用户名: 密码: 验证码:
水肥耦合对辽西北沙地胡枝子(Lespedeza bicalor Turca)生态生理特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荒漠化是国际社会高度重视的环境问题之一。防治荒漠化的有效途径是利用生物措施和工程措施使退化的生态系统得以恢复。胡枝子(Lespedeza bicolor Turcz)是章古台地区固沙效果最好的乡土树种之一,具有抗旱耐寒耐贫瘠的特性,其发达的主根和侧根上的大量根瘤,有防风固沙,改良土壤的作用,为科尔沁沙地乃至其他沙地地区提供优良的生物固沙材料。在半干旱地区,植物生长通常受水分和养分的制约。因此如何合理利用水肥促进沙地植物生长成为学者们研究的课题。本文采用312-D最优饱和试验设计,在辽西北典型的半干旱地区——章古台开展了水肥耦合实验,研究了不同水肥处理对章古台地区2年生胡枝子幼苗株高,地径,生物量,叶绿素含量,叶片水势,过氧化物酶(POD),丙二醛(MDA),脯氨酸,超氧化物歧化酶(SOD)指标的影响。通过分别建立胡枝子上述9项指标与水分、氮肥、磷肥之间的水肥回归数学模型,旨在找出水肥耦合的定量配比关系,弄清水肥耦合影响胡枝子各指标的机理。为提高半干旱沙地水分和肥料利用效率,优化胡枝子生产中的水肥管理提供理论依据。主要研究结果如下:
     株高与W (X1), N (X2), P (X3)三因子的数学模型为:Y=67.799+4.082X1+0.864X2+0.401 X12-0.750X22-3.360X32-0.446X1X2-0.665 X1X3+1.098X2X3。过多的氮和磷会抑制胡枝子株高的生长,水分则促进其增加。最适合株高生长的条件为土壤含水率17.52%,施氮266.822 kg.hm-2-455.140 kg.hm-2,施磷380.374 kg.hm-2附近。地径与W (X1), N (X2), P (X3)三因子的数学模型为:Y=7.865+0.365 X1+0.332 X2+0.263 X3-0.186 X12-0.346X22+0.319 X1X2+0.208 X2X3。胡枝子地径随着水分和氮的增加先增后减,随着磷的增加先减少后增加。最适合地径生长的条件为土壤含水率15.98%~17.52%,施氮455.140 kg.hm-2,施磷760.748 kg.hm-2附近。生物量与W(X1),N(X2), P(X3)三因子的数学模型为:7=15.498+5.047X1+3.906X2+0.571 X12-1.164X22-1. 489X32+0.444X1X2-0.890 X1X3+0.545X2X3。胡枝子生物量随着氮,磷的增加先增后减,随着水分的增加而增加。生物量获得最大值的条件为土壤含水率17.52%,施氮78.505 kg.hm-2~455.140 kg.hm-2,施磷190.187 kg.hm-2~380.374 kg.hm-2附近。
     叶绿素含量与W (X1), N (X2), P (X3)三因子的数学模型为:Y=40.495+1.398 X1+0.791 X2+0.569X3-0.605 X22+0.452 X2X3.胡枝子叶绿素含量随着氮,磷的增加先增后减,随着水分的增加一直增加。叶绿素含量的最适条件为土壤含水率17.52%,施氮455.140 kg.hm-2,施磷760.748 kg.hm-2附近;叶片水势与W (X1), N (X2), P (X3)三因子的数学模型为:Y=-2.877+0.250X1+0.086X3-0.028X12+1.128X32-0.038X1X2+0.033X1X3-0.058X2X3。叶片水势随着水分的增加而增加,随着磷的增加先增加后减少。水势的最佳条件为土壤含水率17.52%,施氮0 kg.hm-2,施磷570.561 kg.hm-2附近。
     脯氨酸与W (X1), N (X2), P (X3)三因子的数学模型为:Y=2.667-1.507X1+0.139X2-0.877X3+0.461 X12+0.851 X22+0.888 X32-0.129X1X2+0.634X1X3。胡枝子脯氨酸含量随着水,氮,磷的增加先减后增。脯氨酸的最佳条件为土壤含水率17.52%,施氮266.822 kg.hm-2,施磷190.187 kg.hm-2-380.374 k g.hm-2附近;过氧化物酶与W (X1), N (X2), P (X3)三因子的数学模型为:Y=24.690+8.998 X1+2.136X2+6.506 X12-1.455 X22+1.494X1X2-5.165X1X3+2.176X2X3。胡枝子过氧化物酶随着水分的增加先减少后增加,随着施氮量的增加先增后减。过氧化物酶的最适条件为土壤含水率17.52%,施氮533.178 kg.hm-2附近;丙二醛与W (X1), N (X2), P (X3)三因子的数学模型为:Y=10.591+0.305 X1-1.805 X3+1.127X12+0.892 X22+1.650X32+0.792X1X3-0.545X2X3。胡枝子丙二醛含量随着水分,氮,磷的增加先减少后增加。丙二醛的最佳条件为土壤含水率8.55%~12.26%,施氮266.825 kg.hm-2,施磷570.561 kg.hm-2附近;超氧化物歧化酶(SOD)与W (X1), N (X2), P (X3)三因子的数学模型为:Y=61.798+5.819X1+1.455X3-2.749 X12-5.089 X22-9.352 X32+4. 132X1X2+1.696X2X3。胡枝子超氧化物歧化酶随着水,氮,磷的增加先增后减。最佳条件为土壤含水率15.98%,施氮266.822 kg.hm-2, X3=0施磷380.374 kg.hm-2附近。
The problem of desertification had been attracted international community's high attention. Biological and engineered measures were considered to be effective ways to resort it. Lespedeza bicolor Turcz,which was considered to be one of the best native species in Zhanggutai areas, has the characteristics of cold resistance and drought resistance. The well developed taproots and root nodules on laterals can fix and improve sandy-soil. Lespedeza bicolor Turcz is excellent biologocal material species in Horqin and even other sandland. In semi-arid areas, plant growth is constrained by water and nutrients. So promoting plant growth by adding water and fertilizer has became one of major measures. With 312-D optimized saturation design, water and fertilizer coupling experiments were conducted on Lespedeza bicolor Turcz in semi-arid area in northwestern of Liaoning province Zhang-gu-tai area. Nine indexes were measured in the experiment:height, radical diameter, biomass, chlorophyllcontent, water potential, proline, peroxidase, malondialdehyde and superoxide. Regressive mathematical models were set up respectively to find out quantitative relationship and mechanism of water and fertilizer coupling. The aim of the experiment was to improve the use efficiency of water and fertilizer in semi-arid sandland and to provide theoretical foundation for optimizing the management of water and fertilizer in the production of Lespedeza bicolor Turcz. The results were as follows:
     The mathematical model of height with water(X1), nitrogen(X2) and pho sphorus(X3):Y=67.799+4.082 X1+0.864X2+0.401 X12-0.750X22-3.360 X32-0.44 6X1X2-0.665X1X3+1.098X2X3. Too much nitrogen and phosphorus had inhib ited height growth, but water had promoted height growth. The most suitable conditions for height were water content of soil 17.52%, nitrogen 266.822 kg. hm-2-455.140 kg.hm-2 and phosphorus 380.374 kg.hm-2.The mathematical mode 1 of radical diameterand with water(X1),nitrogen(X2) and phosphorus(X3):Y= 7.865+0.365X1+0.332X2+0.263 X3-0.186X12-0.346X22+0.319X1X2+0.208 X2X3.With the increase of water and nitrogen, radical diameter had increased and then decreased, with the increase of phosphorus decreased and then incr eased. The most suitable condition for radical diameter were water content of soil 15.98%~17.52%, nitrogen 455.140 kg.hm-2 and phosphorus 760.748 kg.h m-2. The mathematical model of biomass with water(X1), nitrogen(X2) and p hos-phorus(X3):Y=15.498+5.047 X,+3.906 X2+0.571 X,2-1.164X22-1.489 X32+0.444X1X2-0.890 X1X3+0.545X2X3. As nitrogen and phosphorus incr eased, biomass increased first and then decreased, as the moisture increased, b iomass increased. The most suitable condition for biomass was about:water c ontent of soil 17.52%, nitrogen 78.505 kg.hm-2~455.140 kg.hm-2 and phosphor us 190.187 kg.hm-2~380.374 kg.hm-2.
     The mathematical model of chlorophyll content with water(X,), nitrogen (X2) and phosphorus(X3):Y=40.495+1.398X1+0.791 X2+0.569X3-0.605X22+ 0.452X2X3.With the nitrogen and phosphorus increasment, chlorophyll content had increased first and then decreased, with water increasement. chlorophyll content increased. The most suitable condition for chlorophyll content were w ater content of soil 17.52%, nitrogen 455.140 kg.hm-2 and phosphorus 760.748 kg.hm"2. The mathematical model of water potential with water(X1), nitrogen (X2) and phosphorus(X3):Y=-2.877+0.250X1+0.086X3-0.028 X12+1.128X32-0. 038X1X2+0.033X1X3-0.058 X2X3. Leaf water potential had increased with th e water, with phosphorus increased first and then decreases. The most suitable conditions for water potential were water content of soil 17.52%, nitrogen 0 kg.hm-2 and phosphorus 570.561 kg.hm-2. The mathematical model of proline and water(X1), nitrogen(X2) and phosphorus(X3):Y=2.667-1.507X1+0.139 X2-0.877X3+0.461 X12+0.851 X22+0.888X32-0.129X1X2+0.634 X1X3. With w ater, nitrogen and phosphorus increasement, proline increased first and then de creased. The most suitable condition for proline were water content of soil 17. 52%, nitrogen 266.822 kg.hm-2 and phosphorus 190.187 kg.hm-2-380.374 kg.h m-2). The mathematical model of peroxidase with water(X1), nitrogen(X2) a nd phosphorus(X3):Y=24.690+8.998X1+2.136X2+6.506X12-1.455X22+1.494 X1X2-5.165X1X3+2.176X2X3. With the water incresement, peroxidase had de creased first and then increased. With the increase of nitrogen, peroxidase incr eased first and then decreased. The most suitable condition for peroxidase w ere water content of soil 17.52%, nitrogen 533.178 kg.hm-2. The mathematical model of malondialdehyde with water(X1), nitrogen(X2) and phosphorus(X3): Y=10.591+0.305 X1-1.805 X3+1.127 X12+0.892 X22+1.650X32+0.792X1X3-0.54 5X2X3. As water, nitrogen and phosphorus increased, malondialdehyde decre ased and then increased. The most suitable condition for malondialdehyde w as about:water content of soil 8.55%-12.26%, nitrogen 266.825 kg.hm-2, phos phorus 570.561 kg.hm-2. The mathematical model of superoxide with water (X1), nitrogen(X2), phosphorus(X3):Y=61.798+5.819AX1+1.455X3-2.749X12-5. 089X22-9.352X32+4.132X1X2+1.696X2X3. As water, nitrogen and phosphoru shad increased, superoxide increased first and then decreased. The most suitab le condition for superoxide were water content of soil 15.98%, nitrogen 266.8 22 kg.hm-2 and phosphorus 380.374 kg.hm-2.
引文
[1]文宏达, 刘玉柱, 李晓丽等。水肥耦合于早地农业持续发展, 土壤与环境,2002,Vol.11(3):315-318
    [2]肖自添。温室基质培番茄水氮耦合效应研究:[硕士学位论文].北京:中国农业科学院硕士,2008
    [3]穆兴民。 水肥耦合效应与协同管理.北京:中国林业出版社,1999
    [4]赵聚宝, 李克煌。干旱与农业.北京:中国农业出版社,1998
    [5]Russell.J.S. Nitrogen fertilizer and wheat in semiarid environment. Aust J Exp Agric and An Husb,1967, (7):453-462
    [6]Shimshi D. The effect of N on some indices of plant-water relation of beans. New phytol, 1970, (69):413-424
    [7]Bhan.S, Misra F.K. Effect of variety, spacing and soil fertility on root develop went in groundnut tinder arid conditions. J Agric Sci,1970, (40):1050-1055
    [8]Viets F.G.. Water Deficits and Nutrient Availability USA:Acad Press,1972,217-24 7
    [9]Amon. Physiological principles of dry land crop production. Gupta.U.S.(E d) Physiological aspects of dry land farming.1975:3-124
    [10]Campell C A, Cameron D R, Nicholaichuk W.etal. Effect of fertilizer N and soil moisture on growth. N content and moisture use by spring wheat. Can.J.Soil Sci,1977,57: 289-310
    [11]Strong W M. Effect of late application on the yield and protein content of wheat. Aust J Expert Agric and Ani Husb.1982,22:54-61
    [12]Bennett J W, Jones J W, Zurb. Interactive effect of nitrogen and water stress relation of field grown corn leaves. Agro J,1986,78:273-280
    [13]Eck.HV. Winter Wheat Response to Nitrogen and Irrigation. Agronomy Journal AGJ OAT,1988,6(80):902-908
    [14]S.L. Disdale and W.L. Nelson.土壤与肥力与肥料。 北京:科学出版社,1984
    [15]Nielsen D C.Halvorsor A D. Nitrogen fertility influence on water stress and yield of winter wheat.Agron.J.1991,83:1065-1070
    [16]Mahler R L, Koehler F E, Lutcher L K. Nitrogen source timing of application and placement effect on winter wheat production. Agron.J.1994,86:637-642
    [17]Benjamin J.G, Porter L.K, Duke H.R. Corn growth and nitrogen uptake with furrow irrigation and fertilizer bands. Agronomy journal 1997,89(4):609-612
    [18]Jerry L.H., Thomas J.S., Hrueger J. Managing soils to achieve greater water use efficiency:a review. Agronomy Journal,2001,93:271-280
    [19]高亚军, 李生秀, 北方旱区农田水肥耦合效应分析。中国工程科学,2002,Vol4(7):76-81
    [20]吕殿青, 刘军。 旱地水肥交互效应与耦合模型研究。西北农业学报,1995, Vol4(3):72-76
    [21]周江明, 姜家彪, 姜新有等。不同肥力稻田晚稻水氮耦合效应研究。植物营养与肥料学报,2008,Vol 14(1):28-35
    [22]王柏, 王梦雪, 滕云等。 东北半干旱区大豆水肥耦合效应试验研究。灌溉排水学报,2007,Vol 26(5):86-89
    [23]尹光华, 陈温福, 刘作新等。风沙半干旱区春玉米水肥耦合产量效应研究初报。玉米科学,2007,Vol 15(1):103-106
    [24]尹光华, 刘作新, 李桂芳等。 水肥耦合对春小麦水分利用效率的影响。 水土保持学报,2004,Vol 18(6):156-162
    [25]钟鹏,吴俊江,刘丽君等。水磷互作对不同磷效率基因型大豆苗期生理生化指标的影响。大豆科学,2007,Vol 26(6):873-878
    [26]周明耀, 赵瑞龙, 顾玉芬等。 水肥耦合对水稻地上部分生长与生理性状的影响。农业工程学报,2006,Vol 22(8):38-43
    [27]吴大付, 陈红卫, 王小龙。 黄淮海平原水氮耦合对小麦产量和蛋白质含量的影响。安徽农业科学,2007,Vol 35(3):693-694
    [28]赵义涛, 梁运江, 许广波。水肥耦合对保护地辣椒水分利用效率的影响。吉林农业大学学报,2007,Vol 29(5):523-527
    [29]金剑, 刘晓冰, 王光华等。 水肥耦合对春小麦群体叶面积及产量的影响。吉林农业大学学报,2005,Vol 27(3):241-247
    [30]谢迎新, 张淑利, 王永华等。水磷耦合对夏玉米生长发育的影响。河南农业科学,2007, Vol 12:22-25
    [31]李洪顺, 纪雄辉, 朱校奇等。氮肥运筹对Y两优1号产量和生物量影响的探讨。中国农学通报,2009, Vol 25(19):116-122
    [32]孔东, 晏云, 段艳等。不同水氮处理对冬小麦生长及产量影响的田间试验。农业工程学报,2008, Vol 24(12):36-40
    [33]刘元博, 陈荷生, 高前兆。沙地水分动力学研究新视角。中国沙漠,1997, Vol 17(1):95-98
    [34]赵萍, 孙向阳, 黄利江。沙地灌木水分生理特征综述。林业科学研究,2004,Vol 17(增刊):89~94
    [35]温国胜, 张国盛, 吉川贤。 干旱胁迫对臭柏水分特性的影响。 林业科学,2004,Vol 40(5):84-87
    [36]Batanouny K H. Plants in the Deserts of the Middle East. New York:Springer-Verlag Berlin Heidelberg,2001
    [37]赵萍,孙向阳,黄利江等。生长季毛乌素沙地沙生植物蒸腾规律及其与环境因子间关系。林业科学研究,2004, Vol 17(增刊):67~71
    [38]王鸣远, 关三和, 王义。 毛乌素沙地过渡地带土壤水分特征及其植物利用。 干旱
    区资源与环境,2002,Vol 16(2): 37-43
    [39]孙栋元, 王辉, 马仲武, 杨君珑。干旱荒漠区封育沙地土壤水分变化研究。 西北林学院学报,2007,Vol 22(2):49~53
    [40]李晓兰, 蒋德明,李雪华等。沙地黄柳生物量分配和组织含水量的关系。 辽宁工程技术大学学报,2006,Vol 25(6):947-950
    [41]赵杨, 陈晓阳, 骈瑞琪等。 胡枝子属研究进展。西北林学院学报,2006, Vol21(2):71-75
    [42]骈瑞琪, 陈晓阳,赵杨等。胡枝子属植物的遗传育种研究进展。西部林业科学,2005,34(4):105-110
    [43]杨晓红, 陈晓阳, 隗晓丹等。NaCI胁迫对转甜菜碱醛脱氢酶基因美丽胡枝子生理的影响。 安徽农业科学,2009,Vol 37(1):67-69
    [44]张慧茹, 王丽娟, 郑蕊等。 宁夏五种抗旱性牧草于脯氨酸含量的相关性研究。 宁夏农学院学报,2001,Vol 22(4):12-14
    [45]张成军, 谢恒才,郭佳秋等。干旱对4种木本植物幼苗脯氨酸含量的影响。南京林业大学学报,2005,Vol 29(5):33-36
    [46]杜金友, 陈晓阳, 胡东南等。干旱胁迫田间下几种胡枝子渗透物质变化的研究。华北农学报,2004,Vol 19(81):40-44
    [47]柏明娥,唐建军,洪利兴等。两种基质条件下美丽胡枝子对模拟中度干旱胁迫的响应。中国生态农业学报,2009,Vol 17(3):549-553
    [48]王玮, 王奎玲, 刘庆超等。60Coγ辐射对美丽胡枝子生理生化效应的影响。 北方园艺,2008,(10):109-112
    [49]高琼,陈晓阳,杜金友。.不同种和源胡枝子的耐早性差异研究。北华大学学报(自然科学版),2005,Vol 6(3):257-260
    [50]白春霞,韩建国,孙彦等。多花木蓝和二色胡枝子种子硬实特性与活力关系的研究。草业学报,2006,Vol 15(5):82-88
    [51]徐贵军, 曹文生, 陈江燕等。科尔沁沙地耐旱乡土灌木树种的选择及其生长比较。防护林科技,2008,83:25-27
    [52]张宝田, 穆春生, 金成吉等。松嫩草地种胡枝子地上生物量动态及其种间比较。草业学报,2006,Vol 15(3):36-41
    [53]孙启忠, 玉柱, 徐丽君等,尖叶胡枝子和达乌里胡枝子地上生物量累积研究。干旱区研究,2008,Vol 25(1):82-88
    [54]孙启忠, 赵淑芬, 张志如等, 尖叶胡枝子地下生物量累计变化。 干旱区研究,2007,24(6):805-809
    [55]孙启忠, 韩建国, 桂荣等。科尔沁沙地达乌里胡枝子生物量研究。 中国草地,2001,Vol 23(4):21-26
    [56]黄瑾,姜峻,徐炳成。黄土丘陵区达乌里胡枝子人工草地生产力与土壤水分特征研究。中国农学通报,2005,Vol 21(6):245-248
    [57]刘克敏, 胡云峰。 胡枝子刈割频度对根系及地上生物量的影响。防护林科技,2008,85:19-20
    [58]松梅, 冯志茹, 孙启忠等。2种胡枝子牧草生物量及草层结构变化研究。 内蒙古草业,2007,Vol 19(4):1-4
    [59]高婷, 张金屯。北京西部山区胡枝子种群研究:个体和构件生物量。植物学通报,2007,24(5):581-589
    [60]田梅,侯扶江。3种植物枯落物水提液对达乌里胡枝子幼苗生长的作用。草叶科学,2009, Vol 26(1):4549
    [61]刘立波, 张志环, 王清君等。2个种源胡枝子在伊春地区生长的差异比较。 中国林副特产,2008, (96):22-24
    [62]刘立波, 张志环, 王清君。 东北林业大学学报。2009, Vol 37(2):19-21
    [63]徐黎明, 柏明娥, 唐建军等。鸡眼草和美丽胡枝子对贫瘠土壤的生态适应性比较。浙江林业科技,2008,Vol 28(4):12-15
    [64]孙显涛,陈晓阳,贾黎明等。不同刈割品读下二色胡枝子根系及地上生物量的研究。草业科学,2005,Vol 22(5):25-27
    [65]靳淑静,韩蕊莲,梁宗锁。黄土丘陵区不同立地达乌里胡枝子群落水分特征及生物量研究。 西北植物学报,2009, Vol 29(3):542-547
    [66]刘淑华, 松梅, 徐丽君等。2种胡枝子种子生物学特性对比研究。内蒙古草业,2008, Vol 20(3):11-14
    [67]赵淑芬, 孙启忠, 丛培明等。 3种胡枝子根系生长特性及根干重的研究。草原与草坪,2008,3:17-19
    [68]德永军, 陈晓阳, 张秋良等。 不同种源胡枝子抗寒性和生物量变异研究。 内蒙古农业大学学报,2006,Vol 27(1):57-63
    [69]董健,尤文忠, 陆爱君等。胡枝子种-种源苗期生长和抗寒性分析。辽宁林业科技,2006,4:5-9
    [70]鲍青龙, 松梅, 孙启忠等。尖叶胡枝子和达乌里胡枝子牧草生产力研究。 内蒙古草业,2008,Voll 20(2):14-16
    [71]王俊伟, 李海燕, 杨允菲。温带地区4种园林灌木叶片的生长规律。 东北师大学报自然科学版,2005,Vol 37(1):95-98
    [72]张晓红, 王惠梅, 徐炳成等。 黄土塬区3种豆科牧草对土壤水分的消耗利用研究。西北植物学报,2007,Vol 27(7):1428-1437
    [73]李雪华, 蒋德明, 阿拉木萨等。科尔沁沙地4种植物抗旱性的比较研究。应用生态学报,2002, Vol 13(11):1385-1388
    [74]蒋德明, 宗文君, 李雪华等。科尔沁西部地区荒漠化土地植被恢复技术研究。 生态学杂志,2006, Vol 25(3):243-248
    [75]张成军, 郭佳秋, 解恒才等。 干旱条件下四种植物幼苗叶片细胞水分关系的比较。南京师大学报,2004,Vol 27(4):72-75
    [76]刘国亮, 卢欣石, 吕世海。 11种沙生灌木叶片水分生理特征。草原与草坪,2007,4:35-39
    [77]张晓鹏, 赵忠, 张博勇等。 氮磷钾对俄罗斯大果沙棘扦插苗生长效应的影响。西北林学院学报,2007,Vol 22(3):96-99
    [78]李延群。 根外追肥对南方红豆杉一年生苗木生长的影响。福建林业科技,2005,Vol 32(4):95-101
    [79]高英旭, 赵冰, 刘红民。 不同施肥处理对煤矸石山白榆生长量影响的研究。 辽宁林业科技.2008,6:26-27
    [80]周洪英, 邹天才, 刘海燕等。 不同施肥和光照对贵州槭两年生实生苗生长的影响。种子,2006, Vol 25(12):63-67
    [81]朱曰钦, 翟明普。不同水肥处理对海岸松苗木生长的影响。林业资源管理,2008,1:65-68
    [82]王月生, 金国庆, 洪桂木等。 氮磷钾配比施肥对三件衫幼林生长的影响。浙江林业科技,2008,Vol 28(2):11-16
    [83]孙继颖, 高聚林, 吕小红。施氮量对大豆抗旱生理特征及水分利用效率的影响。大豆科学,2007, Vol 26(4):517-522
    [84]Hawker JS. Inhibition of sucrose phosphatase by sucrose. Biochemistry Journal,1967, 102:401-406
    [85]白小明, 相斐, 鲁存海等。氮磷钾肥对高羊茅扩展性和根系特性的影响。草地学报,2009, Vol 17(5):600-606
    [86]梁丽银。 土壤水分和氮磷营养对冬小麦根系生长及水分利用的调节。 生态学报, 1996, Vol 16(3):258-264
    [87]朱隆静, 喻景权。不同供磷水平对番茄生长和光合作用的影响。浙江农业学报,2005,Vol 17(3):120-122
    [88]王正瑞, 芮玉奎, 申建波等。氮肥施用量和形态对玉米苗期叶绿素含量的影响。光谱学与光谱分析,2009, Vol 29(2):410-412
    [89]陈贵,周毅,郭世伟等。水分胁迫和不同形态氮素营养对苗期水稻光合特性的影响。南京农业大学学报,2007, Vol 30(4):78-81
    [90]张依章, 张秋英, 孙菲菲等。 水肥空间耦合对冬小麦光合特性的影响。 干旱地区农业研究,2006,24(2):57-60
    [91]Kramer P J.Water Relation of Plants. New York:Academic Press,1985:5.
    [92]徐炳成, 山仑, 李凤民。 半干旱黄土丘陵区五种植物的生理生态特征比较。 应用生态学报,2007,Vol 18(5):990-996
    [93]Tuner NC. Concurrent comparisons of stomatal behavior water status and evaporation of maize in soil at high or low water potential. Plant Physiology,1975,55:932-936
    [94]汤章程。植物对水分胁迫的反应和适应性。植物生理学通讯,1983,Vol 4(7):1-7
    [95]刘亚云, 孙红斌, 陈桂珠。 多氯联苯对桐花树幼苗生长及膜保护酶系统的影响。应用生态学报,2007,Vol 18(1):123-128
    [96]付士磊, 周永斌, 何兴元等。 干旱胁迫对杨树光合生理指标的影响。应用生态学报,2006,Vol 17(11):2016-2019
    [97]战秀梅,韩晓日,杨劲峰。不同施肥处理对玉米生育后期叶片保护酶活性及膜脂过氧化作用的影响。玉米科学,2007, Vol 15(1):123-127
    [98]孙一荣,朱教君,康宏樟。水分处理对沙地樟子松幼苗膜脂过氧化作用及保护酶活 性影响。 生态学杂志,2008,Vol 27(5):729-734

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700