用户名: 密码: 验证码:
TLR4配体和H_2O_2激活的non-Smad信号可增强TGF-β1信号进而促进非侵袭性乳腺癌细胞获得转移潜能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:多条信号途径的有效激活对促进肿瘤细胞的转移至关重要。TGF-β1具有潜在激活多条与肿瘤转移潜能相关信号途径的能力。然而,非侵袭性肿瘤细胞的转移潜能对TGF-β1的刺激并不敏感。肿瘤微环境中的H202和LPS都具有激活TGF-β1介导的non-Smad途径的潜能,因此,本文旨在探讨H202和LPS能否协同TGF-β1诱导非侵袭性乳腺癌细胞获得转移潜能,同时H2O2和LPS能否促进非侵袭性乳腺癌细胞中TGF-β1信号激活增强。
     方法:采用Matrigel侵袭实验和细胞骨架聚集分析来检测肿瘤细胞的侵袭迁移能力;流式细胞术和软琼脂集落形成实验用来检测肿瘤细胞抗失巢凋亡能力;转移和凋亡相关基因的表达水平变化由Real-time RT-PCR和Western blot检测;信号途径的激活水平由Western blot检测;采用免疫组化检测实验性转移模型中肿瘤细胞转移鉴定及增殖情况。
     结果:增强的TGF-β1信号能诱导非侵袭性乳腺癌细胞获得转移潜能。单独的TGF-β1不能诱导非侵袭性乳腺癌细胞的Smad和non-Smad途径持续激活。TLR4配体(LPS)和H202协同TGF-β1能有效促进non-Smad信号途径(p38MAPK, ERK, JNK, PI3K和NF-κB)持续激活。激活的MAPK和PI3K信号又可通过下调Nm23-H1,上调TβRⅠ和TβRⅡ的表达对TGF-β1信号激活产生一个正反馈调控,从而进一步激活多条信号途径。同时,激活增强的TGF-β1信号也可诱导SNAI2表达进一步上调,后者又能促进TPRⅡ表达。因此,经TGF-β1/H2O2/LPS长时间诱导后,Smad和non-Smad信号持续激活逐渐增强。与信号途径激活模式一致,经TGF-β1/H2O2/LPS长时间诱导后,乳腺癌细胞的侵袭迁移和抗失巢凋亡能力也逐渐增强。重要的是,裸鼠实验转移模型结果表明,TGF-β1/H2O2/LPS诱导的转移潜能足以促进非侵袭性的乳腺癌细胞从血管中外渗并且在肺内形成转移病灶。
     结论:H2O2/LPS可激活增强非侵袭性乳腺癌细胞中TGF-β1信号,诱导Smad和non-Smad信号持续激活增强,从而诱导非侵袭性乳腺癌细胞获得转移潜能。转移是导致肿瘤患者死亡最主要的原因。信号的激活增强可诱导肿瘤细胞获得更高的转移潜能,因此,靶向阻断某一个刺激因素或某一条信号途径的激活可能成为肿瘤综合治疗策略之一。
Aim:The efficient activation of multiple signaling pathways is the important driving force for tumor cell metastasis. TGF-β1has the potential to activate multiple signaling pathways required for inducing metastatic potential of tumor cells. However, TGF-β1was inefficient in inducing metastatic potential of many non-invasive human tumor cells. It has been found that TLR4ligand and H2O2also have the potential to activate non-Smad pathways which could be activated by TGF-β1. Therefore, in this study we investigated whether TGF-β1could induce the metastatic potential of non-invasive tumor cells in presence of TLR4ligand and/or H2O2, and whether TLR4ligand and/or H2O2could enhance TGF-β1signaling in non-invasive tumor cells.
     Methods:Invasive capacity was evaluated using matrigel invasion assay and actin polymerization analysis. Anoikis-resistance was determined by flow cytometry and colony formation in soft-agar. The expression of genes was detected using real-time RT-PCR and Western blot. The activation of signaling pathways was detected by Western blot. The metastasis and proliferation of tumor cell in experimental mouse metastasis model were analyzed by immunohistochemistry.
     Results:Here we report that the enhancement of TGF-β1signaling is required for inducing metastatic potential of non-invasive breast cancer cells. TGF-β1alone could not efficiently induce the sustained activation of Smad and non-Smad pathways in non-invasive breast cancer cells. TLR4ligand (LPS) and H2O2cooperated with TGF-β1to enhance the sustained activation of non-Smad pathways, including p38MAPK, ERK, JNK, PI3K, and NF-κB. The activation of MAPK and PI3K pathways resulted in a positive feed-back effect on TGF-β1signaling by down-regulating Nm23-H1expression and up-regulating the expression of TβRⅠ and TβRⅡ, favoring further activation of multiple signaling pathways. Moreover, the enhanced TGF-β1signaling induced higher expression of SNAI2, which also promoted TβRⅡ expression. Therefore, the sustained activation levels of both Smad and non-Smad pathways were gradually increased after prolonged stimulation with TGF-β1/H2O2/LPS. Consistent with the activation pattern of signaling pathways, the invasive capacity and anoikis-resistance of non-invasive breast cancer cells were gradually increased after prolonged stimulation with TGF-β1/H2O2/LPS. The metastatic potential induced by TGF-β1/H2O2/LPS was sufficient for tumor cells to extravasate and form metastatic foci in an experimental metastasis model in nude mice.
     Conclusion:The findings in this study demonstrated that H2O2/LPS could enhance TGF-β1signaling to induce the sustained activation of both Smad and non-Smad pathways in non-invasive breast cancer cells, and thus promoting the metastatic capability of non-invasive breast cancer cells. Metastases are responsible for most cancer deaths. Given that the enhanced signaling is required for inducing higher metastatic capacity of tumor cells, targeting one of these stimuli or signaling pathways might be potential approach in comprehensive strategy for tumor therapy.
引文
1. Gallego MI, Bierie B, Hennighausen L. Targeted expression of HGF/SF in mouse mammary epithelium leads to metastatic adenosquamous carcinomas through the activation of multiple signal transduction pathways. Oncogene,2003,22(52): 8498-8508.
    2. Li Y, Wang JP, Santen RJ, Kim TH, et al. Estrogen stimulation of cell migration involves multiple signaling pathway interactions. Endocrinology,2010,151(11): 5146-5156.
    3. Wu WS, Wu JR, Hu CT. Signal cross talks for sustained MAPK activation and cell migration:the potential role of reactive oxygen species. Cancer Metastasis Rev,2008,27(2):303-314.
    4. Liao S J, Zhou YH, Yuan Y, et al. Triggering of Toll-like receptor 4 on metastatic breast cancer cells promotes alphavbeta3-mediated adhesion and invasive migration. Breast Cancer Res Treat.2012,133 (3):853-863.
    5. Krueger JS, Keshamouni VG, Atanaskova N, et al. Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene,2001,20(31):4209-4218.
    6. Keller ET, Li LY. The first Tianjin, China forum on tumor microenvironment. Cancer Res,2011,71(2):310-313.
    7. Brown KA, Aakre ME, Gorska AE, et al. Induction by transforming growth factor-betal of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res,2004,6(3):R215-231.
    8. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res,2009,19(2):156-172.
    9. Parvani JG, Taylor MA, Schiemann WP. Noncanonical TGF-beta signaling during mammary tumorigenesis. J Mammary Gland Biol Neoplasia,2011,16(2): 127-146.
    10. Christeli E, Zoumpourlis V, Kiaris H, et al. TGF-beta 1 overexpression in breast cancer. Oncol Rep,1996,3(2):1115-1118.
    11. Liu SL, Lin X, Shi DY, et al. Reactive oxygen species stimulated human hepatoma cell proliferation via cross-talk between PI3-K/PKB and JNK signaling pathways. Arch Biochem Biophys,2002,406(2):173-182.
    12. Okoh V, Deoraj A, Roy D. Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta,2011,1815(1): 115-133.
    13. Yoon SO, Park SJ, Yoon SY, et al. Sustained production of H2O2 activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/ phosphatidylinositol 3-kinase/NF-kappa B pathway. J Biol Chem,2002,2770: 30271-30282.
    14. Diya Z, Lili C, Shenglai L, et al. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-lbeta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immun,2008,14(2): 99-107.
    15. Fortin CF, Cloutier A, Ear T, et al. A class IA PI3K controls inflammatory cytokine production in human neutrophils. Eur J Immunol,2011,41(6): 1709-1719.
    16. Zhang Y, Jiang J, Ji S, et al. The regulatory effect of ERK1/2 signal pathway on production of TNFalpha induced by LPS in mice Kupffer cells. Chin J Traumatol, 2001,4(3):139-142.
    17. Sato Y, Goto Y, Narita N, et al. Cancer Cells Expressing Toll-like Receptors and the Tumor Microenvironment. Cancer Microenvironment,2009,2(Suppl 1): 205-214.
    18. Pidgeon GP, Harmey JH, Kay E, et al. The role of endotoxin/lipopolysaccharide in surgically induced tumor growth in a murine model of metastatic disease. Br J Cancer,1999,81(8):1311-1317.
    19. Tsan MF, Gao B. Endogenous ligands of Toll-like receptors. J Leukoc Biol,2004, 76(3):514-519.
    20. Liu L, Yang M, Kang R, et al. DAMP-mediated autophagy contributes to drug resistance. Autophagy,2011,7(1):112-114.
    21. Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res,1991,51(3):794-798.
    1. Robinson BD, Sica GL, Liu YF, et al. Tumor microenvironment of metastasis in human breast carcinoma:a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res 2009,15(7):2433-2441.
    2. Geiger TR, Peeper DS. Metastasis mechanisms. Biochim Biophys Acta 2009, 1796(2):293-308.
    3. Lee JM, Dedhar S, Kalluri R, Thompson EW:The epithelial-mesenchymal transition:new insights in signaling, development, and disease. J Cell Biol 2006, 172(7):973-981.
    4. Trimboli AJ, Fukino K, de Bruin A, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer research 2008, 68(3):937-945.
    5. Tse JC, Kalluri R. Mechanisms of metastasis:epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem 2007, 101 (4):816-829.
    6. Batlle E, Sancho E, Franci C, et al.The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature cell biology 2000, 2(2):84-89.
    7. Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature cell biology 2000,2(2):76-83.
    8. Peinado H, Quintanilla M, Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines:mechanisms for epithelial mesenchymal transitions. J Biol Chem 2003,278(23):21113-21123.
    9. Heldin CH, Landstrom M, Moustakas A. Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 2009,21(2):166-176.
    10. Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer science 2007, 98(10):1512-1520.
    11. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009,19(2):156-172.
    12. Berx G, Raspe E, Christofori Q et al. Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis 2007,24(8):587-597.
    13.Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005,17(5):548-558.
    14. ED H. EMT concept and examples from the vertebrate embryo In:Savagner P (ed) Rise and fall of epithelial phenotype:concepts of epithelial-mesenchymal transition.2005:111-134.
    15. Guarino M. Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol 2007,39(12):2153-2160.
    16. Baum B, Settleman J, Quinlan MP. Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol 2008, 19(3):294-308.
    17. Brown KA, Aakre ME, Gorska AE, et al. Induction by transforming growth factor-betal of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res 2004,6(3):R215-231.
    18. Wu Y, Zhou BP. Inflammation:a driving force speeds cancer metastasis. Cell Cycle 2009,8(20):3267-3273.
    19. Solinas G, Marchesi F, Garlanda C, et al. Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Rev 2010,29(2):243-248.
    20. Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 1991,51(3):794-798.
    21. Mori K, Shibanuma M, Nose K. Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Res 2004,64():7464-7472.
    22. Hsu RY, Chan CH, Spicer JD, et al. LPS-induced TLR4 signaling in human colorectal cancer cells increases betalintegrin-mediated cell adhesion and liver metastasis. Cancer Res 2011,71(5):1989-1998.
    23. Harmey JH, Bucana CD, Lu W, et al. Lipopolysaccharide-induced metastatic growth is associated with increased angiogenesis, vascular permeability and tumor cell invasion. Int J Cancer 2002,101(5):415-422.
    24. Liao SJ, Zhou YH, Yuan Y, et al. Triggering of Toll-like receptor 4 on metastatic breast cancer cells promotes alphavbeta3-mediated adhesion and invasive migration. Breast Cancer Res Treat 2012(3),133:853-863.
    25. Sato Y, Goto Y, Narita N, et al. Cancer Cells Expressing Toll-like Receptors and the Tumor Microenvironment. Cancer Microenvironment,2009,2(Suppl 1):205-214.
    26. Pidgeon GP, Harmey JH, Kay E, et al. The role of endotoxin/lipopolysaccharide in surgically induced tumor growth in a murine model of metastatic disease. Br J Cancer,1999,81(8):1311-1317.
    27. Tsan MF, Gao B. Endogenous ligands of Toll-like receptors. J Leukoc Biol,2004, 76(3):514-519.
    28. Liu L, Yang M, Kang R et al. DAMP-mediated autophagy contributes to drug resistance. Autophagy,2011,7(1):112-114.
    29. Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines:minimum information for publication of quantitative real-time PCR experiments. Clin Chem,2009,55(4):611-622.
    30. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev,2009,28(1-2):15-33.
    31. Mori K, Shibanuma M, Nose K. Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Res,2004, 64(20):7464-7472.
    32. Zhao L, Yang R, Cheng L, et al. LPS-Induced Epithelial-Mesenchymal Transition of Intrahepatic Biliary Epithelial Cells. J Surg Res,2010,171(2): 819-25.
    1. Gallego MI, Bierie B, Hennighausen L. Targeted expression of HGF/SF in mouse mammary epithelium leads to metastatic adenosquamous carcinomas through the activation of multiple signal transduction pathways. Oncogene,2003,22(52): 8498-8508.
    2. Li Y, Wang JP, Santen RJ, et al. Estrogen stimulation of cell migration involves multiple signaling pathway interactions. Endocrinology,2010,151(11): 5146-5156.
    3. Wu WS, Wu JR, Hu CT. Signal cross talks for sustained MAPK activation and cell migration:the potential role of reactive oxygen species. Cancer Metastasis Rev,2008,27(2):303-314.
    4. Brown KA, Aakre ME, Gorska AE, et al. Induction by transforming growth factor-beta1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res 2004,6(3):R215-231.
    5. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009,19(2):156-172.
    6. Parvani JG, Taylor MA, Schiemann WP. Noncanonical TGF-beta signaling during mammary tumorigenesis. J Mammary Gland Biol Neoplasia,2011,16(2): 127-146.
    7. Liu SL, Lin X, Shi DY, et al. Reactive oxygen species stimulated human hepatoma cell proliferation via cross-talk between PI3-K/PKB and JNK signaling pathways. Arch Biochem Biophys,2002,406(2):173-182.
    8. Okoh V, Deoraj A, Roy D. Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta,2011,1815(1): 115-133.
    9. Yoon SO, Park SJ, Yoon SY, et al. Sustained production of H2O2 activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/ phosphatidylinositol 3-kinase/NF-kappa B pathway. J Biol Chem,2002 277: 30(33),271-30282.
    10. Diya Z, Lili C, Shenglai L, et al. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-lbeta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immun,2008,14(2): 99-107.
    11. Fortin CF, Cloutier A, Ear T, et al. A class IA PI3K controls inflammatory cytokine production in human neutrophils. Eur J Immunol,2011,41(6): 1709-1719.
    12. Zhang Y, Jiang J, Ji S, et al. The regulatory effect of ERK1/2 signal pathway on production of TNFalpha induced by LPS in mice Kupffer cells. Chin J Traumato, 2001,14(3):139-142.
    13. Ostman A, Frijhoff J, Sandin A, et al. Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem 2011,150(4):345-356.
    14. Aomatsu K, Arao T, Sugioka K, et al. TGF-{beta} induces sustained up-regulation of SNAI1 and SNAI2 through Smad and non-Smad pathways in a human corneal epithelial cell line. Invest Ophthalmol Vis Sci 2010,52(2): 2437-2443.
    15. Willis BC, Borok Z:TGF-beta-induced EMT:mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol,2007, 293(3):L525-534.
    16. Nakao A, Afrakhte M, Moren A, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature,1997,389(6651): 631-635.
    17. Joseph MJ, Dangi-Garimella S, Shields MA, et al. Slug is a downstream mediator of transforming growth factor-betal-induced matrix metalloproteinase-9 expression and invasion of oral cancer cells. J Cell Biochem,2009,108(3): 726-736.
    18. Massague J. G1 cell-cycle control and cancer. Nature,2004,432(7015):298-306.
    19. Taniguchi F, Harada T, Sakamoto Y, et al. Activation of mitogen-activated protein kinase pathway by keratinocyte growth factor or fibroblast growth factor-10 promotes cell proliferation in human endometrial carcinoma cells. J Clin Endocrinol Metab,2003,88(2):773-780.
    20. Acosta JJ, Munoz RM, Gonzalez L, et al. Src mediates prolactin-dependent proliferation of T47D and MCF7 cells via the activation of focal adhesion kinase/Erkl/2 and phosphatidylinositol 3-kinase pathways. Mol Endocrinol,2003 17(11):2268-2282.
    21. Mawson A, Lai A, Carroll JS, et al. Estrogen and insulin/IGF-1 cooperatively stimulate cell cycle progression in MCF-7 breast cancer cells through differential regulation of c-Myc and cyclin D1. Mol Cell Endocrinol,2005, 229(1-2):161-173.
    1. Parvani JG, Taylor MA, Schiemann WP. Noncanonical TGF-beta signaling during mammary tumorigenesis. J Mammary Gland Biol Neoplasia,2011,16(2): 127-146.
    2. Brown KA, Aakre ME, Gorska AE, et al. Induction by transforming growth factor-betal of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res 2004,6(3):R215-231.
    3. Liu SL, Lin X, Shi DY, et al. Reactive oxygen species stimulated human hepatoma cell proliferation via cross-talk between PI3-K/PKB and JNK signaling pathways. Arch Biochem Biophys,2002,406(2):173-182.
    4. Okoh V, Deoraj A, Roy D. Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta,2011,1815(1): 115-133.
    5. Yoon SO, Park SJ, Yoon SY, et al. Sustained production of H2O2 activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/phosphatidylinositol 3-kinase/NF-kappa B pathway. J Biol Chem,2002 277:30(33),271-30282.
    6. Diya Z, Lili C, Shenglai L, et al. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-lbeta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immun,2008,14(2): 99-107.
    7. Fortin CF, Cloutier A, Ear T, et al. A class IA PI3K controls inflammatory cytokine production in human neutrophils. Eur J Immunol,2011,41(6): 1709-1719.
    8. Zhang Y, Jiang J, Ji S, et al. The regulatory effect of ERK1/2 signal pathway on production of TNFalpha induced by LPS in mice Kupffer cells. Chin J Traumato, 2001,14(3):139-142.
    9. Liao S J, Zhou YH, Yuan Y, et al. Triggering of Toll-like receptor 4 on metastatic breast cancer cells promotes alphavbeta3-mediated adhesion and invasive migration. Breast Cancer Res Treat 2012(3),133:853-863.
    10. Nakao A, Afrakhte M, Moren A, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature,1997,389(6651):631-635.
    11. Seong HA, Jung H, Ha H. NM23-H1 tumor suppressor physically interacts with serine-threonine kinase receptor-associated protein, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and negatively regulates TGF-beta signaling. J Biol Chem,2007,282(16):12075-12096.
    12. Aomatsu K, Arao T, Sugioka K, Matsumoto K, Tamura D, Kudo K, Kaneda H, Tanaka K, Fujita Y, Shimomura Y et al:TGF-{beta} induces sustained up-regulation of SNAI1 and SNAI2 through Smad and non-Smad pathways in a human corneal epithelial cell line. Invest Ophthalmol Vis Sci 2010.
    13. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res,2009,19(2):156-172.
    14. Joseph MJ, Dangi-Garimella S, Shields MA, et al. Slug is a downstream mediator of transforming growth factor-betal-induced matrix metalloproteinase-9 expression and invasion of oral cancer cells. J Cell Biochem,2009,108(3): 726-736.
    15. Dhasarathy A, Phadke D, Mav D, Shah RR, Wade PA:The transcription factors snail and slug activate the transforming growth factor-Beta signaling pathway in breast cancer. PLoS One 2011,6(10):e26514.
    1. Frisch SM, Francis H. Disruption of epithelial cellmatrix interactions induces apoptosis. J Cell Biol,1994(4),124:619-26.
    2. Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol,2001, 13(5):555-62.
    3. Ramachandra M, Atencio I, Rahman A, et al. Restoration of transforming growth factor h signaling by functional expression of smad4 induces anoikis. Cancer Res, 2002,62(21):6045-51.
    4. Zhu Z, Sanchez-Sweatman O, Huang X, et al. Anoikis and metastatic potential of cloudman S91 melanoma cells. Cancer Res,2001,61(4):1707-16.
    5. Woods NT, Yamaguchi H, Lee FY, et al. Anoikis, initiated by Mcl-1 degradation and Bim induction, is deregulated during oncogenesis. Cancer Res,2007,67(22): 10744-10752.
    6. Marconi A, Atzei P, Panza C, et al. FLICE/caspase-8 activation triggers anoikis induced by betal-integrin blockade in human keratinocytes. J Cell Sci,2004, 117(Pt 24):5815-5823.
    7. Ozaki I, Hamajima H, Matsuhashi S, et al. Regulation of TGF-β1-induced pro-apoptotic signaling by growth factor receptors and extracellular matrix receptor integrins in the liver. Front Physiol,2011,2(2):78.
    8. Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest,2001,107(3):241-246.
    9. Schmelzle T, Mailleux AA, Overholtzer M et al, Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis. Proc Natl Acad Sci U S A,2007,104(10):3787-92.
    1. Fokas E, Engenhart-Cabillic R, Daniilidis K, et al. Metastasis:the seed and soil theory gains identity. Cancer Metastasis Rev,2007,26(3-4):705-715.
    2. Hanahan D and Weinberg RA. Hallmarks of cancer:the next generation.Cell, 2011,144(5):646-674.
    3. Levy EM, Roberti MP, Mordoh J. Natural killer cells in human cancer:from biological functions to clinical applications. J Biomed Biotechnol,2011,2011: 676198.
    4. Cavallo F, De Giovanni C, Nanni P, et al. the immune hallmarks of cancer. Cancer Immunol Immunother,2011,60(3):319-326.
    5. Zhu JH, Yuan Y, Li D, et al. Targeting NF-kappaB suppresses the negative effect of TLR4 signaling on anti-metastasis therapy based on targeting alphavbeta3. Cancer Sci,2012,103(7):1319-26.
    6. Horak CE, Lee JH, Marshall JC,et al. The role of metastasis suppressor genes in metastatic dormancy. APMIS,2008,116(7-8):586-601.
    7. Marshall JC, Collins JW, Nakayama J, et al. Effect of inhibition of the lysophosphatidic Acid receptor 1 on metastasis and metastatic dormancy in breast cancer. J Natl Cancer Inst,2012,104(17):1306-1319.
    8. Sauermann M, Sahin O, Sultmann H, et al, Reduced expression of vacuole membrane protein 1 affects the invasion capacity of tumor cells. Oncogene,2008, 27(9):1320-6.
    9. Kao J, Salari K, Bocanegra M, et al, Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One,2009.4(7):e6146.
    10. Neve RM, Chin K, Fridlyand J, et al, A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell,2006.10(6): 515-27.
    11. Zhang Y, Pu X, Shi M, et al, Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model. BMC Cancer,2007,1(7): 145.
    12. Huber MA, Azoitei N, Baumann B, et al. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest,2004,114(4):569-81.
    13. White DE, Kurpios NA, Zuo D, et al. Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer tumor induction. Cancer Cell, 2004,6(2):159-170.
    14. Aguirre Ghiso JA, Kovalski K, Ossowski L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol,1999,147(1):89-104
    15. Aguirre Ghiso JA, Mignatti A, Liu D, et al. Urokinase receptor and fibronectin regulate the ERK(MAPK) activity ratio that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell,2001,12(4):863-879.
    16. Edwards P, Cendan JC, Topping DB, et al. Tumor cell nitric oxide inhibits cell growth in vitro, but stimulates tumorigenesis and experimental lung metastasis in vivo. J Surg Res,1996,63(1):49-52.
    1. Meulmeester E, and Ten Dijke P. The dynamic roles of TGF-beta in cancer. J Pathol,2011,223(2):205-218.
    2. Ross S, and Hill CS. How the SMADs regulate transcription. The International Journal of Biochemistry & Cell Biology,2008,40(3):383-408.
    3. Akhurst R J, and Derynck R. TGF-beta signaling in cancer--a double-edged sword. Trends Cell Biol,2001,11(11):S44-51.
    4. Afrakhte M, Moren A, Jossan S, et al. Induction of inhibitory Smad6 and Smad7 mRNA by TGF-β family members. Biochem Biophys Res Commun,1998,24(9): 505-511.
    5. Brown KA, Aakre ME, Gorska AE, et al. Induction by transforming growth factor-betal of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res,2004,6(3):R215-231.
    6. Dennler S, Huet S, Gauthier JM. A short amino-acid sequence in Mhl domain is responsible for functional differences between SMAD2 and SMAD3. Oncogene, 1999,18(8):1643-1648.
    7. Derynck R, Akhurst RJ. Differentiation plasticity regulated by TGF-β family proteins in development and disease. Nature Cell Biology,2007,9(9):1000-1004.
    8. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res,2009,19(2):156-172.
    9. Parvani JG, Taylor MA, Schiemann WP. Noncanonical TGF-beta signaling during mammary tumorigenesis. J Mammary Gland Biol Neoplasia,2011,16(2): 127-146.
    10. Gartel AL, and Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther,2002, 1(8):639-649.
    11. Sherr CJ, Roberts JM. Cdk inhibitors:positive and negative regulators of G1-phase progression. Genes & Development,1999,13(12):1501-1512.
    12. Slingerland JM, Hengst L, Pan CH, et al. A novel inhibitor of cyclin-Cdk activity detected in transforming growth factor p-arrested epithelial cells. Molecular and Cellular Biology,1994,14(6):3683-3694.
    13. Geng Y, and Weinberg RA. Transforming growth factor β effects on expression of G1 cyclins and cyclin-dependent protein kinases. Proceedings of the National Academy of Sciences of the United States of America,1993, 90(21):10315-10319.
    14. Xu J, Chen Y, Olopade OI. MYC and Breast Cancer. Genes Cancer,2010,1(6): 629-640.
    15. Ozaki I, Hamajima H, Matsuhashi S, et al. Regulation of TGF-β 1-induced pro-apoptotic signaling by growth factor receptors and extracellular matrix receptor integrins in the liver. Front Physiol,2011,2(24):78.
    16. Tachibana I, Imoto M, Adjei PN, et al. Overexpression of the TGF-β-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. The Journal of Clinical Investigation,1997,99(10):2365-2374.
    17. Jang CW, Chen CH, Chen CC, et al. TGF-β induces apoptosis through SMADmediated expression of DAP-kinase. Nature Cell Biology,2002,4(1): 51-58.
    18. Valderrama-Carvajal H, Cocolakis E, Lacerte A, et al. Activin/TGF-β induce apoptosis through SMAD-dependent expression of the lipid phosphatase ship. Nature Cell Biology,2002,4(12):963-969.
    19. Latres E, Malumbres M, Sotillo R, et al. Limited overlapping roles of P15 (Ink4b) and P18(Ink4c) cell cycle inhibitors in proliferation and tumorigenesis. The EMBO Journal,2000,19(13):3496-3506.
    20. Fong S, Itahana Y, Sumida T, et al. Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America,2003,100(23):13543-13548.
    21. Kimelman D, and Kirschner M. Synergistic induction of mesoderm by FGF and TGF-β and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell,1987,51(5):869-877.
    22. Xu J, Lamouille S, Derynck R. TGF-β-induced epithelial to mesenchymal transition. Cell Research,2009,19(2):156-172.
    23. Marconi A, Atzei P, Panza C, et al. FLICE/caspase-8 activation triggers anoikis induced by betal-integrin blockade in human keratinocytes. J Cell Sci,2004, 117(24):5815-5823.
    24. Singh A, and Settleman J. EMT, cancer stem cells and drug resistance:an emerging axis of evil in the war on cancer. Oncogene,2010,29(34):4741-4751.
    25. Edme N, Downward J, Thiery JP, et al. Ras induces NBT-II epithelial cell scattering through the coordinate activities of Rac and MAPK pathways. Journal of Cell Science,2002,115(Pt 12):2591-2601.
    26. Horiguchi K, Shirakihara T, Nakano A, et al. Role of Ras signaling in the induction of snail by transforming growth factor-β. The Journal of Biological Chemistry,2009,284(1):245-253.
    27. Jenndahl LE, Isakson P, Baeckstrom D. C-Erbb2-induced epithelial-mesenchymal transition in mammary epithelial cells is suppressed by cell-cell contact and initiated prior to Ecadherin downregulation. International Journal of Oncology,2005,27 (2):439-448.
    28. Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Science,2007, 98(10):1512-1520.
    29. Fuxe J, Vincent T, Garcia de Herreros A. Transcriptional crosstalk between TGF-β and stem cell pathways in tumor cell invasion:role of EMT promoting SMAD complexes. Cell Cycle,2010,9(12):2363-2374.
    30. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res,2009,19(2):156-172.
    31. Keller ET, Li LY. The first Tianjin, China forum on tumor microenvironment. Cancer Res,2011,71(2):310-313.
    32. Soto AM, Sonnenschein C. The tissue organization field theory of cancer:a testable replacement for the somatic mutation theory. BioEssays:News and Reviews in Molecular, Cellular and Developmental Biology,2011,33(5): 332-340.
    33. Leight JL, Wozniak MA, Chen S, et al. Matrix rigidity regulates a switch between TGF-β 1-induced apoptosis and epithelial-mesenchymal transition. Molecular Biology of the Cell,2012,23(5),781-791.
    34. Copple, BL. Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-β-dependent mechanisms. Liver International,2010,30(5):669-682.
    35. Han WQ, Zhu Q, Hu J, Li PL, et al. Hypoxia-inducible factor prolyl-hydroxylase-2 mediates transforming growth factor betal-induced epithelial-mesenchymal transition in renal tubular cells. Biochim Biophys Acta,2013, 1833(6):1454-1462.
    36. Jing Y, Han Z, Zhang S, et al. Epithelia-Mesenchyaml Transition in tumor microenvironment. Cell Biosci,2011,31(1):29.
    37. Kuperwasser C, Chavarria T, Wu M, et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America,2004,101(14): 4966-4971.
    38. Bhowmick NA, Chytil A, Plieth D, et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Scienc,2004,303(5659): 848-851.
    39. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nature Reviews. Cancer,2006,6(1):24-37.
    40. Yaswen L, Kulkarni AB, Fredrickson T, et al. Autoimmune manifestations in the transforming growth factor-betalknockout mouse. Blood,87(4):1439-45.
    41. Engle SJ, Ormsby I, Pawlowski S, et al. Elimination of colon cancer in germ-free transforming growth factor β 1-deficient mice. Cancer Research,2002,62(22): 6362-6366.
    42. Ewan KB, Oketch-Rabah HA, Ravani SA, et al. Proliferation of estrogen receptor-a-positive mammary epithelial cells is restrained by transforming growth factor-β1 in adult mice. The American Journal of Pathology,2005,167(2): 409-417.
    43. Barcellos-Hoff MH, and Akhurst R J.Transforming growth factor-β in breast cancer:too much, too late. Breast Cancer Research,2009,11(1):202.
    44. Connolly EC, Freimuth J, Akhurst RJ. Complexities of TGF-β targeted cancer therapy. Int J Biol Sci,2012,8(7):964-78.
    45. Mantel PY, Schmidt-Weber CB. Transforming growth factor-beta:recent advances on its role in immune tolerance. Methods Mol Biol,2011,677:303-38.
    46. Nam JS, Terabe M, Mamura M, et al. An anti-transforming growth factor β antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Research,2008,68(10):3835-3843.
    47. Ohmori T, Yang JL, Price JO, et al. Blockade of tumor cell transforming growth factor-βs enhances cell cycle progression and sensitizes human breast carcinoma cells to cytotoxic chemotherapy. Experimental Cell Research,1998,245(2): 350-359.
    48. Conroy H, Galvin KC, Higgins SC, et al. Gene silencing of TGF-β1 enhances antitumor immunity induced with a dendritic cell vaccine by reducing tumor-associated regulatory T cells. Cancer Immunol Immunother,2012,61(3): 425-31.
    49. Teicher BA. Malignant cells, directors of the malignant process:role of transforming growth factor-β. Cancer Metastasis Reviews,2001, 20(1-2):133-143.
    50. Wilson EB, E1-Jawhari JJ, Neilson AL, et al. Human tumour immune evasion via TGF-β blocks NK cell activation but not survival allowing therapeutic restoration of anti-tumour activity. PLoS One,2011,6(9):e22842.
    51. Kirshner J, Jobling MF, Pajares MJ, et al. Inhibition of transforming growth factor-β1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress. Cancer Research,2006,66 (22):10861-10869.
    52. Bedi A, Chang X, Noonan K, et al. Inhibition of TGF-β enhances the in vivo antitumor efficacy of EGF receptor-targeted therapy. Mol Cancer Ther,2012, 11(11):2429-39.
    53. Zhang M, Kleber S, Rohrich M, et al. Blockade of TGF-β signaling by the TGF-β R-I kinase inhibitor Ly2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Research,2011,71(23):7155-7167.
    54. Gadir N, Jackson DN, Lee E, et al. Defective TGF-beta signaling sensitizes human cancer cells to rapamycin. Oncogene,2008,27(8):1055-62.
    55. Kakeji Y, Maehara Y, Ikebe M, et al. Dynamics of tumor oxygenation, CD31 staining and transforming growth factor-β levels after treatment with radiation or cyclophosphamide in the rat 13762 mammary carcinoma. International Journal of Radiation Oncology, Biology, Physics,1997,37(5):1115-1123.
    56. Vujaskovic Z, Marks LB, Anscher MS. The physical parameters and molecular events associated with radiation-induced lung toxicity. Seminars in Radiation Oncology,2000,10(4):296-307.
    57. Abramoy Y, Hirsch E, Ilievski V, et al. Transforming growth factor betal gene expression during vaginal vs cutaneous surgical wound healing in ht rabbit. Int Urogynecol J,2013,24(4):671-5.
    58. Teicher BA, Maehara Y, Kakeji Y, et al. Reversal of in vivo drug resistance by the transforming growth factor-β inhibitor decorin. International Journal of Cancer,1997,71(1):49-58.
    59. Peach G, Kim C, Zacharakis E, et al. Prognostic significance of circulating tumour cells following surgical resection of colorectal cancers:a systematic review. Br J Cancer,2010,102(9):1327-34.
    60. Tsushima H, Ito N, Tamura S, et al. Circulating transforming growth factor β 1 as a predictor of liver metastasis after resection in colorectal cancer. Clinical Cancer Research,2001,7(5):1258-1262.
    61. Narai S, Watanabe M, Hasegawa H, et al. Significance of transforming growth factor betal as a new tumor marker for colorectal cancer. Int J Cancer,2002, 97(4):508-11.
    62. World J Gastroenterol. Serum transforming growth factor-betal level reflects disease status in patients with esophageal carcinomas after radiotherapy.2007, 13(39):5267-72.
    63. Robert F, Busby E, Marques MB, et al. Phase Ⅱ study of docetaxel plus enoxaparin in chemotherapy-naive patients with metastatic non-small cell lung cancer:preliminary results. Lung Cancer,2003,42(2):237-245.
    64. Panis C, Herrera AC, Victorino VJ, et al. Screening of circulating TGF-β levels and its clinicopathological significance in human breast cancer. Anticancer Res, 2013,33(2):737-42.
    65. Hirohashi S, Kanai Y. Cell adhesion system and human cancer morphogenesis. Cancer Science,2003,94(7):575-581.
    66. Teicher BA, Holden SA, Ara G, et al. Transforming growth factor-β in in vivo resistance. Cancer Chemotherapy and Pharmacology,1996,37(6):601-609.
    67. Reeves A, Zagurovskaya M, Gupta S, et al. Inhibition of transforming growth factor-beta signaling in normal lung epithelial cells confers resistance to ionizing radiation. Int J Radiat Oncol Biol Phys,2007,68(1):187-95.
    68. Chung HH, Jang BI. A perspective:role of targeted therapy in colon cancer. Korean J Gastroenterol,2013,61(3):128-35.
    69. Petera J, Sirak I, Beranek M, et al. Molecular predictive factors of outcome of radiotherapy in cervical cancer.2011,58(6):469-75.
    70. Wiegman EM, Blaese MA, Loeffler H, et al. TGF-β-1 dependent fast stimulation of ATM and P53 phosphorylation following exposure to ionizing radiation does not involve TGF-β-receptor I signalling. Radiotherapy and Oncology,2007,83(3): 289-295.
    71. Bouquet F, Pal A, Pilones KA, et al. TGF-β 1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clinical Cancer Research,2011,17(21):6754-6765.
    72. Ning W, Tao L, Liu C, et al. Effect of enalapril on the expression of TGF-betal, p-Smad2/3 and Smad7 in renal interstitialfibrosis in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2009,34(1):27-34.
    73. Willis BC, Borok Z. TGF-beta-induced EMT:mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol,2007,293(3): 525-534.
    74. Zhang M, Kleber S, Rohrich M, et al. Blockade of TGF-βsignaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res,2011,71(23):7155-67.
    75. Mazzocca A, Fransvea E, Lavezzari G, et al. Inhibition of transforming growth factor beta receptor I kinase blocks hepatocellular carcinomagrowth through neo-angiogenesis regulation. Hepatology,2009,50(4):1140-51.
    76. Fu K, Corbley MJ, Sun L, et al. Sm16, an orally active TGF-βtype I receptor inhibitor prevents myofibroblast induction and vascular fibrosis in the rat carotid injury model. Arteriosclerosis, Thrombosis, and Vascular Biolog,2008,28(4): 665-671.
    77. Ramalingam R, Larmonier CB, Thurston RD, et al. Dendritic cell-specific disruption of TGF-β receptor Ⅱ leads to altered regulatory T cell phenotype and spontaneous multiorgan auto immunity. J Immunol,2012,189(8):3878-93.
    78. Fakhrai H, Dorigo O, Shawler DL, et al. Eradication of established intracranial rat gliomas by transforming growth factor P antisense gene therapy. Proceedings of the National Academy of Sciences of the United States of America,1996,93(7): 2909-2914.
    79. Liu Y, Wang Q, Kleinschmidt-DeMasters BK, et al. TGF-beta2 inhibition augments the effect of tumor vaccine and improves the survival of animals with pre-established brain tumors. J Neurooncol,2007,81(2):149-62.
    80. Paul DB, Kruse CA. Immunologic approaches to therapy for brain tumors. Curr Neurol Neurosci Rep,2001,1(3):238-44.
    Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S, et al. Prognostic significance of transforming growth factor β (TGF-β) signaling axis molecules and E-cadherin in colorectal cancer. Tumour Biology,2012,33(4),1005-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700