用户名: 密码: 验证码:
淀粉残渣木质纤维素降解机制与产品开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葛根渣、麸皮和薯渣是淀粉加工过程中产生的副产物,三种基质中淀粉含量具有很大的差异,都可作为制备膳食纤维产品的原料。
     本文研究真菌发酵三种基质过程中酶活、木质纤维素、膳食纤维的变化情况。在葛根渣基质上,菌株DS优先启动纤维素的降解,纤维素质量在前12天下降较快,下降幅度为5.527g(46.9%),半纤维素质量前6天下降0.437g(14.7%),木质素降解0.034g(2.1%),漆酶酶活水平低,第3天酶活达到164U/mL之后基本无酶活;在麸皮基质上优先启动半纤维素的降解,其中半纤维素降解2.303g(43.5%),纤维素不降解,木质素没有启动降解,漆酶酶活高,在第6天达到16030U/mL;在薯渣基质上木质纤维素的降解程度很小,纤维素质量在15天之后降解2.021g(47.1%),半纤维素不降解,木质素降解0.395g,漆酶酶活很低,第6天最高为14U/mL。
     在研究真菌发酵规律的基础上,针对葛根渣进行了女性保健品的开发研究。研究结果发现,在150%的加水量和采用绒毛状基质发酵的条件下摇瓶发酵效果较好,发酵终产物中黄酮含量为37.140mg/g,可溶性膳食纤维含量为13.2%,不溶性膳食纤维含量为62.2%。
     采用太空包发酵进行放大模式研究,发现太空包可以作为葛根渣发酵放大的模式,在5%接种量,25℃,发酵10天,装包质量100g,绒毛状基质,加水量150%条件下,发酵终产物中黄酮含量为34.597mg/g,可溶性膳食纤维含量为26.5%,不溶性膳食纤维含量为53.1%。
     以发酵终产物为原料,可以制备成富含葛根黄酮和膳食纤维的功能性产品,其中样品结合水力为27.2g/g,持水力为2.65g/g,脂肪含量为6.5 mg/g,总糖含量为65.7 mg/g,黄酮含量达到33.495 mg/g,可溶性膳食纤维为33.3%,不溶性膳食纤维为55.1%。本论文研究了含有不同程度淀粉的天然基质中木质纤维素的降解规律和利用葛根渣生产功能性产品的工艺,为真菌降解天然淀粉残渣基质获取膳食纤维产品提供理论基础和应用平台。
The residue of radix puerariae, wheat bran and residue of pachyrhizus were the byproducts in the process of producing starch. Starchy content of them were different and they could be used as material to produce dietary fibre.
     This paper studied on the changes of the enzyme activity, content of the lignocelluose and the dietary fibre during the fermentation process by fungi. On the residue of radix puerariae medium, the strain DS degraded cellulose priority and the degraded quality of the cellulose could reach 5.527g during 12 days incubation, then hemicellulose could be degraded by 0.437g on the first 6 days, 0.034g of lignin was degraded by the white rot fungus, furthermore, laccase activity had a low level and the activity was 164U/mL on the third day and decreased gradually with the increasing of incubation time. On the medium containing wheat bran, the hemicellulose was degraded firstly by strain DS and the value of degradation was 2.303g, the biodegradation mass of the cellulose increased, but the lignin had not been degraded. Laccase activity secreted by strain DS had a high level, and the activity could up to 16030U/mL on the 6th day. On the medium containing residue of pachyrhizus, the strain DS could degrade some lignocelluose. The degradation quality of cellulose could increase by 1.506g during the first 15 days incubation, the value of the hemicellulose was increase, and the lignin had been degraded by 0.395g. In addition, laccase activity had a low level and the activity was 14U/mL on the 6th day.
     Based on the foundation of fermentation law by fungi in different media, the sanitarian medicine with the residue of radix puerariae was investigated. The fermentation effect would be better under appropriate conditions, such as water addition was 150% and the substrate was downy. Under these conditions, the content of flavone, soluble dietary fibre and insoluble dietary fibre could reach 37.140mg/g , 13.2%and 62.2% respectively in the final fermentation product.
     Package fermentation with scale-up model showd that package fermentation was a good scale-up model to ferment residue of radix puerariae. Under these conditions: inoculum 5%, temperature 25℃, time 10 days, quality of pouch 100g, downy media,water addition 150%, the content of flavone, soluble dietary fibre and insoluble dietary fibre were 33.495mg/g, 26.5and 53.1% respectively in the final fermentation product.
     The functional product abundant in flavone and dietary fibre could be obtained from fermentation product. The capability of combining water and retaining water of the product were 27.2g/g and 2.65g/g, and the content of fat, isoflavonoid, soluble dietary fibre and insoluble dietary fibre were 6.5 mg/g, 33.495 mg/g, 33.3%and 55.1% respectively in the product.
     This paper studied degradation mechanisms of lignocelluose with starchy residue and productive technics of functional product using white rot fungi to ferment residue of radix puerariae. These findings provide a theoretical and applicative foundation for obtaining product of dietary fibre through fermenting starch residue by fungi.
引文
[1]李慧蓉.白腐真菌在碳素循环中的地位和作用.微生物学通报, 1996, 23(2): 105-109
    [2] Enoki, A.,Tanaka, H.,Fuse, G.. Degradation of lignin-related compounds, pure ellulose, and wood components by white-rot and brown-rot fungi. Holzforschung, 1998, 42: 85–93
    [3] Reid I D. Biodegradation of lignin. Canadian Journal of Botany / Revue Canadien de Botanique, 1995, 73(1): 1011-1018
    [4]徐海娟,梁文芷.白腐菌降解木素酶系及其作用机理.环境污染治理技术与设备, 2000, 1(3): 51-54
    [5] Ejechi B O, Obuekwe C O, Ogbimi A O. Microchemical studies of wood degradationby brown rot and white rot fungi in two tropical timbers. International Biodeterioration & Biodegradation [Int Biodeterior Biodegrad], 1996, 38(2): 119-122
    [6]王宜磊,孙迅,邓振旭.木素生物降解研究进展.微生物学杂志, 1998, 18(1): 48-51
    [7]李慧蓉.白腐真菌的研究进展.环境科学进展, 1996, 4(6): 69-77
    [8] Tuour U, Winterhalter K, Fiechter A. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. Journal of biotechnology, 1995, 41(1): 1-17
    [9]王宜磊,孙迅,邓振旭.木素生物降解研究进展.纤维素科学与技术, 1998(1): 48-51
    [10] Andrzej Leonowicz, Anna Matuszewska, et. Biodegradation of Lignin by White Rot Fungi. Fungal Genetics and Biology, 1999, 27: 175–185
    [11]刘尚旭,赖寒.木质素降解酶的分子生物学研究进展.重庆教育学院学报,2001, 14(3): 64-67
    [12] Messer K, Srebotnik E, and Ranua M et al. Biopulping: An overview of development in an environmentally safe paper making technology. FEMS Microbiol Rev, 1994, 13: 351-364
    [13] Niole M, Chamberland H, Geiger JP, et al. Immunocytochemical locaization of laccase L1 in wood decayed by Rigidoponus lignosus. Appl Environ Microbiol, 1992, 58: 1727-1739
    [14] Flournoy D S, Paul J A, Kirk T K, et al. Changes in size and volume of pores in sweet gum wood during simultaneous rot by Phanerochaete chrysosporium. Holzforschung, 1993, 47: 297-301
    [15]张建军,罗勤慧.木质素酶及其化学模拟的研究进展.化学通报, 2001(8): 470-477
    [16]尹峻峰,王涛.真菌降解木质素的研究现状.云南林业科技, 2003, 1: 75-78
    [17] Tunde Mester, Ming Tien. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants, International Biodeterioration &Biodegradation, 2000, 46: 51-59
    [18] Beguin P, Aubert J P. FEMS Microbial Rev., 1994, 13: 25-58
    [19] Eriksson K-E, Pettersson B, Westermark U. FEBS Lett., 1974, 49: 282-285
    [20] Westermark U, Eriksson K-E. Acta Chem Sacand., 1974, B28: 204-208
    [21] Ayers A R, Ayers S B, Eriksson K-E. Eur J Biochem., 1978, 90: 171-181
    [22] Nidetzky B, Steiner S, Hayn M. Claeyssens M: biochem J., 1994, 29: 705-710
    [23] Renganathan V, Usha S N, Lindenburg F. Appl Micobial Biotechnol., 1990, 32: 609-613
    [24] Kremer S M, Wood P M. FEMS Lett., 1992, 92: 187-192
    [25]方靖,高培基.纤维二糖氧化还原酶降解木质纤维素研究进展.纤维素科学与技术, 1996, 4(4): 1-8
    [26] Kremer S M, Wood P M. Eur J Biochem, 1992, 208: 807-814
    [27] Zohar keren, Yitzhak Hadar. Efect of Manganese on Preferential Degradation of lignin by Pleurbtrs ostreatus during Solid-state Fementation: Apply and Environental Microbiology. Aug, 1995: 3057-3062
    [28]浦跃武,甄浩铭,冯书庭等.白腐菌产锰过氧化物酶条件的研究.菌物系统, 1998, 17(3): 251-255
    [29]卢雪梅,李越中,王蔚等.黄抱原毛平革菌合成木素过氧化物酶的营养调控.微生物学报, 1994, 34(1): 29-36
    [30]周金燕,张发群.真菌产锰过氧化物酶和漆酶的研究(I).微生物学报, 1993, 35(5): 387-391
    [31]周金燕,张发群.真菌产锰过氧化物酶和漆酶的研究(II).微生物学报, 1994, 21(3): 151-155
    [32]卢雪梅.黄抱原毛平革菌木素过氧化物酶类在天然木索降解中作用的研究.菌物系统, 1998, 17(2): 179-184
    [33] Jeffries TW, Choi S, Kirk TK. Nutritional Regulation of lignin degradation by phanerochate chrysosporium. Appl. Environ Microbiol, 1981, 42: 290-296
    [34]秦小琼,傅庭治,曹幼琴等.红栓菌胞外漆酶的诱导纯化及部分特性的研究.微生物学报, 1996, 36(5): 360-366
    [35] Siriphan Soponsathien. Some characteristics of ammonia fungi 1. In relation to their ligninolytic enzyme activities. J. Gen. Appl. Microbiol, 1998, 44: 337-345
    [36]王佳玲,余惠生,付时雨等.白腐菌漆酶的研究进展.微生物通报, 1998(6): 233-236
    [37]张晓昱,陈建伟,王宏勋等. UV-Fenton法促进白腐菌处理草浆造纸蒸煮黑液.应用与环境生物学报, 2003, 9(2): 186-188
    [38]任拥政,章北平,张晓昱等.白腐菌-厌氧-好氧工艺处理造纸黑液研究.华中科技大学学报(城市科学版), 2004, 21(1): 44-46
    [39] Gold M H. Microbiol Reviews, 1993, 57(3): 605
    [40] Cullenm D. Recent advances on the molecular genetic fungi. J. Biotechnol, 1997,53: 273-289
    [41]高航,徐宏勇,刘勇弟.白腐菌附着式生物膜反应器处理垃圾渗沥液技术研究.环境科学学报, 2004, 24(2): 309-314
    [42]陈立祥,章怀云.木质素生物降解及其应用研究进展.中南林学院学报, 2003, 23(1): 79-85
    [43]席北斗,刘鸿亮,孟伟等.垃圾堆肥高效复合微生物菌剂的制备.环境科学研究, 2003, 16(2): 58-64
    [44]兰孝潭,王永青.漫话粉葛.种子世界, 2005(5): 58
    [45]杜先锋,宛晓春.食品研究与开发, 2002(4): 23
    [46]胡江琴,王利琳,余象煜.葛粉的化学成分分析, 1999(3): 4
    [47]潘渡汉,吴彪.葛根淀粉的工业化生产及其深加工技术.淀粉与淀粉糖, 1997(1): 411
    [48]陈安.野生葛根的采集,贮藏及制粉.技术淀粉与淀粉糖, 1992(1): 20-21
    [49]张雁,唐小俊,李健雄,丘银清.葛根乳复合饮料的研制.食品科技, 2004(10): 70-72
    [50]张雁,李健雄,魏振承,池建伟.无糖葛根酸奶的工艺研究.食品科学, 2004, 25(5): 119-122
    [51]霍丹群,侯长军.葛根保健食品的开发及利用.资源开发与市场, 2000, 16(1): 27-28
    [52]黄靖,冯荣华.葛根软糖加工工艺.江西食品工业, 2001(2): 23
    [53]冯甲庭.三种葛根食品加工技术.农技服务, 2003(8): 39-39
    [54]邓晓娟,刘晓龙.葛根资源的研究与开发利用.基层中药杂志, 2002, 16(2): 48-49
    [55]杨明毅,史劲松.葛根的综合利用及深加工.常德师范学院学报, 2001, 13(1): 74-75
    [56]李积华,刘成梅,李明.功能性葛根天然饮料工艺研究.江西食品工业, 2004(1): 20-22
    [57]张雁,张孝祺.葛根资源的开发利用.中国野生植物资源, 2000, 19(6): 26-29
    [58]蒋国俊.“木生葛根”的开发利用及加工技术.农村发展论丛, 2001(17): 26-26
    [59]杨为燕.葛的栽培与开发利用.林业科技, 2002, 28(6): 57-59
    [60]程艳丽,郭俊英,孙秀丽.小麦麸皮在食品中的应用初探.黑龙江粮油科技, 2001(1): 32-33
    [61]郑学玲,姚惠源,李利民等.小麦加工副产品——麸皮的综合利用研究.粮食与饲料工业, 2001(12): 38-39
    [62]郭祯祥,李利民,温纪平.小麦麸皮的开发与利用.粮食与饲料工业, 2003(6): 43-45
    [63]王菁莎.小麦麸皮的加工利用现状.纤维素科学与技术, 2005(6): 59-65
    [64]朱小乔,刘通迅.小麦麸皮的功能组分及其在食品中的开发应用.粮油食品科技, 2000(6): 18-21
    [65]刘军,张超.麸皮糖源制取饲料蛋白的研究.粮食与饲料工业, 2000(4): 28-29
    [66] Bollinger H. Wheat fiber2a new generation of dietary fiberFood Tech. Europe, 1996(33): 34-36
    [67] Gruppen H, Marsciue J P. Mild isolation of water2insolu2ble cell wall material from wheat flour: Composition of fractions obtained with emphasis on non2starch polysaccha2 rides. Journal of Cereal Science, 1989(9): 247-260
    [68] Jean Brillouet. Fractionation of wheat bran carbohydrate. J Sci. Food Agric, 1981, 32: 243-251
    [69]刘志皋.食品营养学.第1版.北京:中国轻工业出版社, 2001: 15-16
    [70]李群兰,王世宽.薯渣膳食纤维的开发应用价值研究.粮油食品科技, 2005(3): 51
    [71]郑建仙.膳食纤维的化学分析.粮油与油脂, 1994(1): 17-22
    [72]苏杨.膳食纤维及其生理功能的探讨.涪陵师专学报, 2000, 16(4): 69-73
    [73]熊有爱.浅谈妇女更年期表现及保健.江西教育学院学报, 2002, 22(6): 92-94
    [74]余增丽,张立实,吴德生.植物雌激素对乳腺癌细胞MCF—7增殖的影晌.营养学报, 2002, 24(4): 401-404
    [75]王陶,王辉.植物雌激素及其对人类的作用.湖南中医药导报, 1999, 5(2):14-16
    [76]何锦风.论膳食纤维.食品与发酵工业, 1998(5): 63-68
    [77]天赐泰国野葛隶.现代女性新食尚.现代保健, 2004(10): 44-45
    [78]刘晓婷.膳食纤维的开发及应用.中国食物与营养, 2004(9): 21-24
    [79] Goering H. K, Van Soest P. S.. Forage Fiber Analysis USDA-ARS Agric. Handbook[M]. Washin gton: Gov. Print, 1971: 387-598
    [80]中华人民共和国国家标准中华人民共和国国家标准(GB 12394-1990)
    [81] Prosky, L.,Asp, N. -G. et al. Determination of total dietary fiber in foods and food products: Collaborative study. J. Assoc. Off. Anal. Chem., 1985: 68, 677
    [82]郑建仙.功能性食品.第1版.中国轻工业出版社. 1995. 8
    [83]邬建国.葛根渣异黄酮测定方法的比较研究.河南工业大学学报, 2007(2): 39-42
    [84]王岩岩.药用真菌降解葛根渣生产活性膳食纤维的初步研究.食品科技, 2005(3): 93-95
    [85]杜崇旭,牛铭山,刘雪娇.膳食纤维改性与应用的研究进展.大连民族学院学报, 2005(9): 18-21
    [86]柴巍中.膳食纤维主要分析方法及其在我国的应用.新技术新户品, 2003(8): 25-27
    [87]杜崇旭,牛铭山,刘雪娇.膳食纤维改性与应用的研究进展.大连民族学院学报, 2005, 5 (7): 72-75
    [88]邢来君,李明春.普通真菌学.第1版.北京:高等教育出版社, 1999: 27-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700