用户名: 密码: 验证码:
集热式太阳能温差发电装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代化经济迅速发展的时期,能源紧缺现象日趋严重,太阳能这种新型的可再生绿色能源,具有着经济、清洁环保、储量大等优点,受到越来越多人的重视,太阳能发电技术在各个国家都被广泛的研究和应用。
     温差发电技术是一种将热能直接转换为电能的环保能源技术,在发电过程中无噪音、无污染物排放、体积小、重量轻等优点。随着热电材料的迅速发展以及性能的提高,已经开始从军事航天领域向民用和工业应用方面普及。
     本课题中,采用ANSYS软件,研究温差发电元件的性能,并仿真优化在中温区(200-400℃)有较高热电转换效率的分段温差电元件。在此基础上,利用太阳能热作为温差发电的热源,研制一套集热式太阳能温差发电装置,主要包括太阳能集热装置、温差发电器、直流稳压模块等。
     本论文的主要内容如下:
     在温差发电理论基础上,利用ANSYS仿真软件,仿真计算热电单元的各个因素对其热电特性的影响。采用对电臂分段的方法来提高温差发电的特性,在热端400℃,冷端25℃、50℃,80℃三种情况,优化设计了分段热电元件的几何尺寸,在温差375℃时,热电转换效率可达到10%以上。
     通过对聚光集热器、温差发电器(集热板、热电模块、水冷却系统)等部分的研究,组装了一套集热式太阳能温差发电装置。利用ANSYS软件热分析模块,仿真实验条件,从理论上证明了此装置的可行性。在不同太阳辐射功率、不同热电模块数量情况下,实验测得温差发电器的输出功率,在太阳辐射功率880W/m2时,可输出功率约10W。并根据实验结果,利用集成开关稳压芯片MAX669设计了DC-DC稳压电路,为蓄电池稳压充电。
     研究光谱选择性原理,通过对不同涂层的简单对比实验,最后在集热板上涂B92太阳能吸热涂料,来提高太阳能利用率。
In the modern period of rapid economic growth, energy shortage is serious, the new type of solar renewable green energy, has the character of the economy, clean environment, the advantages of large reserves, so it is by more and more attention. And solar power technology have been extensively studied and applied in various countries.
     Thermoelectric power generation technology is a way to directly convert heat into electricity technologies, a green energy. In power generation process, there is no noise, no emission, small size, light weight and so on. With the rapid development of thermoelectric materials and the improvement of thermoelectric performance. Thermoelectric technology has started apply from the military to the civilian and industrial applications.
     In this dissertation, thermal power generation device performance was studied using ANSYS software, optimization designing segmented thermoelectric unicouples with high efficiency in the temperature range (200-400℃).
     The main content as following:based on the theory of thermoelectric power generation. Simulation of various factors on the thermal properties of thermoelectric modules. An optimation designing model of segmented thermoelectric unicouple was made. The calvulation resule shows the conversion efficiency is over 10%,when the temperature reached 375℃.
     Aassembled a set of solar Collector thermoelectic power generation. Measured output power of thermoelectric power generation at different Solar radiation power, different number of thermoelectric module. Output power is about 10W when Solar radiation power is 880 W/m2. A DC-DC regulator circuit was Designed for battery charging by a switching regulator chip MAX669.
     Studying the solar energy selective basorbing theory, coating B92 selective basorbing paint on the solar collector plate to improve solar energy utilization.
引文
[1]高峰,孙成权,刘全根.太阳能开发利用的现状和发展趋势.科技前沿和学术评论,2001,23(4):35-39
    [2]周翔,黄琳.论我国太阳能的开发与利用.内蒙古科技与经济,2007,138(8):55-58
    [3]秦伟,李国强.光伏太阳能一世纪的能源之星.新经济产业,2003:44-46
    [4]S.B. Riffat, Xiaoli Ma. Thermoelectrics:a review of present and potential applications. Applied Thermal Engineering,2003,23(8):913-935
    [5]章韶敬.温差电转换及其应用[M].北京:兵器工业出版社,1996
    [6]Rinehart G H. Design characteristics and fabrication of radioisotope heat sources for space missions. Progress in Nuclear Energy,2001,39(3):305-319
    [7]黄志勇,吴知非,周世新等.温差发电器及其在航天与核电领域的应用.原子能科学技术,2004,38:42-47
    [8]Rowe D M. Thermoelectrics:an environmentally-friendly source of electrical power. Renewable Energy,1999,16(1):1251-1256
    [9]Yodovard P. The potential of waste heat thermoelectric power generation from diesel cycle and gas turbine cogeneration plants. Energy Sources.2001,23(3):213-224
    [10]Shinohara K, Kobayashi M, Kushibiki K, et al. Application of thermoelectric generator for automobile.粉体及粉末冶金.1999,46(5):524-528
    [11]Masahide M, Michio M, Masaru O. Thermoelectric generator utilizing automobile engine exhaust gas. Thermal Science and Engineering,2001,9(4):17-19
    [12]Stevens J. W. Heat transfer and thermoelectric design considerations for a ground-source thermoelectric generator. Proceedings of the 18th International Conference on Thermoelectric. Thermoelectric Soc.1999:68-71
    [13]Kishi M, Nemoto H, Yamamoto M. Micro-Thermoelectric modules and their application to wristwatches as an energy source. Proceedings of 18th International Conference on Tes. American Institute of physics,1999:301-307
    [14]张腾,张征.温差发电技术及其一些应用.能源技术,2009,30(1):35-39
    [15]陈浩.半导体热电堆发电性能的研究:[硕士学位论文].西安:西安交通大学,2001
    [16]钱剑锋.热电式微电源设计及性能研究:[硕士学位论文].杭州:浙江大学,2005
    [17]潘玉灼,林比宏.结构参数与不可逆性对热电发电器性能的影响.泉州师范学院学报(自然科学版),2006,24(6):13-18
    [18]宋瑞银,李伟,杨灿军.微小型热电发电器建模及优化设计研究.太阳能学报,2006,27(6):554-558
    [19]宋瑞银,李伟,杨灿军.微型热电发电器的性能测试分析.中国机械工程,2006,17(20):2159-2163
    [20]贾磊,胡芫,陈则韶.温差发电的热力过程研究及材料的塞贝克系数测定.中国工程科学2005,7(12):31-34
    [21]Edmund J W, Arthur B E. Thermoelectric Devices Solid-state Refrigerators and Electrical Generators in the Classroom. Journal of Chemical Education,1996,73(10):940-945
    [22]高敏,张景韶,[英]DMR.温差电转换及其应用[M].北京:兵器工业出版社,1996
    [23]Mateeva N, Niculescu H, Schlenoff J, et al. Correlation of Seebeck coefficient and electric conductivity in polyaniline and polypynole. J. Appl. Phys,1995,83(6):3111-3117
    [24]Rowe D. M. Thermoelectrics Handbook [M], USA:CRC Press,2006,9(13)-9(16)
    [25]陈金灿,严子浚.半导体温差发电器性能的优化分析.导体学报,1994,15(2):123-129.
    [26]吴丽清,陈金灿,严子浚.半导体温差发电器的输出功率.厦门大学学报(自然科学版),1996,35(2):210-213
    [27]Elena E. A, David C. L. Finite elements for thermoelectric device analysis in ANSYS. IEEE, Proc 24 th ICT,2005:215-218
    [28]李茂德,屈健,李玉东.接触效应对小型半导体温差发电器性能的影响.半导体学报,2005,26(12):2440-2444
    [29]Redus D M, et al. Evaluation of thermoelectric modules for power generation. Journal of Power Sources,1998,73(2):193-198
    [30]Poudel Bed, Ren Zhifeng, et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science,2008,320:634-638
    [31]Dashevsky Z, Gelbstein Y, Edry I, et al. Optimization of thermoelectric efficiency in graded Materials. IEEE, Proc 22th ICT,2003:421-424
    [32]任宝国,彭磊,张建中.PbTe/BiTe分段温差电单偶仿真设计研究.电源技术,2008,132(9):624-627
    [33]Kyeo H-K, Khajetoorians A A, Shi L. Profiling the thermoelectric power of semiconductor junctions with nanometer resolution. Science,2004,303(5659):816-818
    [34]赵军.开关电源技术的发展.船电技术,2005(5):13-16
    [35]程尚模.传热学[M].北京:高等教育出版社,1990,145-148
    [36]张宁.太阳能热电-光电复合发电系统的发电功率与效率模型:[硕士学位论文].武汉理工大学,2007
    [37]赵玉文.选择性吸收表面与集热器效率研究.太阳能学报,1980,1(1):45-51
    [38]王国华.选择性吸收涂层对低中温装置集热性能的影响.太阳能学报,1991,12(4):438-441

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700