进,张波.宽苞棘豆的化学成分及其生物活性研究初报[J].西北农林科技大学学报(自然科学版),2004,32(9):97-100.
    [53]陈学文,王麦玲,昊文君.宁夏二色棘豆抑菌效果的初步研究[J].宁夏农林科技,2005,(6):15.
    [54]潘和平,卢建雄,阎萍.棘豆植物的毒性研究及利用[J].中兽医医药杂志,2003,(4):42-43.
    [55]张守信,曹光荣,李绍君,等.甘肃棘豆醇提物对小鼠移植性肿瘤S37,H22的抑制实验[J].畜牧兽医杂志,1992,(2):13-15.
    [56]Long Y., Li Q. W. The effect of alkaloid from Oxytropis ochrocephala on growth inhibition and expression of PCNA and P53 in mice bearing H22 hepatocelar carcinoma [J]. Yakugaku Zasshi,2005,125(8):665-670.
    [57]杨鸣琦,曹光荣.苦马豆素的毒性、代谢与用途[J].动物医学进展,1997,18(4):20-25.
    [58]张生福,何宝样,王凯,等.黄花棘豆对小鼠某些免疫功能的影响及中毒小鼠的病理组织学观察[J].动物毒物学,1992,7(2):15-17.
    [59]顾百群,薛登民,曹光荣,等.山羊甘肃棘豆中毒临床病理学研究[J].畜牧兽医杂志,1991,(3):9-11.
    [60]姜华,胡君茹,刘霞,等.镶形棘豆的研究进展[J].中草药,2006,37(2):314-315.
    [61]赵宗孝,好斯巴特,汤文莉.蒙药材清除自由基作用的比较[J].中国民族医药杂志,2004,(1):18-19.
    [62]梁冰,张世珍,李世平,等.甘肃棘豆毒性成分的筛选及毒理学研究[J].动物毒物学,1996,11(2):16-19.
    [63]张洁,刘绪川,张国伟,等.棘豆植物及其有毒成分的中毒病理学研究[J].华南农业大学学报,1997,18(2):100-104.
    [64]王凯,何宝样,羊秀措.家兔试验性黄花棘豆中毒的临床病理学观察[J].中国兽医科技,1995,25(2):26-27.
    [65]李培锋,赵树臣,杨保收,等.小花棘豆总生物碱对小鼠氧自由基的影响[J].动物医学进展,2005,26(9):93-95.
    [66]耿久荣,李培锋,关红.小花棘豆主要有毒成分黄花碱对氧自由基的影响[J].动物医学进展,2005,26(7):61-63.
    [67]王凯,曹光荣,段得贤,等.黄花棘豆对山羊的毒性研究[J].畜牧兽医学报,1990,21(1):80-86.
    [68]赵宝玉,曹光荣,童德文,等.甘肃棘豆(Oxytropis kansuensis)毒性生物碱研究[J].中国兽医学报,2001,21(22):174-175.
    [69]吴永魁,田慧英,淡伦,等.黄花棘豆生物碱对体外大鼠胚胎的发育毒性[J].中国兽医学报,1999,19(1):55-60.
    [1]马毓泉.内蒙古植物志(第二版)[M].内蒙古自治区:内蒙古人民出版社,1989,3:309-310.
    [2]卢萍,赵萌莉,韩国栋,等.内蒙古西部地区砂珍棘豆遗传多样性分析[J]. 内蒙古大学学报(自然科学版),2007,38(2):160-165.
    [3]刘斌.中国棘豆属药用植物及其现代研究[J].中国野生植物资源,1997,16(2):15-18.
    [4]Park J. C., Lee J. H., Choi J. S. A flavone diglycoside from Cirsium japonicum var. ussuriense [J]. Phytochemistry,1995,39(1):261-262.
    [5]马英丽,田振坤,苑春升.黄芪茎叶化学成分的研究[J].沈阳药学院学报,1991,8(2):121-123.
    [6]Chaurasia N., Wichtl M. Flavonol glycosides from Urtica dioica [J]. Planta Med. 1987,53(5):432-434.
    [7]Berardini N., Fezer R., Conrad J., et al. Screening of Mango (Mangifera indica L.) cultivars for their contents of flavonol O-and xanthone C-glycosides, anthocyanins, and pectin [J]. J. Agric. Food. Chem.2005,53(5):1563-1570.
    [8]王羽,张彦军,高文远.滇重楼的抗肿瘤活性成分研究[J].中国中药杂志,2007,32(14):1425-1428.
    [9]Victoire C., Berrurier M. H., Guth A. L., Balz J. P., et al. Isolation of flavonol glycosides from Ginkgo biloba leaves [J]. Planta Med.1988,54(3):245-247.
    [10]唐于平,王颖,楼凤昌,等.银杏叶中的黄酮醇苷类成分[J].药学学报,2000,35(5):363-366.
    [11]谢百波,许福泉,李良波,等.元宝槭树叶中的黄酮苷[J].云南植物研究,2005,27(3):232-234.
    [12]Irena M., Maria S. Flavonoid compounds in the flowers of Urena lobata L. (Malvaceae) [J]. Acta. Pol. Pharm.1999,56(1):69-71.
    [13]Watanabe K, Kinjo J. Nohara T. Three new isoflavonoid glycosides from Lupinus luteus and L. polyphyllus x arboreus [J]. Chem. Pharm. Bull.1993, 41(2):394-396.
    [14]Liu J., Yu Z. B., Ye Y. H., et al. Chemical constituents from Portuluca oleracea L [J]. Nat. Prod. Res. Dev.2007,19(B11):398-399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700