用户名: 密码: 验证码:
瞬态切削用NiCr/NiSi薄膜热电偶测温刀具研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
切削热和切削温度是切削过程中产生的重要物理现象。瞬态切削温度的准确测量是开展现代切削理论与切削工艺技术研究的主要内容之一。国内外目前广泛采用的切削温度测量方法主要有自然热电偶法、人工热电偶法、半人工热电偶法、金相组织观察法和光热辐射测温法等。随着切削速度和加工精度的不断提高,常用的切削温度测量方法由于受到传感器响应速度和切削条件等的限制,难以实现切削区瞬态温度的实时和准确测量。本文针对这一瞬态切削温度测量的技术难题,将薄膜热电偶集成于切削刀具中,成功研制了一种NiCr/NiSi薄膜热电偶测温刀具,可实现切削区瞬态温度准确、方便和实时测量。论文的主要内容包括:
     从塞贝克效应入手,依据固体材料电导和热导理论,研究了薄膜电导、热导与块体材料电导、热导的关系;利用连续薄膜的电学性质与薄膜的电子输运理论,研究了薄膜电导率与电阻率的主要影响因素;通过引入的玻尔兹曼经典统计和费密狄拉克函数,研究了薄膜电极的绝对热电势率以及薄膜热电偶的塞贝克系数。指出了薄膜热电偶的薄膜性质及其选择的原则。
     采用双放电腔微波ECR等离子体增强非平衡磁控溅射技术,完成切削测温刀具所需Si02绝缘薄膜的制备,提出一种以相同工艺参数多次重复,可有效避免Si02薄膜制备中表面针孔和大颗粒等缺陷的新方法。所制备的Si02绝缘薄膜厚度小、绝缘性能好,绝缘薄膜与金属基底结合力满足制作测温刀具的要求。
     采用瞬态热反射方法,对所制备Si02薄膜的热导率进行测试,结果表明:本文所制备的Si02薄膜热导率比文献报道的热氧化法制备的Si02薄膜热导率大,在高速钢基底上制备的Si02薄膜热导率值不稳定,不同厚度的薄膜热导率变化较大,高速钢基底与Si02薄膜接口的热阻要比硅基底与Si02薄膜的大一个数量级。进一步分析得知,本文所制备的Si02薄膜热导率在所测试的厚度下没有明显的尺寸效应依赖关系,且影响热导率的主要因素是薄膜厚度、薄膜-基底界面结构、薄膜-基底温度以及薄膜的制备方式等。
     采用与制备Si02绝缘薄膜相同的双放电腔微波ECR等离子体增强非平衡磁控溅射技术,通过选择合适的靶材、设计并制作专用的掩膜,制备了测温刀具中NiCr/NiSi热电偶薄膜,所制备薄膜的合金各组元接近靶材,具有致密均匀,平整光滑,连续性好等特点,所制备的NiCr/NiSi薄膜热电偶形状规则、厚度均匀、边界整齐,达到预期制作目标。NiCr、NiSi掩膜采用不锈钢材料经超精密线切割机床加工制成,NiCr、NiSi掩膜厚度均控制在0.5mm以内。所研究的磁控溅射制备合金材料薄膜的工艺和技术,可为今后其他类合金薄膜的制备奠定技术基础。
     依据切削温度的产生和传出机理,研制了分刀片式、整体式和嵌入式切削测温刀具。由于NiCr/NiSi薄膜热电偶被直接嵌入刀具的刀尖位置,将切削和测温功能集于一体,且薄膜热接点厚度为微米数量级,具有热容量小,响应迅速的特点,因此,所研制的测温刀具可实现切削区瞬态温度的实时测量。
     采用本文研制的基于LabVIEW的薄膜热电偶温度自动标定系统,记录了NiCr/NiSi薄膜热电偶的升温和降温过程,完成了薄膜热电偶的标定;采用短脉冲激光法测试了NiCr/NiSi薄膜热电偶的时间常数。结果显示,所研制薄膜热电偶的塞贝克系数为67.0μV/℃,非线性拟合误差不大于0.3%,测得动态响应时间为0.083ms。
     采用热接点宽度不同的系列薄膜热电偶,研究了测温刀具的模拟磨损特性,测试了不同热接点宽度下NiCr/NiSi薄膜热电偶的灵敏度和时间常数。结果显示,当薄膜厚度很小时,NiCr/NiSi薄膜热电偶随刀具部分磨损后不影响其测试性能。通过建立的一维非稳态热传导模型,计算不同热接点厚度薄膜热电偶的动态响应时间,结果表明,影响薄膜热电偶时间常数的主要因素是薄膜材料的热扩散系数、薄膜的导热系数及薄膜厚度。
     完成了NiCr/NiSi薄膜热电偶测温刀具的组装并将所研制的切削测温刀具用于切削试验,结果显示,切削测温刀具满足瞬态切削温度测试需要,测试系统运行良好。
Cutting heat and cutting temperature are crucial physical phenomenon which are produced in the cutting process. The accurate measurement of the transient cutting temperature is one of the main research concentents in developing modern cutting theory and cutting technical skill. At present, the common used methods to measure the cutting temperature are the natural thermocouple method, semi-artificial thermocouple method, artificial thermocouple method, light radiation thermometry and metallurgical structure observational method, etc. With the improvement of the cutting speed and machining precision in the cutting process, the above commonly used methods in measureing cutting temperature are restricted by sensor response time and cutting conditions and are ineffective in accurate measureing the transient temperature of the cutting zone. In this paper, the NiCr/NiSi thin-film thermocouple was embedded directly at the tip of the cutting tool, an NiCr/NiSi thin film thermocouple testing temperature cutter was successfully developed, the accurate, convenient and timely cutting temperature measurement in the cutting zone was realized. The main contents were as follows:
     The relationship of the conductance and thermal conductivity of thin-film with the conductance and thermal conductivity of the piece body was studied according to the Seebeck effect of the conductance and thermal conductivity theory of solid material. The main factors that influence the conductivity and resistivity of the thin film were studied based on the property of electricity and electron transport theory of continuous thin-film. The absolute thermoelectricity power of thin-film electrode and the Seebeck coefficient of thin-film thermocouple were studied according to Boltzmann classical statistics and Fermi Dirac functions. The property of the thin-film and principle of choosing the thin film thermocouple are prposed.
     SiO2 insulating film for the testing temperature cutter was prepared using the advanced twinned microwave ECR plasma source enhanced radio frequency (RF) reaction non-balance magnetron sputtering technique. A new method that was multiple coverage with the same technological parameter to overcome large particles, needles holes and other defects on the SiO2 thin-film surface during the thin-film preparation was put forward. The thickness of the prepared SiO2 insulating films was smaller, and the insulating performance of which was better.. The binding force between insulating film and metal basement met the demands of making the testing temperature cutter.
     The transient heat reflection method was used to measure the thermal conductivity of the prepared SiO2 films. on the metal basement. The results showed that the thermal conductivity of SiO2 films prepared by sputtering in this study was bigger than that by thermal oxidation reported in the literature. The thermal conductivity of the thin-film made on high-speed steel substrates was unstable, changed greatly among different thickness films. The thermal resistance between high-speed steel substrates and SiO2 thin-film was one order of magnitude large than that on SiO2 substrates. There was no significantly size effect of the thermal conductivity of the SiO2 thin-film prepared in this paper under the testing thickness. The factors that influence the thermal conductivity of the thin-film were the thickness of the film, the interface configuration of film-substrate, the temperature of film-substrate and sputtering manner.
     Advanced twinned microwave ECR plasma source enhanced radio freqency (RF) reaction non-balance magnetron sputtering technique was adopted, which was the same as preparing SiO2 insulating thin-film. By selecting proper ITO, design and manufacturing special Masking Film, NiCr/NiSi thermocouple thin-film of the testing temperature cutter was prepared. The alloy components of the prepared NiCr/NiSi thin-film were close to target, and it was dense and uniform, smooth and continuity, the prepared NiCr/NiSi thin-film had regular shape, uniform thickness and orderly fringe, achieved the expectant goal. The thickness of NiCr/NiSi Masking Film was controlled in the range of 0.5 mm, and they are made by the stainless steel through ultra-precision linear cutting machine. The preparation technology and technology for making alloy thin film material by magnetron sputtering techniques studied in this paper established the foundation for the future study of the other types of alloy thin films.
     According to the production and transportation mechanism of cutting temperature, the detach-blade testing temperature cutter, integral testing temperature cutter and embedded testing temperature cutter were made. Since the NiCr/NiSi thin-film thermocouple was embedded directly at the tip of the cutting tool, which integrated both cutting and temperature measuring functions, and the thickness of thermo-junction was micron, it has the characteristic of the small thermal capacity and quick response, and it can real-time measure transient temperature of the cutting zone.
     The temperature automatic calibration system of the thin-film thermocouple obtained in this study was used to record the process of the heating and cooling of the sensor, the automatic calibration of thin-film thermocouple was finished. The short pulse laser method was adopted to test the time constant of NiCr/NiSi thin-film thermocouple. The result showed that the Seebeck coefficient of thin-film thermocouple was 67.0μV/℃, the nonlinear fitting error was less than 0.3% and the shortest dynamic response time was 0.083ms.
     In order to study the simulation abrasion characteristic of the testing temperature cutter, the sensitivity and time constant of the NiCr/NiSi thin-film thermocouples with different thermo-junction width were tested. The results showed that the thermo-junction had little influence on static and dynamic characteristics when thickness of the film was thin, it means the partial abrasion of thin-film thermocouple didn't affect its test performance. One-dimensional unsteady heat conduction model was constructed and the dynamic response time was calculated at different thermo-junction width. The result showed the main factors that influence the time constant of the film were thermal diffusivity, thermal conductivity and the thickness of thin film materials.
     The assembly of thin-film thermocouple testing temperature cutter was completed. The developed thin-film thermocouple testing temperature cutter was used for cutting test. The result showed that the testing temperature cutter meet the needs of measuring the transient cutting temperature and the test system run well.
引文
[1]周泽华.金属切削原理[M].第二版.上海:上海科学技术出版社,1993.
    [2]刘战强,黄传真,万熠,等.切削温度测量方法综述[J].工具技术.2002,36(3):3-6.
    [3]刘献礼,袁哲俊,等.切削温度测量的等效热电偶法[J].计量学报.1999,20(3):187-191
    [4]陈日曜.金属切削原理[M].第二版.北京:机械工业出版社,1993.
    [5]陆剑中,孙家宁.金属切削原理与刀具[M].第三版.北京:机械工业出版社,1998.
    [6]何振威,全燕鸣,林金萍.高速切削中切削温度研究方法[J].现代制造工程.2005(8):110-113.
    [7]D O'Sullivan, M Cotterell. Temperature measurement in single point turning[J]. Journal of Materials Proccessing Technology.2001(118):301-308.
    [8]D O'Sullivan, M Cotterell. Workpiece temperature measurement in machining[J]. Proceedings of the Institution of Mechanical Engineers -- Part B--Engineering Manufacture[J].2002,216(1):135-139.
    [9]T. I. EL-WARDANY et al. Cutting Temperature of Ceramic Tools in High Speed Machining of Difficult to Cut Materials[J]. Int. J. Mach. Tools Manufact.1996,36 (5):611-634.
    [10]仇启源,庞思勤.现代金属切削技术[M].北京:机械工业出版社,1992.
    [11]常兴,陈五一,吕彦明.半人工热电偶瞬态切削温度测量装置[J].中国机械工程.1995,6(学刊):120-122.
    [12]M. Hirao. Determining temperature distribution on flank face of cutting tool[J]. J. Mater. Shap. Technol.1989,6(3):143-148.
    [13]张士军,刘占强.涂层刀具切削温度自测传感器[J].中国机械工程.2009,20(5):397-400.
    [14]曾其勇.化爆材料动态切削温度的薄膜热电偶测量原理及传感器研制[D].(博士学位论文).大连:大连理工大学,2005.
    [15]陈明,袁人炜,薛秉源,等.铝合金高速铣削中切削温度动态变化规律的试验研究[J].工具技术,2000,34(5):7-10.
    [16]J.P. Kottenstette. Measuring tool/chip interface temperatures[J]. Trans. ASME, J. Eng. Ind.1986(108):101-104.
    [17]T. Ueda, A. Hosokawa, A. Yamamoto. Measurement of grinding temperature using infrared radiation pyrometer with optical fibre[J]. Trans. ASME, J. Eng. Ind.1986(108):247-251.
    [18]E. G. Ng, D. K. Aspinwall, D. Brazil. Modelling of temperature and forces when orthogonally machining hardened steel[J]. International Journal of Machine Tools & Manufacture, 1999(39):885-903.
    [19]王伯雄.测试技术基础[M].北京:清华大学出版社.2003.
    [20]ChenMing, et al. Experimental research on the dynamic characteristics of the cutting temperature in the p rocess of high speed milling[J]. Journal of Materials Processing Technology.2003(138):468-471.
    [21]秦永列.表面温度测量[M].北京:中国计量出版社,1989.
    [22]赵新,朱承元,等.铝合金高速铣切屑温度实验研究[J].电子机械工程.2004,20(3):137-139.
    [23]Quan Yanming, Lin Jinping, Wang Chengyong. Cutting temperature measurement in high speed end milling[J]. Transactions of Nanjing University of Aeronautics and Astronautics. 2005,22(1):47-51.
    [24]G. Sutter, L. Faure,et al. An experimental technique for the measurement of temperature fields for the orthogonal cutting in high speed machining[J]. International Journal of Machine Tools & Manufacture,2003(43):671-678.
    [25]Basti A, Obikawa T. Tools with built-in thin film thermocouple sensors for monitoring cutting temperature[J]. International Journal of Machine Tools & Manufacture.2007(47): 793-798.
    [26]曾其勇,孙宝元,卢俊.一种新型快速响应半人工热电偶[J].仪器仪表学报.2003,24(4)增:126-131.
    [27]R. Komanduri, Z. B. Hou. A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processs and tribology[J]. Tribology International.2001(34):653-682.
    [28]周生国.机械工程测试技术[M].北京:北京理工大学出版社,1993.
    [29]D. Bendersky. A special thermocouple for measuring transient temperature [J]. Mechanical Engineering.1953 (75):117-125.
    [30]沈胜强,张志千,滕叙充,等.薄膜热电偶及其对燃烧室壁面瞬态温度的测量[J].小型内燃机.1988(3):1-7.
    [31]叶方伟.薄膜热电偶的发展及其应用[J].材料导报,1995(5):28-32.
    [32]陈汉平,徐维新.非金属表面温度测量的薄膜热电偶技术[J].工程热物理学报.1989,10(4):430-432.
    [33]薛晖,李付国,黄吕权.便携式薄膜热电偶测温传感器[J].传感器技术,1996(1):46-48.
    [34]刘裕光,姜恩永,刘明升,等.对向靶溅射制备NiCr-NiSi薄膜热电偶的动态特性研究[J].真空科学与技术.1995,15(5):317-320.
    [35]Jin-Fen Lei, Herbert A. Will. Thin-film thermocouples and strain-gauge technologies for engine applications[J]. Sensors and Actuators A.1998,69(2):187-193.
    [36]Choi H, Li X C. Fabrication and application of micro thin film thermocouples for transient temperature measurement in nanosecond pulsed laser micromachining of nickel [J]. Sensors and Actuators 2007(136):118-124.
    [37]艾兴,萧虹.陶瓷刀具切削加工[M].北京:机械工业出版社,1988.
    [38]艾兴等,高速切削加工技术[M].北京:国防工业出版社,2003.
    [39]过增元.国际传热研究前沿一微尺度传热[J].力学进展.2000,30(1)1-6.
    [40]Kasap, S.O著,汪宏等译.电子材料与器件原理:第三版·上册[M].西安:西安交通大学出版社,2009.
    [41]刘静.微米/纳米尺度传热学[M].北京:科学出版社.2001.
    [42]曲喜新,过璧君.薄膜物理[M].北京:电子工业出版社.1994.
    [43]杨列宇,关文铎,顾卓明.材料表面薄膜技术[J].北京:人民交通出版社,1991.
    [44]孙宝元,杨宝清.传感器及其应用手册[M].北京:机械工业出版社,2004.
    [45]黄泽铣.热电偶原理及其检定[M].北京:中国计量出版社.1993.
    [46]游伯坤,江兆章.温度测量与仪表——热电偶和热电阻[M].北京:科学技术文献出版社,1990.
    [47]王力衡,黄运天,郑海涛.薄膜技术[M].北京:清华大学出版社,1990.
    [48]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2003.
    [49]王静.铜基体上Ti/Ti_xC_y/DLC功能梯度材料的制备及性能的研究[D].(博士学位论文)大连:大连理工大学,2009.
    [50]T.Ono, C Takahashi, S. Matsuo, et al.Electron Cyclotron Resonance Plasma Deposition Technique Using Raw Material Supply by Sputtering[J]. Jpn. J. App. Phys.1984(23): L534-L536.
    [51]Kidd P. A magnetically confined and electron cyclotron resonance heated plasma machine for coatingand ion surface modification use[J]. J. Vac. Sci. Technol. A.1991,9(3): 466-473.
    [52]N Kidder, W J Varhue. Diamond like carbon films sputter deposited with an electron cyclotron resonance reactor[J]. J. Vac. Sci. Technol. A.1992,10(4):1414-1422.
    [53]丁万煜.微波ECR磁控溅射制备a-SiNx薄膜及其特性研究[D].(博士学位论文).大连:大连理工大学,2007.
    [54]马腾才,胡希伟,胡银华.等离子体物理原理[M].合肥:中国科技大学出版社,1988.
    [55]徐军.微波-ECR等离子体增强非平衡磁控溅射技术及CN薄膜的制备研究[D].(博士学位论文).大连:大连理工大学,2001.
    [56]C. Ternon, F. Gourbilleau,X.Portier,etc. An original approach for the fabrication of Si/SiO2 multilayers using reactive magnetron sputtering[J]. Thin Solid Films.2002 (419):5-10.
    [57]游伯坤,江兆章.温度测量与仪表——热电偶和热电阻[M].北京:科学技术文献出版社,1990.
    [58]李付国,黄吕权,薛晖,等.多层复合式薄膜热电偶的研制[J].科技成果·学术论文.1995(3):6-8.
    [59]袁希光.传感器技术手册[M].北京:国防工业出版社,1986.
    [60]三四所.热电偶[M].北京:国防工业出版社,1978.
    [61]Jung-Kyun Hong, Hong-Ryul Kim, Hyung-Ho Park. The effect of sol viscosity on the sol-gel derived low density SiO2 xerogel film for intermetal dielectric application[J].Thin Solid Films.1998(332):449-454.
    [62]陈立春,王向军,徐叙容,等.SiO2薄膜的制备方法与性质[J].发光学报,1995(3):249-255.
    [63]A. Barranco, F. Yubero, J. Cotrino, et al. Low teperature synthesis of dense SiO2 thin films by ion beam induced chemical vapour deposit ion[J]. Thin Solid Films.2001(396):9-15.
    [64]吴广明,王珏,沈军,等.实验条件对纳米多孔SiO2薄膜结构及特性的影响[J].物理学报,2001(1):175-181.
    [65]张旭平,陈国平.射频反应溅射SiO2薄膜的研究[J].真空电子技术.1994(3):3-6.
    [66]陈国平,张随新.射频磁控溅射制备SiO2膜[J].真空科学与技术.1995(5):310-316.
    [67]孙承松,魏永广,吴艳霞.溅射条件对SiO2膜力学特性的影响[J].沈阳工业大学学报,1996(3):204-206.
    [68]Le-Nian He, Jin Xu. Properties of amorphous SiO2 films prepared by reactive RF magnetron sputtering method. Vacuum 68(2003):197-202.
    [69]Satoshi Takeda, Makoto Fukawa. Surface OH groups governing Surface chemical properties of SiO2 thin films deposited by RF magnetron sputtering. Thin Solid Films 444(2003): 153-157.
    [70]H. Ohsaki, Tachibana, J. Shimizu, etc. High-rate deposition of SiO2 by modulated DC reactive sputtering in the transition mode without a feedback system, Thin Solid Films 281-282(1996):213-217.
    [71]Hiroyuki Nasu, Jun Matsuoka, Kanichi Kamiya. Preparation and optical properties of semiconductor microcrystal-doped SiO2 glass thin films by rf-sputter ing [J]. Journal of Non-Crystalline Solids.1994(178):148-154.
    [72]M. Ruske, G. Brauer, J. Pistner, et al. Properties of SiO2 and Si3N4 Layers deposited by MF twin magnetron sputtering using different target materials[J]. Thin Solid Films.1999(351): 158-163.
    [73]H. Seifarth, R. Grotzschel, A. Markwitz,et al. Preparation of Si02with embedded Si manocrystals by reactive R. F. magnetron sputtering[J]. Thin Solid Films.1998 (330): 202-205.
    [74]Hiroyuki Nasu, Hiromu Yamada, Jun Matsuoka, et al. Preparation of PbS microcrystal-doped SiO2 glass thin films by the RF-sputtering method [J]. Journal of Non-Crystalline Solids 1995 (183):290-296.
    [75]Yizhou Song, Takeshi Sakurai, Koichi Kishimoto,et al. Optical and structure properties of low-temperature PECVD ETMS SiO, thin films[J]. Thin Solid Films.1998(334):92-97.
    [76]吴广明,王珏,沈军,等.实验条件对纳米多孔SiO2薄膜结构及特性的影响[J].物理学报.2001(1):175-181.
    [77]Akimori Tabata, Noriaki Matsuno, Yasuo Suzuoki. Optical properties and structure of SiO2 films prepared by ion-beam sputtering[J]. Thin Solid Films.1996(289):84-89.
    [78]屈晓声,李德杰,田宏,等.射频溅射制备Ni-SiO2薄膜特性研究[J].功能材料.2001(3):323-324.
    [79]B. Knoblich, Th. Gerber. Aggregation in SiO2 sols from sodium silicate solutions[J]. Journal of Non-Crystalline Solids.2001(283):109-113.
    [80]朱世富.材料制备工艺学[M].成都:四川大学出版社,1993.
    [81]Yasushi Inoue, Osamu Takai.Properties of silicon oxide films deposited by plasma enhanced CVD using organosilicon reactants and mass analysis in plasma[J]. Thin Solid Films.1999(341):47-51.
    [82]张劲松,任兆杏,梁荣庆,等ECR-PECVD制备SiO2薄膜中衬底射频偏压的作用[J].核聚变与等离子体物理.2001(1):59-64.
    [83]L. Zajickova, J. Janca, V. perina. Characterization of silicon oxides thin films deposited by plasma enhanced chemical vapour deposition from octamethylcyclotetrasil oxane/ oxygen[J]. Thin Solid Films.1999(338):49-59.
    [84]A. Barranco, J. Cotrino, F. Yubero, et al.Synthesis of SiO2 and SiOxCyHz thin films by microwave plasma CVD. Thin Solid Films.2001(401):150-158.
    [85]Pavel V. Bulkin, Pieter L. Swart, Beatrys M. Lacquet. Electron cyclotron resonance plasma enhanced chemical vapour deposition and optical properties of SiO2 thin films[J]. Journal of Non-Crystalline Solids.1998(226):58-66.
    [86]C. Martinet, V. Paillard, A. Gagnaire, et al. Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating[J]. Journal of Non-Crystalline Solids.1997(216):77-82.
    [87]宗婉华,马振昌,王立侠.磁控溅射SiO2薄膜的制备工艺J[].半导体情报.1994(6):29-33.
    [88]刘艳红,郭宝海,马腾才.射频磁控溅射沉积SiO2膜的研究[J].大连理工大学学报.1997(2):204-207.
    [89]邹德恕,徐晨,罗辑.射频溅射SiO2在制造Si/SiGe HBT中的应用[J].半导体技术.1999(4):12-14.
    [90]陈立春,王向军,邓振波等.溅射过程中氧分压对SiO2薄膜成膜的影响[J].天津理工学院学报.1994(4):1-5.
    [91]张祖新,李伟,张文炳.低温衬底的射频反应测射法制备a-SiO2薄膜的研究[J].武汉大学学报(自然科学版),1999(5):601-603.
    [92]孙承松,李云鹏.溅射SiO2薄膜的电气性能[J].传感器世界.1997(4):9-11.
    [93]A. Markwitz, W. J. Trompetter, G. V. White, et al. Ion microscope investigations of non-uniform surfaces of thin SiO2 films produced by high-temperature nitridation experiments[J]. Nuclear Instruments and Methods in Physics Research B.2001 (181):354-359.
    [94]崔云先,杨德顺,孙宝元,等.切削刀具测温传感器SiO2多层复合绝缘薄膜的制备及其性能表征[J].功能材料.2009年,40(11):1850-1853.
    [95]Kenneth G. Kreider, Frank DiMeo. Platinum/palladium thin-film thermocouples for temperature measurements on silicon wafers[J]. Sensors and Actuators A.1998,69 (1):46-52.
    [96]陈则韶,葛心石,顾毓沁.量热技术和热物性测定[M].合肥:中国科学技术大学出版社,1990.
    [97]Tien C L, Chen G. Challenges in microscale conductive and radiative heat transfer[J]. Journal of Heat Transfer-Transactions of the ASME.1994,116(4):799-807.
    [98]唐祯安.微热板的设计及分析[D].(博士论文).大连:大连理工大学博士论文,1999.
    [99]黄正兴.薄膜热导率的测试与分子动力学模拟研究[D].(博士论文).大连:大连理工大学,2006.
    [100]Joseph D D, Preziosi L. Heat waves[J]. Reviews of Modern Physics.1989,61(1):41-73.
    [101]Qiu T Q, Tien C L. Heat transfer mechanisms during short-pulse laser heating of metals Journal of Heat Transfer,1993,115(4):835-841.
    [102]Asheghi M, Leung Y K, Wong S S, et al. Phonon-boundary scattering in thin silicon layers. Applied Physics Letters,1997,71 (13):1798-1800.
    [103]Huang Z X, Tang Z A et al.A genetic algorithm for simultaneous determination of thin films thermal transport properties and contact resistance[J]. Journal of Materials Science & Technologe.2006,22(3):339-341.
    [104]Yunxian Cui.Deshun Yang, Qiyong Zeng, et al. Fabrication and Characterization of NiCr/NiSi Functional Thin Films on Temperature Measurement of Cutter Sensor[J]. Key Engineering Materials.2010,431-432(2):535-538.
    [105]熊诗波,黄长艺.机械工程测试技术基础,第三版[M].北京:机械工业出版社,2006.
    [106]孙奉道.嵌入式薄膜热电偶测温刀具传感器的研制[D].(硕士学位论文).大连:大连理工大学,2008.
    [107]蔡共宣,林富生.工程测试与信号处理[M].武汉:华中科技大学出版社,2006.
    [108]CUI Yunxian, YANG Deshun, JIA Ying, et al. Dynamic Calibration of the Cutting Temperature Sensor of NiCr/NiSi Thin-film Thermocouple [J]. Chinese Journal of Mechanical Engineering.2011, 24(1):73-77.
    [109]David R. Buttsworth. Assessment of effective thermal product of surface junction thermocouples on millisecond and microsecond time scales[J]. Experimental Thermal and Fluid Science,.2001,25(3):154-157.
    [110]Serio B, Nika Ph Prenel J P. Static and dynamic calibration of thin-film thermocouple by means of a laser modulation technique[J]. Review of Scientific Instruments.2000, 71(11):4306-4313.
    [111]Choi H, Li X C. Fabrication and application of micro thin film thermocouples for transient temperature measurement in nanosecond pulsed laser micromachining of nickel[J]. Sensors and Actuators.2007(136):118-124.
    [112]李付国,黄吕权,谢亚军,等.薄膜热电偶动态特性研究[J].仪器仪表学报.1996,17(3):316-318.
    [113]杨述平.激光调制法的热电偶时间常数测量[J].中北大学学报.2007,28(3):247-250.
    [114]钱兰,陈宁.薄膜热电偶动态响应特性的实验研究[J].内燃机学报.1998,16(2):251-253.
    [115]李宏顺,康忠新.表面薄膜热电偶动态响应的精确分析[J].小型内燃机.1992,21(1):25-29.
    [116]雷敏,王志中,马勤弟,等.薄膜热电偶的动态特性及动态补偿研究[J].计量学报,1999,20(3):182-186.
    [117]王补宣.工程传热传质学[M].北京:科学出版社,1998.
    [118]B. Serio, Ph. Nika, J. P. Prenel. Static and dynamic calibration of thin-film thermocouples by means of a laser modulation technique[J]. Rev. Sci.Instrum.2000(71)4306-4313.
    [119]朱谷君.工程传热传质学[M].北京:航空工业出版社,1989.
    [120]杨德顺.基于多层复合薄膜热电偶的瞬态切削温度测试技术[D].(硕士学位论文).大连:大连交通大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700