用户名: 密码: 验证码:
基于人体工效的低温供暖与新风复合系统设计理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源、健康与环境问题日益严重的当今世界,使办公人员在健康、舒适及低能耗的室内热环境中保持最大的工作效率将成为办公建筑暖通空调系统设计及运行控制的目标。低温供暖与新风复合系统作为能够营造健康、舒适及低能耗室内热环境的暖通空调系统之一,非常具有潜力和应用价值,将成为今后暖通空调系统发展的一个趋势。本课题以低温供暖与供新风办公房间为研究对象,围绕着室内热环境与人体工作效率及房间热负荷三者之间的关系,对基于人体工效的低温供暖与新风复合系统设计理论及应用相关问题展开深入研究。
     基于热力学第二定律和Gagge的人体热平衡模型,建立了人体平衡模型,并导出了人体损计算式。以实验数据为依据,分析了冬季典型办公房间中室内操作温度及人体热感觉对人体损和人体工效的影响。结果表明:当室内操作温度变化范围为17~28℃或室内人体热感觉变化范围为-1.0~1.4时,人体损变化曲线和人体工效变化曲线变化趋势正好相反并呈x‘形状,并当室内操作温度等于19℃或人体热感觉等于-0.56时,人体损达到最小,人体工效达到最大。
     实验研究了低温辐射地板供暖系统分别与混合通风系统和置换通风系统复合时办公房间室内热环境及新风系统的通风效率。结果表明:当辐射地板表面温度变化范围为25~29℃、送风温度变化范围为15~19℃及新风量等于224l/s时,低温辐射地板供暖与混合通风房间室内垂直温差较小,不超过1℃,新风系统的通风效率大约为1.0,而低温辐射地板供暖与置换通风房间室内垂直温差较大,最大能达到4℃,新风系统的通风效率为1.1左右。
     基于室内空气流动特性分别建立了合理的低温供暖与混合通风房间室内温度预测模型和低温供暖与置换通风房间室内温度预测模型,指出了房间室内计算温度计算式与用于评价室内热环境的室内操作温度计算式之间存在差别,并以人体工效最大时的室内操作温度为基准点对房间室内计算温度进行了修正,发现当外围护结构热负荷在20~50W/m~2之间变化时,低温供暖与混合通风房间室内计算温度修正值大约为0.4~1.0℃,而低温供暖与置换通风房间室内计算温度修正值大约为0.6~1.2℃。
     建立了以多次交叉翅片管作为散热核心部件的低温强制对流散热器传热模型,导出了逆流和顺流两种流体流动趋势时多次交叉翅片管换热器传热单元数(NTU)计算式。以低温供暖常用的二次交叉翅片管低温强制对流散热器为例,发现当供水温度变化范围为45~60℃及热水流量变化范围为50~110kg/h时,由本课题推导的计算式(ε-NTU法)和前人推导的计算式(LMTD法)计算的散热器传热系数相差不超过5%。对低温强制对流散热器传热系数影响因素进行了分析,发现当散热器结构参数不变时热水流量的变化对散热器传热系数的影响较大,而平均传热温差的变化对散热器传热系数的影响较小。
     建立了基于形状因子的低温辐射地板散热量计算等效热阻模型,与基于HEAT2软件的数值模拟计算结果进行了对比。结果表明:当热水管上端填充层厚度变化范围为25~65mm、管间距变化范围为50~300mm及热水平均温度变化范围为25~45℃时,本课题提出的基于形状因子的等效热阻模型散热量计算结果与数值模拟计算结果的相对误差均小于5%。对低温辐射地板散热量影响因素进行了分析,发现热水管上端填充层厚度的变化对低温辐射地板散热量的影响较小,而管间距和热水平均温度的变化对低温辐射地板散热量的影响较大。
     提出了形式简单的低温供暖与新风复合系统运行控制策略,并导出了低温强制对流供暖系统和低温辐射地板供暖系统供水温度调节关系式。以某一典型办公建筑中低温供暖与混合通风复合系统为研究对象,基于TRNSYS软件数值模拟研究了室温设定值的变化对哥本哈根地区、北京地区及哈尔滨地区三个典型气候区房间室内人体热感觉、室内人体工效及系统能耗的影响。结果表明:仅考虑室内人体工效时,低温强制对流供暖与混合通风房间在哥本哈根地区、北京地区及哈尔滨地区最佳室温设定值分别为19℃、17℃及19℃,低温辐射地板供暖与混合通风房间在哥本哈根地区、北京地区及哈尔滨地区最佳室温设定值分别为18℃、17℃及18℃。
     通过本课题的研究,为营造健康、舒适、低能耗及高效的办公建筑室内热环境提供理论依据,为新建或改建办公建筑中低温供暖与新风复合系统的设计及运行控制提供理论方法。
Nowadays, the problems with regard to energy, health and environment aregrowing rapidly in the world. The design goal of HVAC system is to make peoplework efficiently and productively in comfortable, healthy, and energy efficientenvironments. The low temperature heating systems (LTHS) combined withdedicated outdoor air supply systems (DOAS), which can create a healthy,comfortable, energy efficient and productive indoor thermal environment, hasgreat potential and application value to be the future of the HVAC systems. Thisstudy focus on the design theory and application of LTHS combined with DOASbased on productivity, involving relation between indoor thermal environment andproductivity and building heat load when an office room with LTHS and DOASwas regard as the research object.
     Human exergy balance model was established according to the second law ofthermodynamics and based on Gagge‘s human balance model. Human body exergyconsumption formula was derived based on the human body exergy balancemodel. Effect of indoor operative temperature and human thermal sensation on thehuman body exergy consumption and productivity in typical office building werestudied by analyzing the data obtained in simulated office environments in winterusing the human body exergy consumption formula. The results show that humanbody exergy consumption and productivity are inversely as operative temperaturechanges from17to28℃or human thermal sensation changes from-1.0to+1.4,and that human body exergy consumption reach its minimum and productivityreach its maximum when indoor operative temperature equals19℃or thermalsensation equals-0.56, and the change of human body exergy consumption resultsin the change of productivity in slight cool and slight warm indoor thermalenvironment.
     Experimental studies of indoor thermal environment and ventilationeffectiveness in a room with low temperature radiant floor heating systemcombined with mixing ventilation system and displacement ventilation system asradiant floor surface temperature ranges from25to29℃, supply air temperatureranges from15to19℃and supply air flow rate equals224l/s. The results showthat the distribution of indoor thermal environmental parameters are relativelyuniform, the indoor vertical air temperature differences are less than1℃andventilation effectiveness is approximately1.0when low temperature radiant floorheating system is integrated with mixing ventilation system. The distribution ofindoor thermal environmental parameters are relatively non-uniform, the indoor vertical air temperature differences are large and up to4℃and ventilationeffectiveness is approximately1.1when low temperature radiant floor heatingsystem is integrated with displacement ventilation system.
     Indoor temperature prediction models in a room with LTHS combined withmixing ventilation system or displacement ventilation system were establishedbased on the characteristics of indoor air flow. Compared with the experimentalresults, the data predicted by these models agree well with the experimental data.The difference between indoor design temperature for calculating building heatload and indoor operative temperature for evaluating the indoor thermalenvironment is pointed out according to the formula. Correcting on the indoordesign temperature based on the indoor operative temperature for maximumproductivity were performed The results show that correction of indoor designtemperature is0.4~1.0℃in a room with LTHS combined with mixing ventilationsystem and0.6~1.2℃in a room with LTHS combined with displacementventilation system when external envelope heat loss ranges from20to50W/m2.
     Heat transfer model of low temperature forced convector with multi-pass fintube heat exchanger as core compartment was established. The numbers of heattransfer unit (NTU) formulas of multi-pass fin tube heat exchanger were derivedbased on the heat transfer model. Subsequently, a two-pass fin tube heat exchangerwas selected as test case to validate these NTU formulas. The results show that theheat transfer coefficients of the heat exchanger calculated by these NTU formulas(ε-NTU method) agree very well with that calculated by logarithm meantemperature difference formulas (LMTD method), under the condition of inletwater temperature from45to60°C and water flow rate from50to170kg/h.Factor analysis of effect on the heat transfer coefficients of fin tube heatexchanger were performed using these NTU formulas. The result shows that theheat transfer coefficients of fin tube heat exchanger are related to the water flowrate but not the mean temperature difference.
     The equivalent thermal resistance model for calculating heat dissipation oflow temperature radiant floor based on shape factor was established. The resultscalculated by the equivalent thermal resistance model based on shape factor werecompared with numerical simulation. The results show that the relative errorsbetween heat dissipation calculated by the equivalent thermal resistance modelbased on shape factor and calculated by the simulation software are less than5%as the tube space ranges from50to300mm, the distance above pipe ranges from25to65mm and average hot water temperature ranges from25to45℃. Then theequivalent thermal resistance model based on shape factor was used to analyze theimpact of factors on the heat dissipation of low temperature radiant floor. The results shows that the distance above pipe has no significant effect on the heatdissipation of low temperature radiant floor, and the average water temperatureand tube space have a big effect on the heat dissipation of low temperature radiantfloor.
     The supply water temperature adjustment relationship of low temperatureforced convector heating system and low temperature radiant floor were derived.Low temperature forced convector heating system and low temperature radiantfloor heating system in a mixing ventilation room in a typical office building wereselected as research objective, and effect of indoor temperature set-up values onthe indoor human thermal sensation distribution, productivity distribution andsystem energy consumption were studied. The results show that the optimal indoortemperature set-up values for a room with low temperature forced convectionheating system and mixing ventilation are19℃,17℃and19℃in Copenhagen,Beijing and Harin, and the optimal indoor temperature set-up values for a roomwith low temperature radiant floor heating system and mixing ventilation are18℃,17℃and18℃in Copenhagen, Beijing and Harin.
     Based on the research of the design theory and application of low temperatureheating systems combined with outdoor air supply systems based on productivity,it is expected that this study could help to develop a universal approach to create ahealthy, comfortable, energy efficient and productive indoor thermal environmentand guide the design and operation and control of low temperature heating systemscombined with outdoor air supply systems in the new or used office buildings.
引文
[1] Dorgan C E, Dorgan C B. Assessment of Link Between Productivity andIndoor Air Quality[J]. Creating the Productive Workplace,2nd Edn, London,Taylor&Francis,2006:113-135.
    [2] Woods J E. Cost Avoidance and Productivity in Owning and OperatingBuildings[J]. Occupational Medicine (Philadelphia, Pa.),1989,4(4):753.-770
    [3] Sk ret J E. Indoor Environment and Economics[J]. Project No,1992(6405).
    [4] Sepp nen O. Estimated Cost of Indoor Climate in Finnish Buildings[J].Proceedings of Indoor Air,1999,3:13-18.
    [5] Fisk W J, Rosenfeld A H. Estimates of Improved Productivity and Healthfrom Better Indoor Environments[J]. Indoor Air,2004,7(3):158-172.
    [6] Milton D K, Glencross P M, Walters M D. Risk of Sick Leave Associatedwith Outdoor Air Supply Rate, Humidification, and Occupant Complaints[J].Indoor Air,2000,10(4):212-221.
    [7] Wargocki P, Djukanovic R. Estimate of Economic Benefits from Investmentin Improved Indoor Air Quality in Office Building[C]. Proceedings OfHealthy Buildings. Singapore.2003,3:383-387.
    [8]江亿.中国的建筑节能-现状、问题和解决途径[R].清华大学建筑节能研究中心,2009:10-11
    [9]邹利,高璞珍,刘秋新.国外地板辐射供暖技术特点[J].煤气与动力.2005(11):68-70
    [10]傅允准,蔡颖玲,陈帅.毛细管地板辐射采暖特性试验研究[J].流体机械.2009,(37)8:54-57
    [11]狄洪发,王威,江亿等.辐射吊顶的实验研究[J].暖通空调.2000,(4):5~8
    [12]王威,狄洪发.新型辐射吊顶供暖的实验研究与热舒适性讨论[J].暖通空调.2001,(2):185~188
    [13]邵进良.供暖型风机盘管在供暖分户计量系统中应用的探讨[J].暖通空调,2003(1):114-115
    [14]吴小舟.可利用低温热源的供暖型风机盘管的性能研究及改良实验[D].哈尔滨工业大学硕士学位论文,2008:8-9
    [15]杨进.辐射采暖的热舒适性研究[D].华中科技大学硕士学位论文.2006
    [16] Li X, Zhao J. Comparison Study on Indoor Temperature Distributions withRadiant Heating and Convection Heating[C]. Digital Manufacturing andAutomation (ICDMA),2010International Conference of IEEE,2010,1:405-410.
    [17] Daisey J M, Angell W J, Apte M G. Indoor Air Quality, Ventilation andHealth Symptoms in Schools: An Analysis of Existing Information[J].Indoor Air,2003,13(1):53-64.
    [18] Machle W, Hatch T F. Heat: Man's Exchanges and PhysiologicalResponses[J]. Physiological Reviews,1947,27(2):200-227.
    [19] Pennes H H. Analysis of Tissue and Arterial Blood Temperatures in theResting Human Forearm[J]. Journal of Applied Physiology,1948,1(2):93-122.
    [20] Fanger P O. Thermal Comfort. Analysis and Applications in EnvironmentalEngineering[J]. Thermal Comfort. Analysis and Applications inEnvironmental Engineering.,1970:17-19
    [21] Rohles F H, Nevins R G. The Nature of Thermal Comfort for SedentaryMan[J]. ASHRAE Transactions,1971,77(1):239-246.
    [22] Wissler E H. A Mathematical Model of The Human Thermal System[J]. TheBulletin of Mathematical Biophysics,1964,26(2):147-166.
    [23] Stolwijk J A J. A Mathematical Model of Physiological TemperatureRegulation in Man[R]. NASA Report,1970:13-17
    [24] Dhiman D.B. Simulation of A Human Thermoregulatory System with DryIce Cooling [D]. Manhattan: Kansas State University,1974:26-28
    [25] Gordon R G, Roemer R B, Horvath S M. A Mathematical Model of theHuman Temperature Regulatory System-Transient Cold ExposureResponse[J]. Biomedical Engineering, IEEE Transactions,1976(6):434-444.
    [26] Gagge A P. An Effective Temperature Scale Based on A Simple Model ofHuman Physiological Regulatory Response[J]. ASHRAE Trans.,1971,77:247-262.
    [27] Pandolf K B, Stroschein L A, Drolet L L, et al. Prediction Modeling ofPhysiological Responses and Human Performance in The Heat[J].Computers in Biology And Medicine,1986,16(5):319-329.
    [28] Fiala D, Lomas K J, Stohrer M. Computer Prediction of HumanThermoregulatory and Temperature Responses to A Wide Range ofEnvironmental Conditions[J]. International Journal of Biometeorology,2001,45(3):143-159.
    [29] Tanabe S, Kobayashi K, Nakano J, et al. Evaluation of Thermal ComfortUsing Combined Multi-Node Thermoregulation (65MN) and RadiationModels and Computational Fluid Dynamics (CFD)[J]. Energy and Buildings,2002,34(6):637-646.
    [30]廉乐明,李力能,吴家正等.工程热力学[M],第四版,北京:中国建筑工业出版社,2003:84-94
    [31] Kreith F. The CRC Handbook of Thermal Engineering[M]. Springer Verlag,2000:179
    [32] Aoki I. Entropy Flow and Entropy Production in the Human Body in BasalConditions[J]. Journal of Theoretical Biology,1989,141(1):11-21
    [33] Silva C A, Annamalai K. Entropy Generation and Human Aging: LifespanEntropy and Effect of Diet Composition and Caloric Restriction Diets[J].Journal of Thermodynamics,2009,1–10
    [34] Batato M., Deriaz O., Jequior E., et al, Second Law Analysis of HumanBody,In: S.S. Stecco, M.J. Moran (Eds.), Proceedings of the Florence WorldEnergyresearch Symposium, Pergamon Press, Oxford,1990:176-181
    [35] Rahman A M. A Novel Method For Estimating The Entropy Generation RateIn A Human Body[J]. Thermal Science,2007,11(1):75-92.
    [36] Boregowda S C, Tiwari S N, Chaturvedi S K. Entropy Generation Methodto Quantify Thermal Comfort[J]. Human Performance in ExtremeEnvironments: The Journal of the Society for Human Performance inExtreme Environments,2001,6(1):40–45
    [37] Prek M, Butala V. Principles of Exergy Analysis of Human Heat and MassExchange with the Indoor Environment[J]. International Journal of Heatand Mass Transfer,2010,53(25):5806-5814
    [38] Shukuya M, Saito M, Isawa K, et al. Human-Body Exergy Balance andThermal Comfort[J]. Report Submitted for the Final Report of the IEAECBCS Annex,2009,49-51
    [39] Prek M. Thermodynamic Analysis of Human Heat and Mass Transfer andTheir Impact on Thermal Comfort[J]. International Journal of Heat andMass Transfer,2005,48(3):731-739
    [40] Simone A, Kolarik J, Iwamatsu T, et al. A Relation Between CalculatedHuman Body Exergy Consumption Rate and Subjectively Assessed ThermalSensation[J]. Energy and Buildings,2011,43(1):1-9
    [41] Tokunaga K, Shukuya M. Human-Body Exergy Balance Calculation underun-Steady State Conditions[J]. Building and Environment,2011,46(11):2220-2229.
    [42] Monteith J L. Evaporation and Surface Temperature[J]. Quarterly Journal ofthe Royal Meteorological Society,1981,107(451):1-27.
    [43] Wyon D P. Thermal Effects on Performance[J]. Indoor Air QualityHandbook,2001:16.1-16.16.
    [44]中华人民共和国国家技术监督局.GB/T5701-2008.室内热环境条件[S],中国建筑工业出版社.2008
    [45]中华人民共和国国家技术监督局.GB/T50785-2012.民用建筑室内热湿环境评价标准[S].北京:中国建筑工业出版社,2012
    [46] Wyon D P, Wargocki P. Room Temperature Effects on Office Work[J].Creating the Productive Workplace,2nd Edn, London, Taylor&Francis,2006:181-192.
    [47] Pepler R D, Warner R E. Temperature and Learning: An ExperimentalStudy[J]. ASHRAE Transactions,1968,74(2):211-219.
    [48] Langkilde G, Alexandersen K, Wyon D P, et al. Mental Performance duringSlight Cool or Warm Discomfort[J]. Archives Des Sciences Physiologiques,1973,27(4):511-518
    [49] Johansson C. Mental and Perceptual Performance in Heat[R]. Report D4:1975.Sweden: Building Research Council;1975:126-130
    [50] Wyon D P, Fanger P O, Olesen B W, et al. The Mental Performance ofSubjects Clothed for Comfort at Two Different Air Temperatures[J].Ergonomics,1975,18(4):359-374.
    [51] Wyon D P, Andersen I B, Lundqvist G R. The Effects of Moderate HeatStress on Mental Performance[J]. Scandinavian Journal of Work,Environment&Health,1979:352-361.
    [52] Meeser G B, Kok R, Lewis M I, et al. The Effect of Moderate ThermalStress on the Potential Work Performance of Factory Workers—An InterimReport[J]. Energy and Buildings,1982,4(4):289-294.
    [53] Sundstrom E, Sundstrom M G. Work Places: The Psychology of thePhysical Environment in Offices and Factories[M]. Cambridge UniversityPress,1986.
    [54] Lorsch H G. The Impact of the Indoor Environment on OccupantProductivity-Part2: Effects of Temperature[J]. ASHRAE Transactions,1994,100:895-901.
    [55] Wyon D. Individual Microclimate Control: Required Range, ProbableBenefits and Current Feasibility[C]. Proceeding of Indoor air,1996:1067-1072
    [56] Tham K W, Willem H C, Sekhar S C, et al. Temperature and VentilationEffects on the Work Performance of Office Workers (Study of A Call CenterIn The Tropics)[C]. Proceeding of Healthy Buildings. Singapore.2003,3:280-286.
    [57] Niemel R, Hannula M, Rautio S, et al. The Effect of Air Temperature onLabour Productivity in Call Centres—A Case Study[J]. Energy andBuildings,2002,34(8):759-764.
    [58] Toftum J, Wyon D P, Svanekj r H, et al. Remote Performance Measurement(RPM)–A New, Internet-Based Method for the Measurement of OccupantPerformance in Office Buildings[J]. Proceeding of Indoor Air,2005:357-361.
    [59]叶晓江,连之伟,李慈珍等.室内热环境、热舒适与工作效率关系的研究[J].人类工效学,2006,12(3):4-6
    [60]周正平,连之伟,叶晓江.热舒适与工作效率关系的研究[C].全国暖通空调制冷2006年学术年会论文集,156-156
    [61] Seppanen O, Fisk W J, Lei Q H. Effect of Temperature on Task Performancein Office Environment[R]. LNBL Report60946. Lawrence BerkeleyNational Laboratory,2006
    [62] Tanabe S. Productivity and Indoor Climate[C]. Proceedings of Indoor Air,Beijing,2005:56-64
    [63] Mccartney K, Humphreys M A. Thermal Comfort and Productivity[J].Proceeding of Indoor Air,2002:822-827.
    [64] Kosonen R, Tan F. Assessment of Productivity Loss in Air-ConditionedBuildings Using PMV Index[J]. Energy and Buildings,2004,36(10):987-993.
    [65] Jensen K L, Toftum J, Friis-Hansen P. A Bayesian Network Approach to theEvaluation of Building Design and Its Consequences for EmployeePerformance and Operational Costs[J]. Building and Environment,2009,44(3):456-462.
    [66] Masaoki Haned. The Evaluation of Office Work Performance by ThermalSatisfaction Vote. Proceedings of Healthy Buildings. Syracuse,2009:25-30
    [67] Gen Kawaguchi. A Subjective Experiment to Evaluate the Effect of ThermalSatisfaction Improvements on Productivity by Introducing SimpleIndividual Cooling Methods to―COOL BIZ‖Office Condition. Proceedingsof Healthy Buildings. Syracuse,2009:38-45
    [68]兰丽.室内环境对人员工作效率影响机理及评价研究[D].上海交通大学博士学位论文,2010:25-26
    [69] Lan L, Wargocki P, Lian Z. Quantitative Measurement of Productivity Lossdue to Thermal Discomfort[J]. Energy and Buildings,2011,43(5):1057-1062.
    [70] Lan L, Wargocki P, Lian Z. Optimal Thermal Environment ImprovesPerformance of Office Work[J]. REHVA Journal,2012,1:12-17
    [71] Loveday D L, Hanby V I, Woodward W B. A Software Tool for Relating theComfort and Productivity of Occupants in Commercial Buildings[C].CIBSE National Conference.1995:69-75.
    [72] Wyon D. Indoor Environmental Effects on Productivity[J]. IAQ96Paths toBetter Building Environments/Keynote Address, ASHRAE, Atlanta,1996,5–15
    [73]赵加宁主编.低温热水采暖末端装置[M].北京:中国工业出版社,2011:18-19
    [74] Mumma S A. Fresh Thinking: Dedicated Outdoor Air Systems[J].Engineered Systems,2001,18(5):54-60.
    [75]李翠敏,赵加宁,方修睦.毛细管重力循环供热装置的设计及热工性能的实验研究[C].全国暖通空调制冷2008年学术文集.21-25
    [76] Baldin.F, An Experimental Study of Comfort and Air Distribution in ARoom with Radiant Floor Heating/Colding and Displacement Ventilation[D].Master Thesis. Technical University of Denmark,2008:21-23
    [77] STEFANO.Z.Experimental Study of Air Flow Patterns in A SpacewithRadiant and Convectiveheating/Cooling Systems[D]. Master Thesis.Technical University of Denmark,2008:26-28
    [78]隋学敏,张旭,韩星等.户式地板辐射采暖-新风系统冬季工况运行性能与分析[J].制冷空调,2009,37(3):53-55
    [79] Xianglong L, Guangcai G. Numerical Stimulation of Radiant Floor Heatingwith Displacement Ventilation[C]. Digital Manufacturing and Automation(ICDMA),2010International Conference. IEEE,2010,2:42-45.
    [80] Skistad, H. Floor Heating and Displacement Ventilation[C]. Proceedings ofCold Climate HVAC. Norway,2003:8-12
    [81] Behrendt.B, Experimental Study of Indoor Environmental Quality andEnergy Use by Different Combinations of Heating, Colding and VentilationSystems[D], Master Thesis. Technical University of Denmark,2010:18-19
    [82] Causone F, Baldin F, Olesen B W, et al. Floor Heating and CoolingCombined with Displacement Ventilation: Possibilities and Limitations[J].Energy and Buildings,2010,42(12):2338-2352.
    [83]唐凯,周翔,张恩泽等.辐射吊顶-置换通风系统冬季室内环境舒适性试验研究[J].制冷空调.2011.39(8):54-58
    [84] Bjarne W. Olesen, Angela Simone, Michal Krajcik, et al. ExperimentalStudy of Air Distribution and Ventilation Effectiveness in A Room with ACombination of Different Mechanical Ventilation Andheating/ColdingSystems[J]. International Journal of Ventilation,9(4)2011:371-384
    [85] Causone F, Olesen B W, Corgnati S P. Floor Heating with DisplacementVentilation: An Experimental and Numerical Analysis[J]. HVAC&RResearch,2010,16(2):139-160.
    [86] Ouazia B, Tardif M, Macdonald I A, et al. In-Situ Performance ofDisplacement Ventilation System in Canadian Schools With RadiantHeating Systems[C]. Proceedings of indoor air,2011:1-13
    [87] ASHRAE Handbook, Thermal Comfort[M]. Chapter9, American Society ofHeating, Refrigerating and Air-Conditioning Engineers,Inc., Atlanta GA,2009:11-13
    [88] Mccutchan J W, Taylor C L. Respiratory Heat Exchange with VaryingTemperature and Humidity of Inspired Air[J]. Journal of AppliedPhysiology,1951,4(2):121-135.
    [89] Du Bois D, Du Bois E F. A Formula to Estimate the Approximate SurfaceArea if Height and Weight Be Known.1916[J]. Nutrition (Burbank, LosAngeles County, Calif.),1989,5(5):303-312
    [90] Bejan A. Advanced Engineering Thermodynamics[M]. New York: Wiley,1997.7-8
    [91] ISO7730, Ergonomics of The Thermal Environment—AnalyticalDetermination and Interpretation of Thermal Comfort using Calculation ofThe PMV and PPD Indices and Local Thermal Comfort Criteria[S],International Standard Organization For Standardization, Geneva,2005
    [92] ASHRAE Handbook. Fundamentals. American Society of Heating,Refrigerating and Air-Conditioning Engineers, Inc., Atlanta GA,2001.
    [93] Simone A, Kolarik J, Iwamatsu T, et al. A Relation Between CalculatedHuman Body Exergy Consumption Rate and Subjectively Assessed ThermalSensation[J]. Energy And Buildings,2011,43(1):1-9.
    [94]王昭俊,赵加宁,刘京编著.室内空气环境[M].北京:化学工业出版社.2006,18-20
    [95]中华人民共和国国家技术监督局.GB/T18049-2000.中等热环境PMV和PPD指数的测定及热舒适条件的规定[S].北京:中国建筑工业出版社,2000
    [96] Frank K.. The CRC Handbook of Thermal Engineering [M].CRC Press,2000:22-24
    [97] ISO7726, Ergonomics of The Thermal Environment–Instruments forMeasuring Physical Quantities[S], International Standard Organization forStandardization, Geneva,1998
    [98] ASHRAE55-2004.Thermal Environmental Conditions for HumanOccupancy[S]. Refrigeration and Air Conditioning Engineers, Inc., Atlanta,GA.2004
    [99] Mcintyre D A. Indoor Climate[M]. London: Applied Science Publishers,1980:123-126
    [100] E. Mundt, H.M. Mathisen, P.V. Nielsen, A. Moser, VentilationEffectiveness [M]-Rehva Guidebook, Brussels, Belgium,2004:36-38
    [101] ASHRAE129-1997.Measuring Air Change Effectiveness[S], AmericanSociety of Heating. Refrigeration and Air Conditioning Engineers, Inc.,Atlanta, GA.1997
    [102] Melikov, A.K., Z. Popiolek, M.C.G. Silva, I. Care, And T. Sefker.AccuracyLimitations for Low-Velocity Measurements and Draft Assessment inRooms[J]. HVAC&R Research,2007,13:971–86
    [103] EN15251-2007.Indoor Environmental Input Paramenters for Design andAssessment of Energy Performance of Buildings Addressing Indoor AirQuality, Thermal Environment, Lighting and Acoustics[S]. EuropeanCommittee for Standardization. Brussels.2007
    [104] Olesen B W, Sch ler M, Fanger P O. Discomfort Caused by Vertical AirTemperature Differences[M].1978:561-579
    [105] Standard A. Standard62-2007, Ventilation for Acceptable Indoor AirQuality[J]. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, Ga,2007
    [106]中华人民共和国国家技术监督局.GB50736-2012.民用建筑供暖通风与空气调节设计规范[S].北京:中国建筑工业出版社,2012
    [107] EN12831-2003, Heating Systems in Buildings–Method for Calculationof the Design Heat Load[S], European Committee for Standardization.Brussels,2003
    [108] Awbi H B, Hatton A. Natural Convection from Heated Room Surfaces[J].Energy and Buildings,1999,30(3):233-244.
    [109] Fisher D E, Pedersen C O. Convective Heat Transfer in Building Energyand Thermal Load Calculations[J]. ASHRAE Transactions,1997,103:137-148.
    [110] Liesen, Richard J;Pedersen, Curtis O, An Evaluation of Inside SurfaceHeat Balance Models for Colding Load Calculations[J], ASHRAETransactions1997,103:485-502
    [111] B Olesen B W, Bonnefoi F, Michel E, et al. Heat Exchange CoefficientBetween Floor Surface and Space by Floor Cooling--Theory or A Questionof Definition[R]. DF Liedelt Velta, Norderstedt (DE),2000:684-694
    [112] Causone F, Corgnati S P, Filippi M, et al. Experimental Evaluation of HeatTransfer Coefficients Between Radiant Ceiling and Room[J]. Energy andBuildings,2009,41(6):622-628.
    [113]中华人民共和国国家技术监督局.GB/T18883-2002.室内空气质量标准[S].北京:中国建筑工业出版社,2002
    [114]中华人民共和国国家技术监督局.GB50189-2005.公共建筑节能设计标准[S].中国建筑工业出版社.2005
    [115]中华人民共和国国家技术监督局.JGJ142-2004.地面辐射供暖技术规程
    [S].北京:中国建筑工业出版社,2004
    [116] Jaluria,Y. Natural Convection, Heat and Mass Transfer[M]. PergamonPress.1980:189-192
    [117] Novoselac A, Burley B J, Srebric J. Development of New and Validationof Existing Convection Correlations for Rooms with DisplacementVentilation Systems[J]. Energy and Buildings,2006,38(3):163-173.
    [118] Nielsen, P.V., Displacement Ventilation-Theory and Design[D], PhdThesis, Aalborg University, Aalborg,1993:176-178
    [119] Skistad, H. Displacement Ventilation[D]. Somerset, Research StudiesPress, Ltd.1994:226-228
    [120] Mundt E. The Performance of Displacement Ventilation Systems:Experimental and Theoretical Studies[D]. Phd Thesis, Royal Institute ofTechnology, Stockholm,1996:336-341
    [121] Mundt, E., H.M. Mathisen, P.V. Nielsen, et al. Rehva Guidebook2.Ventilation Effectiveness[M].Brussels: REHVA,2004.:13-17
    [122] Chen Q, Glicksman L R. System Performance Evaluation and DesignGuidelines for Displacement Ventilation[M]. American Society of Heating,Refrigerating and Air-Conditioning Engineers,2003:19-21
    [123]陆耀庆主编.实用供热空调设计手册[M].第二版.北京:中国建筑工业出版社,2007:158-161
    [124]中华人民共和国国家技术监督局.GB50736-2012.民用建筑供暖通风与空气调节设计规范[S].北京:中国建筑工业出版社,2012
    [125]冯俊凯,沈幼庭主编.锅炉原理及计算[M].第2版.北京:科学出版社,1992:131-136
    [126]赵明泉编.锅炉结构与设计[M].哈尔滨:哈尔滨工业大学出版社,1991:123-126
    [127] Smith D M. Mean Temperature Difference in Cross Flow[J]. Engineering,1934,138(8):479-481.
    [128] Mason J. L., Heat Transfer in Cross-Flow[C], Proceedings of the SecondU.S. Nationalcongress of Applied Mechanics, American Society ofMechanical Engineers, Newyork,1955:801–803
    [129] Chunghsiung L. A New Simplified Formula for Crossflow Heat ExchangerEffectiveness[J]. Journal Of Heat Transfer (Transactions Of The ASME(American Society Of Mechanical Engineers), Series C);(United States),1987,109(2):521–522
    [130] Binnie A M, Poole E G C. The Theory of the Singlepass Cross-Flow HeatInterchanger[C]. Proceedings of the Cambridge Philosophical Society.1937,33:403-411.
    [131] Baclic B S. A Simplified Formula for Cross-Flow Heat ExchangerEffectiveness[J]. Journal Of Heat Transfer,1978,100:746–747
    [132] Bergman T L, Lavine A S, Incropera F P, et al. Fundamentals of Heat andMass Transfer[M]. Wiley,2011.
    [133] Baclic B S, Gvozdenac D D. Exact Explicit Equations for Some Two-andThree-Pass Cross-Flow Heat Exchangers Effectiveness[C]. Conf. NATOAdv. Study Inst. Heat Exchangers: Thermal-Hydraulic Fund.&Design.1980:481-494.
    [134] Baclic B S, Gvozdenac D D.-NTU-W Relationships for Inverted OrderFlow Arrangements of Two-Pass Crossflow Heat Exchangers[J].Regenerative and Recuperative Heat Exchangers, Ed. RK Shah, DEMetzger, Book (H00207):27-41.
    [135] Triboix A. Exact And Approximate Formulas for Cross Flow HeatExchangers with Unmixed Fluids[J]. International Communications inHeat and Mass Transfer,2009,36(2):121-124.
    [136] Kays, W.M. And London, A.L., Compact Heatexchangers [M], Third Ed.,Mcgraw Hill, New York.1984:136-138
    [137] Ramesh K.Shah and Dusan P.Sekulic.Fundamentals of Heat ExchangerDesign [M]. John Wiley&Sons Inc,2003:64-66
    [138]章熙民,任泽霈编著.传热学[M].第4版.北京:中国建筑工业出版社,2001:138-139
    [139]中国建筑科学研究院主编.GB/T13754—2008采暖散热器散热量测定方法[S],北京:中国标准出版社,2008
    [140](苏)А.А.约宁(А.А.Ионин)主编;单文昌,尚雷译.供热学[M].北京:中国建筑工业出版社,1986:96-97
    [141] Handbook A. HVAC Systems and Equipment[J]. American Society ofHeating, Refrigerating, and Air Conditioning Engineers, Atlanta, GA,2011
    [142] Klein S A, Beckman W A, Mitchell J W, Et Al. TRNSYS16–A TransientSystem Simulation Program, User Manual[J]. Solar Energy Laboratory.Madison: University of Wisconsin-Madison,2004.:169-172
    [143]鲁翠译.地板采暖设计施工手册[M].北京:中国电力出版社,2009:16-19
    [144] ISO/DIS11855-2,Building Environment Design–Design, ConstructionAnd Operation of Radiant Heating and Cooling Systems–Part2:Determination of the Design Heating and Cooling Capacity[S].International Organization For Standardization,2010.
    [145]李少斌.新型薄型供暖地板热工性能研究[D].北京:北京建筑工程学院硕士学位论文,2010:13-15
    [146]钱滨江,伍贻文,常加芳等.简明传热学手册[M].北京:高等教育出版社,1983:22-24
    [147] Blomberg T. Heat2-A Heat Transfer PC-Program: Manual for Heat2[D].Department of Building Physics, Lund University,1991:22-27
    [148] Blomberg, T. HEAT2-A Heat Transfer PC-Program. Proceedings of the2nd Conference on Building Physics in the Nordic Countries. Division ofBuilding Technology, Department of Civil Engineering, The NorwegianInstitute of Technology, The University of Trondheim, Alfr. Getz Vei3, N-7034Trondheim, Norway,1990.
    [149]陈宏振,汤延庆主编.供热工程[M].武汉:武汉理工大学出版社,2008:27-29
    [150] Olesen B W, Sommer K, Duchting B. Control of Slab Heating and CoolingSystems Studied by Dynamic Computer Simulations[J]. Transactions-American Society of Heating, Refrigerating snd Air ConditioningEngineers,2002,108(2):698-707.
    [151] Olesen B W, Dossi F C. Operation and Control of Activated Slab Heatingand Cooling Systems[C]. CIB World Building Congress.2004.:167-171
    [152] REHVA, Low Temperature Heating and High Temperature Cooling[M].Rehva Guidebook, Federation of European Heating and Air-ConditioningAssociations,Brussels, Belgium,2007:122-125
    [153]赵荣义,范存养,薛殿华编.空气调节[M].第3版.北京:中国建筑工业出版社,1994:25-27
    [154]陆亚俊,马最良主编.暖通空调[M].北京:中国建筑工业出版社,2002:18-19
    [155]周志刚,方修睦.风阀型散热器室温调节方式的试验研究[J].煤气与热力,2005,25(3):7-10
    [156] Chen T Y. Application of Adaptive Predictive Control to A Floor HeatingSystem with A Large Thermal Lag[J]. Energy and Buildings,2002,34(1):45-51.
    [157] Athienitis A K, Dale J D. A Study of the Effects of Window NightInsulation and Low-Emissivity Coating on Heating Load and Comfort[J].ASHRAE Transactions,1987,93:279-294.
    [158] Sung Hwan,CHO.Temperature Regulation of Radiant Floor HeatingSystem Using Two Parameter On-Off Control: A ExperimentalStudy[J].ASHRAE Transaction,1997,103(1):996-980
    [159] Klein S A. TRNSYS, A Transient System Simulation Program[M]. SolarEnergy Laborataory, University of Wisconsin--Madison,1979:111-113
    [160] Climatic Design Information. Handbook A. Fundamentals[J]. AmericanSociety of Heating, Refrigerating and Air-Conditioning Engineers, Inc.,Atlanta GA,2009:18-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700