用户名: 密码: 验证码:
中国碳青霉烯耐药鲍曼不动杆菌多位点序列分型及OXA酶分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳青霉烯类(Carbapenem)抗生素是治疗由鲍曼不动杆菌(Acinetobacter baumannii)引发感染最重要的B-内酰胺类(β-lactam)抗生素之一。而碳青霉烯类抗生素耐药鲍曼不动杆菌在我国各地的广泛流行,给临床治疗与抗生素的选择带来极大的困难。为了制定科学、有效的防控措施,通常采用各种分子分型方法,对其进行分子流行病学研究并明确流行趋势,为进一步探究鲍曼不动杆菌的耐药机制提供基础。
     本研究于2009年1月至2010年12月期间在全国23个省市的64家医院收集2197株非重复的鲍曼不动杆菌,并选择12种常见抗菌药物开展体外药物敏感性试验。根据药敏结果,对筛选出的808株碳青霉烯耐药鲍曼不动杆菌应用多位点序列分型(Multilocus sequence typing, MLST)方法进行分子流行病学研究;借助. Linux服务器、DNA序列拼接与比对工具编写Perl脚本,实现对各等位基因测序数据的批量处理,并鉴定出等位基因型(Allele type)与序列型(Sequence type,ST);应用eBURST软件与Bionumerics软件对MLST数据进行聚类分析,预测各菌株间的进化关系。
     体外药物敏感性试验结果显示,所有鲍曼不动杆菌对12种临床常用抗生素的平均耐药率为50%~60%,而米诺环素仅有11.56%。MLST结果显示,碳青霉烯耐药鲍曼不动杆菌的遗传背景相对单一,共分为40个ST型(包括17个已被PubMLST数据库收录及23个新发现的ST型),其中ST92及其单位点变异型(Single locus variant, SLV) ST138、ST75与ST381为最主要流行的ST型。应用eBURST软件与Bionumerics软件分析MLST数据,发现当前中国最广泛流行的鲍曼不动杆菌克隆复合体(Clonal complex, CC)为CC92,该克隆复合体包括ST92、 ST138、ST75等ST型。本研究中的体外药物敏感性试验结果也表明,属于CC92的菌株较其他ST型菌株具有更高的耐药率。
     上述研究结果表明,CC92是鲍曼不动杆菌流行最广的克隆复合体,它在我国分布广泛且传播迅速,常伴随多重耐药鲍曼不动杆菌的播散与流行。因此,CC92在我国的大范围流行是导致鲍曼不动杆菌对多种抗菌药物耐药率迅速上升的重要原因。
     具有碳青霉烯类抗生素水解能力的D类β-内酰胺酶Carbapenem-hydrolyzing class D β-lactamases, CHDLs)是不动杆菌(Acinetobacter spp.)最常见的碳青霉烯酶,常介导其对碳青霉烯类抗生素耐药。本研究主要应用分子生物学手段,探讨5种常见编码CHDLs的OXA耐药基因在不动杆菌中的分布与耐药表型、传播机制之间的关系。
     本研究对收集于2009年1月至2010年12月期间全国23个省市64家医院分离的2880株不动杆菌开展体外药物敏感性试验,测定其对12种抗菌药物的最小抑菌浓度(minimum inhibitory concentration, MIC);并应用PCR扩增与测序技术,对筛选出携带blaOXA-51-like、blaOXA-23-like、blaOXA-24-like、blaOXA-25-like与blaOXA-143-like基因的不动杆菌进行菌种鉴定;应用脉冲场凝胶电泳(Pulsed-field gel electrophoresis, PFGE)与Southern杂交确定OXA基因的定位;应用质粒抽提与电转化确定携带OXA基因质粒的可传播性。
     体外药物敏感性试验结果显示,不动杆菌对碳青霉烯类抗生素的耐药率约为50%。多重PCR结果显示,携带blaOXA-51-like基因与blaOXA-23-like基因的不动杆菌分别占76.3%与45.7%。而44.9%的不动杆菌同时携带blaOXA-51-like基因与blaOXA-23-like基因,高达95%携带blaOXA-23-like基因的不动杆菌对碳青霉烯类抗生素耐药。此外,筛查发现携带blaOXA-24-like基因、blaOXA-58-like基因与blaOXA-143-like基因的不动杆菌分别为11株、32株与1株。Southern杂交结果显示,携带blaOXA-24-like基因与blaOXA-58-like基因由质粒编码,其质粒可通过电转化的方法导入受体菌,并使受体菌对碳青霉烯类抗生素的MIC值升高。而blaOXA-143-like基因无法通过上述方法检测到,提示该基因可能位于染色体上。
Carbapenems are important class of β-lactam antibiotics, and often participate in antibiotic treatment of Acinetobacter baumannii infections. The carbapenem-resistant Acinetobacter baumannii has widely spread in China, which causing great difficulty in clinical thrapy. In order to formulate a scientific and effective prevention and control measures, different molecular typing method are used to study the epidemiological distribution and antibiotic resistance mechanisms of Acinetobacter baumannii.
     In this study,2197non-duplicated Acinetobacter baumannii were collected from64hospitals of23different provinces, and the susceptibility testing of12common antimicrobial agents were determined. According the results of susceptibility testing, we chose808strains of carbapenem-resistant Acinetobacter baumannii to perform Multilocus sequence typing (MLST) research. We applied Linux server, DNA fragment assembly tools and developed Perl scripts to achieve the batch processing of each allele sequencing data and identified the allele type with sequence type (ST). eBURST and Bionumerics software were used to analyze the data of MLST and predict the evolutionary relationships among different strains.
     The results of susceptibility testing revealed that the average resistance rate to12antibiotics in Acinetobacter baumannii were50%-60%, except minocycline only11.56%. The study of MLST data suggested that the genetic background of Acinetobacter baumannii was relatively simple, including40STs (17recorded by PubMLST database and23novel STs). ST92and its single locus variants (SLVs), ST138, ST75and ST381were the predominant STs. The results of eBURST and Bionumerics software demonstrated that the most widely disseminated Clonal complex (CC) of Acinetobacter baumannii was CC92in current China, and incorporate ST92, ST138and ST75et al. The study of susceptibility testing revealed that strains belonged to CC92with higher resistance compared to other STs.
     Results of this study indicated that CC92was the most widely spread and disseminated clonal complex in China, and often accompanied with the appearance and dissemination of multidrug resistance Acinetobacter baumannii. Hence, the widespread of CC92is the principal reason that responsible for the situation of antimicrobial resistance rate rose rapidly in Acinetobacter baumannii.
     Carbapenem-hydrolyzing class D β-lactamases (CHDLs) is the most commonly carbapenem in Acinetobacter spp., and often induce the mechanism of carbapenem resistance. In this study, we applied molecular biology method to discuss the relationship between the distribution of five OXA genes, which coding CHDLs, and dissemination mechanism in Acinetobacter spp.
     In this study,2880Acinetobacter spp. were collected from64hospitals of23different provinces, and the minimum inhibitory concentration (MIC) of12common antimicrobial agents were determined. We applied PCR-based amplified and sequencing technology to identify Acinetobacter spp., which harboring blaoxA-51-like,blaoXA-23-like, blaOXA-24-like, blaOXA-58-like and blaOXA-143-like gene, to the genus level. Pulsed-field gel electrophoresis (PFGE) and Southern blot hybridization were used to determine the location of OXA genes. Plasmid extraction and electrotransformation were applied to confirm the transferability of OXA carrying plasmids.
     Susceptibility testing indicated that the average resistance rate to carbapenem in Acinetobacter spp. were approximately50%. Results of multiplex PCR revealed that the proportion of Acinetobacter spp., which harboring biaOXA-51-like and biaOXA-23-like gene, were76.3%and45.7%respectively. Besides,44.9%of Acinetobacter spp. coharbor biaOXA-51-like and biaOXA-23-like gene, and up to95%of them resistant to carbapenems. The biaOXA-24-like, biaOXA-58-like and biaOXA-143-like gene were detected in32,11and1isolate(s) respectively. Southern blot hybridization indicated that the biaOXA-24-like, and biaOXA-58-like gene were located on plasmds, which can be transferred to recipient and increase its MIC values for carbapenems. But biaOXA-143-like gene can't be detected by the method above, which indicated that it might be located on chromosome.
引文
[1]Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii:emergence of a successful pathogen. Clinical microbiology reviews.2008,21(3):538-582.
    [2]Gaynes R, Edwards JR, National Nosocomial Infections Surveillance S. Overview of nosocomial infections caused by gram-negative bacilli. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America.2005,41(6): 848-854.
    [3]Baumann P, Doudoroff M, Stanier RY. A study of the Moraxella group. Ⅱ. Oxidative-negative species (genus Acinetobacter). Journal of bacteriology.1968,95(5): 1520-1541.
    [4]Nemec A, Musilek M, Sedo O, et al. Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. International journal of systematic and evolutionary microbiology. 2010,60(Pt 4):896-903.
    [5]Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nature reviews Microbiology.2007,5(12): 939-951.
    [6]Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clinical infectious diseases:an official publication of the Infectious Diseases Society of America.2010,51 Suppl 1:S81-87.
    [7]朱德妹,汪复,胡付品,et al.2010年中国chinet细菌耐药性监测.中国感染与化疗杂志.2011,(05):321-329.
    [8]Towner KJ. Acinetobacter:an old friend, but a new enemy. The Journal of hospital infection.2009,73(4):355-363.
    [9]Camp C, Tatum OL. A Review of Acinetobacter baumannii as a Highly Successful Pathogen in Times of War. Labmedicine.2010,41(11):649-657.
    [10]Falagas ME, Karageorgopoulos DE. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among gram-negative bacilli:Need for international harmonization in terminology. Clinical Infectious Diseases.2008,46(7): 1121-1122.
    [11]Falagas ME, Koletsi PK, Bliziotis IA. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. Journal of Medical Microbiology.2006,55(12):1619-1629.
    [12]Paterson DL, Doi Y. A step closer to extreme drug resistance (XDR) in gram-negative bacilli. Clinical infectious diseases:an official publication of the Infectious Diseases Society of America.2007,45(9):1179-1181.
    [13]Richet HM, Mohammed J, McDonald LC, et al. Building communication networks: international network for the study and prevention of emerging antimicrobial resistance. Emerging infectious diseases.2001,7(2):319-322.
    [14]Michalopoulos A, Falagas ME. Treatment of Acinetobacter infections. Expert opinion on pharmacotherapy.2010,11(5):779-788.
    [15]Bassetti M, Righi E, Esposito S, et al. Drug treatment for multidrug-resistant Acinetobacter baumannii infections. Future microbiology.2008,3(6):649-660.
    [16]Rhomberg PR, Jones RN. Summary trends for the Meropenem Yearly Susceptibility Test Information Collection Program:a 10-year experience in the United States (1999-2008). Diagnostic microbiology and infectious disease.2009,65(4): 414-426.
    [17]Park YK, Jung SI, Park KH, et al. Changes in antimicrobial susceptibility and major clones of Acinetobacter calcoaceticus-baumannii complex isolates from a single hospital in Korea over 7 years. J Med Microbiol.2012,61(Pt 1):71-79.
    [18]Park YK, Peck KR, Cheong HS, et al. Extreme drug resistance in Acinetobacter baumannii infections in intensive care units, South Korea. Emerging infectious diseases. 2009,15(8):1325-1327.
    [19]Orskov F, Orskov I. From the national institutes of health. Summary of a workshop on the clone concept in the epidemiology, taxonomy, and evolution of the enterobacteriaceae and other bacteria. The Journal of infectious diseases.1983,148(2): 346-357.
    [20]Tenover FC, Arbeit RD, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis:criteria for bacterial strain typing. Journal of clinical microbiology.1995,33(9):2233-2239.
    [21]Maiden MC. Multilocus sequence typing of bacteria. Annual review of microbiology.2006,60:561-588.
    [22]Larsen MV, Cosentino S, Rasmussen S, et al. Multilocus sequence typing of total-genome-sequenced bacteria. Journal of clinical microbiology.2012,50(4): 1355-1361.
    [23]Maiden MC, Bygraves JA, Feil E, et al. Multilocus sequence typing:a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences of the United States of America.1998,95(6):3140-3145.
    [24]Maiden MCJ. Multilocus sequence typing of bacteria. Annual review of microbiology2006. p.561-588.
    [25]Helgason E, Tourasse NJ, Meisal R, et al. Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Applied and environmental microbiology.2004, 70(1):191-201.
    [26]Platonov AE, Shipulin GA, Platonova OV. Multilocus sequence typing:A new method and the first results in the genotyping of bacteria. Genetika.2000,36(5): 597-605.
    [27]Fothergill AW. Antifungal Susceptibility Testing:Clinical Laboratory and Standards Institute (CLSI) Methods. Hall GS, editor2012.65-74 p.
    [28]Ho P-L, Chow K-H, Tse H, et al. Effect of applying the new Clinical and Laboratory Standards Institute ticarcillin/clavulanic acid, piperacillin, piperacillin/tazobactam and imipenem susceptibility breakpoints for Pseudomonas aeruginosa in Hong Kong. International journal of antimicrobial agents.2012,40(3): 280-281.
    [29]Pfaller MA, Diekema DJ. Progress in Antifungal Susceptibility Testing of Candida spp. by Use of Clinical and Laboratory Standards Institute Broth Microdilution Methods, 2010 to 2012. Journal of clinical microbiology.2012,50(9):2846-2856.
    [30]Lee Y-T, Kuo S-C, Chiang M-C, et al. Emergence of Carbapenem-Resistant Non-baumannii Species of Acinetobacter Harboring a bla(OXA-51)-Like Gene That Is Intrinsic to A. baumannii. Antimicrobial agents and chemotherapy.2012,56(2): 1124-1127.
    [31]Lee Y-T, Turton JF, Chen T-L, et al. First Identification of bla(OXA-51-like) in Non-baumannii Acinetobacter spp. Journal of chemotherapy.2009,21(5):514-520.
    [32]Turton JF, Woodford N, Glover J, et al. Identification of Acinetobacter baumannii by detection of the bla(OXA-51-like) carbapenemase gene intrinsic to this species. Journal of clinical microbiology.2006,44(8):2974-2976.
    [33]Bartual SG, Seifert H, Hippler C, et al. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. Journal of clinical microbiology.2005,43(9):4382-4390.
    [34]Jolley KA, Maiden MC. BIGSdb:Scalable analysis of bacterial genome variation at the population level. BMC bioinformatics.2010,11:595.
    [35]Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research.1998,8(3):186-194.
    [36]Ewing B, Hillier L, Wendl MC, et al. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research.1998,8(3):175-185.
    [37]Machado M, Magalhaes WC, Sene A, et al. Phred-Phrap package to analyses tools: a pipeline to facilitate population genetics re-sequencing studies. Investigative genetics. 2011,2(1):3-3.
    [38]Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic acids research.1997, 25(17):3389-3402.
    [39]Kent WJ. BLAT-The BLAST-like alignment tool. Genome Research.2002,12(4): 656-664.
    [40]Jolley KA, Feil EJ, Chan MS, et al. Sequence type analysis and recombinational tests (START). Bioinformatics.2001,17(12):1230-1231.
    [41]Feil EJ, Li BC, Aanensen DM, et al. eBURST:inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. Journal of bacteriology.2004,186(5):1518-1530.
    [42]Del Rosario L, Pot B, Goris J, et al. An automated workflow for high throughtput MLVA using the BioNumerics (R) software, able to deal with varying experimental settings. International Journal of Infectious Diseases.2010,14:E360-E361.
    [43]Xu Y, Olman V, Xu D. Clustering gene expression data using a graph-theoretic approach:an application of minimum spanning trees. Bioinformatics.2002,18(4): 536-545.
    [44]Xu Y, Olman V, Xu D. Minimum spanning trees for gene expression data clustering. Genome informatics International Conference on Genome Informatics.2001,12:24-33.
    [45]Dobrin R, Duxbury PM. Minimum spanning trees on random networks. Physical review letters.2001,86(22):5076-5079.
    [46]Perez F, Hujer AM, Hujer KM, et al. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrobial agents and chemotherapy.2007,51(10): 3471-3484.
    [47]Fishbain J, Peleg AY. Treatment of Acinetobacter Infections. Clinical Infectious Diseases.2010,51(1):79-84.
    [48]Michalopoulos A, Falagas ME. Treatment of Acinetobacter infections. Expert opinion on pharmacotherapy.2010,11(5):779-788.
    [49]Pachon J, Vila J. Treatment of multiresistant Acinetobacter baumannii infections. Current opinion in investigational drugs.2009,10(2):150-156.
    [50]Karageorgopoulos DE, Falagas ME. Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. The Lancet infectious diseases. 2008,8(12):751-762.
    [51]Urban C, Mariano N, Rahal JJ, et al. Polymyxin B-Resistant Acinetobacter baumannii Clinical Isolate Susceptible to Recombinant BPI and Cecropin P1. Antimicrobial agents and chemotherapy.2001,45(3):994-995.
    [52]Reis AO, Luz DAM, Tognim MCB, et al. Polymyxin-resistant Acinetobacter spp. isolates:What is next? Emerging infectious diseases.2003,9(8):1025-1027.
    [53]Liang W, Liu X-f, Huang J, et al. Activities of colistin- and minocycline-based combinations against extensive drug resistant Acinetobacter baumannii isolates from intensive care unit patients. Bmc Infectious Diseases.2011,11.
    [54]Ko KS, Suh JY, Kwon KT, et al. High rates of resistance to colistin and polymyxin B in subgroups of Acinetobacter baumannii isolates from Korea. The Journal of antimicrobial chemotherapy.2007,60(5):1163-1167.
    [55]Park YK, Choi JY, Shin D, et al. Correlation between overexpression and amino acid substitution of the PmrAB locus and colistin resistance in Acinetobacter baumannii. International journal of antimicrobial agents.2011,37(6):525-530.
    [56]Snitkin ES, Zelazny AM, Montero CI, et al. Genome-wide recombination drives diversification of epidemic strains of Acinetobacter baumannii. Proceedings of the National Academy of Sciences of the United States of America.2011,108(33): 13758-13763.
    [57]Fu Y, Zhou J, Zhou H, et al. Wide dissemination of OXA-23-producing carbapenem-resistant Acinetobacter baumannii clonal complex 22 in multiple cities of China. Journal of Antimicrobial Chemotherapy.2010,65(4):644-650.
    [58]Mugnier PD, Poirel L, Naas T, et al Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. Emerging infectious diseases.2010, 16(1):35-40.
    [59]Runnegar N, Sidjabat H, Goh HM, et al. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii in a single institution over a 10-year period. Journal of clinical microbiology.2010,48(11):4051-4056.
    [60]Giannouli M, Cuccurullo S, Crivaro V, et al. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii in a tertiary care hospital in Naples, Italy, shows the emergence of a novel epidemic clone. Journal of clinical microbiology.2010, 48(4):1223-1230.
    [61]D'Arezzo S, Capone A, Petrosillo N, et al. Epidemic multidrug-resistant Acinetobacter baumannii related to European clonal types Ⅰ and Ⅱ in Rome (Italy). Clinical microbiology and infection:the official publication of the European Society of Clinical Microbiology and Infectious Diseases.2009,15(4):347-357.
    [62]Lee JY, Ko KS. Antimicrobial Resistance and Clones of Acinetobacter Species and Pseudomonas aeruginosa. J Bacteriol Virol AID-104167/jbv20124211 [doi].2012, 42(1):1-8.
    [63]Nemec A, Krizova L, Maixnerova M, et al. Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Research in microbiology.2011,162(4):393-404.
    [64]Higgins PG, Dammhayn C, Hackel M, et al. Global spread of carbapenem-resistant Acinetobacter baumannii. The Journal of antimicrobial chemotherapy.2010,65(2): 233-238.
    [65]Queenan AM, Bush K. Carbapenemases:the versatile beta-lactamases. Clinical microbiology reviews.2007,20(3):440-458, table of contents.
    [66]Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrobial agents and chemotherapy.2010,54(1):24-38.
    [67]Zavascki AP, Carvalhaes CG, Picao RC, et al. Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii:resistance mechanisms and implications for therapy. Expert review of anti-infective therapy.2010,8(1):71-93.
    [68]Robledo IE, Aquino EE, Sante MI, et al. Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrobial agents and chemotherapy.2010,54(3):1354-1357.
    [69]Karthikeyan K, Thirunarayan MA, Krishnan P. Coexistence of blaOXA-23 with blaNDM-1 and armA in clinical isolates of Acinetobacter baumannii from India. The Journal of antimicrobial chemotherapy.2010,65(10):2253-2254.
    [70]Chen Y, Zhou Z, Jiang Y, et al. Emergence of NDM-1-producing Acinetobacter baumannii in China. The Journal of antimicrobial chemotherapy.2011,66(6): 1255-1259.
    [71]Higgins PG, Poirel L, Lehmann M, et al. OXA-143, a novel carbapenem-hydrolyzing class D beta-lactamase in Acinetobacter baumannii. Antimicrobial agents and chemotherapy.2009,53(12):5035-5038.
    [72]Heritier C, Poirel L, Lambert T, et al. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrobial agents and chemotherapy.2005,49(8):3198-3202.
    [73]Walther-Rasmussen J, Hoiby N. OXA-type carbapenemases. The Journal of antimicrobial chemotherapy.2006,57(3):373-383.
    [74]Chen TL, Lee YT, Kuo SC, et al. Emergence and Distribution of Plasmids Bearing the blaOXA-51-like gene with an upstream ISAbal in carbapenem-resistant Acinetobacter baumannii isolates in Taiwan. Antimicrobial agents and chemotherapy. 2010,54(11):4575-4581.
    [75]Poirel L, Bercot B, Millemann Y, et al. Carbapenemase-producing Acinetobacter spp. in Cattle, France. Emerging infectious diseases.2012,18(3):523-525.
    [76]Brown S, Young HK, Amyes SG. Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. Clinical microbiology and infection:the official publication of the European Society of Clinical Microbiology and Infectious Diseases.2005,11(1): 15-23.
    [77]Zong Z, Lu X, Valenzuela JK, et al. An outbreak of carbapenem-resistant Acinetobacter baumannii producing OXA-23 carbapenemase in western China. International journal of antimicrobial agents.2008,31(1):50-54.
    [78]Acosta J, Merino M, Viedma E, et al. Multidrug-resistant Acinetobacter baumannii Harboring OXA-24 carbapenemase, Spain. Emerging infectious diseases.2011,17(6): 1064-1067.
    [79]Opazo A, Dominguez M, Bello H, et al. OXA-type carbapenemases in Acinetobacter baumannii in South America. Journal of infection in developing countries. 2012,6(4):311-316.
    [80]Schneider KD, Ortega CJ, Renck NA, et al. Structures of the class D carbapenemase OXA-24 from Acinetobacter baumannii in complex with doripenem. Journal of molecular biology.2011,406(4):583-594.
    [81]Castanheira M, Wanger A, Kruzel M, et al. Emergence and clonal dissemination of OXA-24- and OXA-58-producing Acinetobacter baumannii strains in Houston, Texas: report from the SENTRY Antimicrobial Surveillance Program. Journal of clinical microbiology.2008,46(9):3179-3180.
    [82]Poirel L, Marque S, Heritier C, et al. OXA-58, a novel class D {beta}-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrobial agents and chemotherapy.2005,49(1):202-208.
    [83]Heritier C, Dubouix A, Poirel L, et al. A nosocomial outbreak of Acinetobacter baumannii isolates expressing the carbapenem-hydrolysing oxacillinase OXA-58. The Journal of antimicrobial chemotherapy.2005,55(1):115-118.
    [84]Kulah C, Mooij MJ, Comert F, et al. Characterisation of carbapenem-resistant Acinetobacter baumannii outbreak strains producing OXA-58 in Turkey. International journal of antimicrobial agents.2010,36(2):114-118.
    [85]Marque S, Poirel L, Heritier C, et al. Regional occurrence of plasmid-mediated carbapenem-hydrolyzing oxacillinase OXA-58 in Acinetobacter spp. in Europe. Journal of clinical microbiology.2005,43(9):4885-4888.
    [86]Coelho J, Woodford N, Afzal-Shah M, et al. Occurrence of OXA-58-like carbapenemases in Acinetobacter spp. collected over 10 years in three continents. Antimicrobial agents and chemotherapy.2006,50(2):756-758.
    [87]Bogaerts P, Naas T, Wybo I, et al. Outbreak of infection by carbapenem-resistant Acinetobacter baumannii producing the carbapenemase OXA-58 in Belgium. Journal of clinical microbiology.2006,44(11):4189-4192.
    [88]Pournaras S, Markogiannakis A, Ikonomidis A, et al. Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemase in an intensive care unit. The Journal of antimicrobial chemotherapy. 2006,57(3):557-561.
    [89]Stoeva T, Higgins PG, Savov E, et al. Nosocomial spread of OXA-23 and OXA-58 beta-lactamase-producing Acinetobacter baumannii in a Bulgarian hospital. The Journal of antimicrobial chemotherapy.2009,63(3):618-620.
    [90]Poirel L, Lebessi E, Heritier C, et al. Nosocomial spread of OXA-58-positive carbapenem-resistant Acinetobacter baumannii isolates in a paediatric hospital in Greece. Clinical microbiology and infection:the official publication of the European Society of Clinical Microbiology and Infectious Diseases.2006,12(11):1138-1141.
    [91]Chen TL, Chang WC, Kuo SC, et al. Contribution of a plasmid-borne blaOXA-58 gene with its hybrid promoter provided by IS 1006 and an ISAba3-like element to beta-lactam resistance in acinetobacter genomic species 13TU. Antimicrobial agents and chemotherapy,2010,54(8):3107-3112.
    [92]Poirel L, Nordmann P. Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene bla(OXA-58) in Acinetobacter baumannii. Antimicrobial agents and chemotherapy.2006,50(4):1442-1448.
    [93]Mostachio AK, Levin AS, Rizek C, et al. High prevalence of OXA-143 and alteration of outer membrane proteins in carbapenem-resistant Acinetobacter spp. isolates in Brazil. International journal of antimicrobial agents.2012,39(5):396-401.
    [94]Higgins PG, Lehmann M; Seifert H. Inclusion of OXA-143 primers in a multiplex polymerase chain reaction (PCR) for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. International journal of antimicrobial agents.2010,35(3):305.
    [95]Wang H, Guo P, Sun H, et al. Molecular epidemiology of clinical isolates of carbapenem-resistant Acinetobacter spp. from chinese Hospitals del. Antimicrobial agents and chemotherapy.2007,51(11):4022-4028.
    [96]Gogou V, Pournaras S, Giannouli M, et al. Evolution of multidrug-resistant Acinetobacter baumannii clonal lineages:a 10 year study in Greece (2000-09). The Journal of antimicrobial chemotherapy.2011,66(12):2767-2772.
    [97]Bou G, Oliver A, Martinez-Beltran J. OXA-24, a novel class D beta-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrobial agents and chemotherapy.2000,44(6):1556-1561.
    [98]Merino M, Acosta J, Poza M, et al. OXA-24 carbapenemase gene flanked by XerC/XerD-like recombination sites in different plasmids from different Acinetobacter species isolated during a nosocomial outbreak. Antimicrobial agents and chemotherapy. 2010,54(6):2724-2727.
    [99]Mendes RE, Bell JM, Tumidge JD, et al. Emergence and widespread dissemination of OXA-23,-24/40 and -58 carbapenemases among Acinetobacter spp. in Asia-Pacific nations:report from the SENTRY Surveillance Program. The Journal of antimicrobial chemotherapy.2009,63(1):55-59.
    [100]Zhang JP, Zhu W, Tian SF, et al. Molecular characteristics and resistant mechanisms of imipenem-resistant Acinetobacter baumannii isolates in Shenyang, China. Journal of microbiology.2010,48(5):689-694.
    [101]Zhou H, Yang Q, Yu YS, et al. Clonal spread of imipenem-resistant Acinetobacter baumannii among different cities of China. Journal of clinical microbiology.2007, 45(12):4054-4057.
    [102]Evans BA, Hamouda A, Towner KJ, et al. Novel genetic context of multiple bla OXA-58 genes in Acinetobacter genospecies 3. The Journal of antimicrobial chemotherapy.2010,65(8):1586-1588.
    [103]Lopes BS, Evans BA, Amyes SG. Disruption of the blaOXA-51-like gene by ISAbal6 and activation of the blaOXA-58 gene leading to carbapenem resistance in Acinetobacter baumannii Ab244. The Journal of antimicrobial chemotherapy.2012, 67(1):59-63.
    [104]Verma V, Testero SA, Amini K, et al. Hydrolytic mechanism of OXA-58 enzyme, a carbapenem-hydrolyzing class D beta-lactamase from Acinetobacter baumannii. The Journal of biological chemistry.2011,286(43):37292-37303.
    [105]Bertini A, Giordano A, Varesi P, et al. First report of the carbapenem-hydrolyzing oxacillinase OXA-58 in Acinetobacter baumannii isolates in Italy. Antimicrobial agents and chemotherapy.2006,50(6):2268-2269.
    [106]Figueiredo S, Bonnin RA, Poirel L, et al. Identification of the naturally occurring genes encoding carbapenem-hydrolysing oxacillinases from Acinetobacter haemolyticus, Acinetobacter johnsonii, and Acinetobacter calcoaceticus. Clinical microbiology and infection:the official publication of the European Society of Clinical Microbiology and Infectious Diseases.2012,18(9):907-913.
    [107]Poirel L, Figueiredo S, Cattoir V, et al. Acinetobacter radioresistens as a silent source of carbapenem resistance for Acinetobacter spp. Antimicrobial agents and chemotherapy.2008,52(4):1252-1256.
    [108]Figueiredo S, Poirel L, Seifert H, et al. OXA-134, a naturally occurring carbapenem-hydrolyzing class D beta-lactamase from Acinetobacter lwoffii. Antimicrobial agents and chemotherapy.2010,54(12):5372-5375.
    [1]Hideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Research.2001,61(7):3071-3076.
    [2]Watanabe T. Infective heredity of multiple drug resistance in bacteria. Bacteriological Reviews.1963,27(1):87-115.
    [3]Lancefield RC. A Serological Differentiation of Human and Other Groups of Hemolytic Streptococci. The Journal of experimental medicine.1933,57(4):571-59,5.
    [4]Frohn C, Fricke L, Puchta JC, et al. The effect of HLA-C matching on acute renal transplant rejection. Nephrology, dialysis, transplantation:official publication of the European Dialysis and Transplant Association-European Renal Association.2001, 16(2):355-360.
    [5]Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii:emergence of a successful pathogen. Clinical microbiology reviews.2008,21(3):538-582.
    [6]Karah N, Sundsfjord A, Towner K, et al. Insights into the global molecular epidemiology of carbapenem non-susceptible clones of Acinetobacter baumannii. Drug resistance updates:reviews and commentaries in antimicrobial and anticancer chemotherapy.2012,15(4):237-247.
    [7]Lee JY, Ko KS. Antimicrobial Resistance and Clones of Acinetobacter Species and Pseudomonas aeruginosa. J Bacteriol Virol AID-104167/jbv20124211 [doi].2012, 42(1):1-8.
    [8]Maughan PJ, Maroof MAS, Buss GR, et al. Amplified fragment length polymorphism (AFLP) in soybean:Species diversity, inheritance, and near-isogenic line analysis. Theoretical and Applied Genetics.1996,93(3):392-401.
    [9]Keim P, Kalif A, Schupp J, et al. Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. Journal of bacteriology.1997,179(3):818-824.
    [10]Savelkoul PHM, Aarts HJM, de Haas J, et al. Amplified-fragment length polymorphism analysis:the state of an art. Journal of clinical microbiology.1999, 37(10):3083-3091.
    [11]Vekemans X, Beauwens T, Lemaire M, et al. Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Molecular Ecology.2002,11(1): 139-151.
    [12]Bonin A, Ehrich D, Manel S. Statistical analysis of amplified fragment length polymorphism data:a toolbox for molecular ecologists and evolutionists. Molecular Ecology.2007,16(18):3737-3758.
    [13]Tenover FC, Arbeit RD, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis:criteria for bacterial strain typing. Journal of clinical microbiology.1995,33(9):2233-2239.
    [14]McDougal LK, Steward CD, Killgore GE, et al. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: Establishing a national database. Journal of clinical microbiology.2003,41(11): 5113-5120.
    [15]Graves LM, Swaminathan B. PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis. International Journal of Food Microbiology.2001,65(1-2):55-62.
    [16]Gautom RK. Rapid pulsed-field gel electrophoresis protocol for typing of Escherichia coli O157:H7 and other gram-negative organisms in 1 day. Journal of clinical microbiology.1997,35(11):2977-2980.
    [17]Ribot EM, Fair MA, Gautom R, et al. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli 0157:H7 Salmonella, and Shigella for PulseNet. Foodborne Pathogens and Disease.2006,3(1):59-67.
    [18]Maiden MC, Bygraves JA, Feil E, et al. Multilocus sequence typing:a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences of the United States of America.1998,95(6):3140-3145.
    [19]Enright MC, Spratt BG. A multilocus sequence typing scheme for Streptococcus pneumoniae:identification of clones associated with serious invasive disease. Microbiology-Uk.1998,144:3049-3060.
    [20]Enright MC, Spratt BG. Multilocus sequence typing. Trends in Microbiology.1999, 7(12):482-487.
    [21]Enright MC, Day NPJ, Davies CE, et al. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. Journal of clinical microbiology.2000,38(3):1008-1015.
    [22]Dingle KE, Colles FM, Wareing DRA, et al. Multilocus sequence typing system for Campylobacter jejuni. Journal of clinical microbiology.2001,39(1):14-23.
    [23]Enright MC, Spratt BG, Kalia A, et al. Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infection and Immunity.2001,69(4):2416-2427.
    [24]Homan WL, Tribe D, Poznanski S, et al. Multilocus sequence typing scheme for Enterococcus faecium. Journal of clinical microbiology.2002,40(6):1963-1971.
    [25]Maiden MCJ. Multilocus sequence typing of bacteria. Annual review of microbiology2006. p.561-588.
    [26]Bartual SG, Seifert H, Hippler C, et al. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. Journal of clinical microbiology.2005,43(9):4382-4390.
    [27]Jolley KA, Chan MS, Maiden MC. mlstdbNet-distributed multi-locus sequence typing (MLST) databases. BMC bioinformatics.2004,5:86.
    [28]Feil EJ, Smith JM, Enright MC, et al. Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data. Genetics.2000, 154(4):1439-1450.
    [29]Jones N, Bohnsack JF, Takahashi S, et al. Multilocus sequence typing system for group B streptococcus. Journal of clinical microbiology.2003,41(6):2530-2536.
    [30]Meats E, Feil EJ, Stringer S, et al. Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. Journal of clinical microbiology.2003,41(4): 1623-1636.
    [31]Morehouse EA, James TY, Ganley ARD, et al. Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Molecular Ecology.2003,12(2):395-403.
    [32]Schouls LM, Reulen S, Duim B, et al. Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing:Strain diversity, host range, and recombination. Journal of clinical microbiology.2003,41(1):15-26.
    [33]Helgason E, Tourasse NJ, Meisal R, et al. Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Applied and environmental microbiology.2004, 70(1):191-201.
    [34]Diancourt L, Passet V, Verhoef J, et al. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. Journal of clinical microbiology.2005,43(8): 4178-4182.
    [35]Arukwe A. Toxicological housekeeping genes:Do they really keep the house? Environmental Science & Technology.2006,40(24):7944-7949.
    [36]Frericks M, Esser C. A toolbox of novel murine house-keeping genes identified by meta-analysis of large scale gene expression profiles. Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms.2008,1779(12):830-837.
    [37]Cooper JE, Feil EJ. Multilocus sequence typing-what is resolved? Trends in Microbiology.2004,12(8):373-377.
    [38]Wisplinghoff H, Hippler C, Bartual SG, et al. Molecular epidemiology of clinical Acinetobacter baumannii and Acinetobacter genomic species 13TU isolates using a multilocus sequencing typing scheme. Clinical Microbiology and Infection.2008,14(7): 708-715.
    [39]Hamouda A, Evans BA, Towner KJ, et al. Characterization of Epidemiologically Unrelated Acinetobacter baumannii Isolates from Four Continents by Use of Multilocus Sequence Typing, Pulsed-Field Gel Electrophoresis, and Sequence-Based Typing of bla(OXA-51-like) Genes. Journal of clinical microbiology.2010,48(7):2476-2483.
    [40]Di Popolo A, Giannouli M, Triassi M, et al. Molecular epidemiological investigation of multidrug-resistant Acinetobacter baumannii strains in four Mediterranean countries with a multilocus sequence typing scheme. Clinical Microbiology and Infection.2011,17(2):197-201.
    [41]Zarrilli R, Giannouli M, Rocco F, et al. Genome Sequences of Three Acinetobacter baumannii Strains Assigned to the Multilocus Sequence Typing Genotypes ST2, ST25, and ST78. Journal of bacteriology.2011,193(9):2359-2360.
    [42]Feil EJ, Li BC, Aanensen DM, et al. eBURST:inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. Journal of bacteriology.2004,186(5):1518-1530.
    [43]Tamura K, Peterson D, Peterson N, et al. MEGA5:Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution.2011,28(10):2731-2739.
    [44]Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution.2007,24(8): 1596-1599.
    [45]Ewing B, Green P. Base-calling of automated sequencer traces using phred. Ⅱ. Error probabilities. Genome Research.1998,8(3):186-194.
    [46]Ewing B, Hillier L, Wendl MC, et al. Base-calling of automated sequencer traces using phred. Ⅰ. Accuracy assessment. Genome Research.1998,8(3):175-185.
    [47]Jolley KA, Feil EJ, Chan MS, et al. Sequence type analysis and recombinational tests (START). Bioinformatics.2001,17(12):1230-1231.
    [48]Ansorge WJ. Next-generation DNA sequencing techniques. New Biotechnology. 2009,25(4):195-203.
    [49]Mardis ER. The impact of next-generation sequencing technology on genetics. Trends in Genetics.2008,24(3):133-141.
    [50]Mardis ER. Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics2008. p.387-402.
    [51]Morozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics.2008,92(5):255-264.
    [52]Schuster SC. Next-generation sequencing transforms today's biology. Nature Methods.2008,5(1):16-18.
    [53]Shendure J, Ji H. Next-generation DNA sequencing. Nature Biotechnology.2008, 26(10):1135-1145.
    [54]Maxam AM, Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in enzymology.1980,65(1):499-560.
    [55]Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America.1977,74(12):5463-5467.
    [56]Aanensen DM, Spratt BG. The multilocus sequence typing network:mlst.net. Nucleic acids research.2005,33(Web Server issue):W728-733.
    [57]Carver T, Berriman M, Tivey A, et al. Artemis and ACT:viewing, annotating and comparing sequences stored in a relational database. Bioinformatics.2008,24(23): 2672-2676.
    [58]Stajich JE, Block D, Boulez K, et al. The Bioperl toolkit:Perl modules for the life sciences. Genome Res.2002,12(10):1611-1618.
    [59]Fearnbead P, Smith NGC, Barrigas M, et al. Analysis of recombination in Campylobacter jejuni from MLST population data. Journal of Molecular Evolution. 2005,61(3):333-340.
    [60]Margos G, Gatewood AG, Aanensen DM, et al. MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proceedings of the National Academy of Sciences of the United States of America.2008,105(25):8730-8735.
    [61]Adiri RS, Gophna U, Ron EZ. Multilocus sequence typing (MLST) of Escherichia coli 078 strains. FEMS microbiology letters.2003,222(2):199-203.
    [62]Perez-Losada M, Browne EB, Madsen A, et al. Population genetics of microbial pathogens estimated from multilocus sequence typing (MLST) data. Infection Genetics and Evolution.2006,6(2):97-112.
    [63]Jolley KA, Maiden MC. BIGSdb:Scalable analysis of bacterial genome variation at the population level. BMC bioinformatics.2010,11:595.
    [64]Altschul SF, Madden TL, Schaffer AA et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic acids research.1997, 25(17):3389-3402.
    [65]Kent WJ. BLAT-The BLAST-like alignment tool. Genome Research.2002,12(4): 656-664.
    [66]Janssens K, Pot B, Michielsen D, et al. An Advanced ARV Drug Resistance Expert Rule System in BioNumerics. International Journal of Infectious Diseases.2008,12: E204-E204.
    [67]Dombrecht J, Michielsen D, Reijans M, et al. Analysis of RT-PCR data based on the SmartFinder (TM) technology using BioNumerics (R). International Journal of Infectious Diseases.2012,16:E391-E391.
    [68]Del Rosario L, Pot B, Goris J, et al. An automated workflow for high throughtput MLVA using the BioNumerics (R) software, able to deal with varying experimental settings. International Journal of Infectious Diseases.2010,14:E360-E361.
    [69]Dombrecht J, Goris J, Janssens K, et al. High throughput viral typing of influenza H1N1 using the automatic alignment & mutation analysis tool in the bionumerics software. Journal of Clinical Virology.2009,46:S20-S20.
    [70]Maiden MCJ, Bygraves JA, Feil E, et al. Multilocus sequence typing:A portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences of the United States of America.1998,95(6):3140-3145.
    [71]Kotetishvili M, Stine OC, Kreger A, et al. Multilocus sequence typing for characterization of clinical and environmental Salmonella strains. Journal of clinical microbiology.2002,40(5):1626-1635.
    [72]van Loo IHM, Heuvelman KJ, King AJ, et al. Multilocus sequence typing of Bordetella pertussis based on surface protein genes. Journal of clinical microbiology. 2002,40(6):1994-2001.
    [73]Godoy D, Randle G, Simpson AJ, et al. Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. Journal of clinical microbiology. 2003,41(5):2068-2079.
    [74]Salcedo C, Arreaza L, Alcala B, et al. Development of a multilocus sequence typing method for analysis of Listeria monocytogenes clones. Journal of clinical microbiology.2003,41(2):757-762.
    [75]van Leeuwen WB, Jay C, Snijders S, et al. Multilocus sequence typing of Staphylococcus aureus with DNA array technology. Journal of clinical microbiology. 2003,41(7):3323-3326.
    [76]Robinson DA, Enright MC. Multilocus sequence typing and the evolution of methicillin-resistant Staphylococcus aureus. Clinical Microbiology and Infection.2004, 10(2):92-97.
    [77]Bartual SG, Seifert H, Hippler C, et al. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. Journal of clinical microbiology.2005,43(9):4382-4390.
    [78]Smith EM, Green LE, Medley GF, et al. Multilocus sequence typing of intercontinental bovine Staphylococcus aureus isolates. Journal of clinical microbiology. 2005,43(9):4737-4743.
    [79]Tartof SY, Solberg OD, Manges AR, et al. Analysis of a uropathogenic Escherichia coli clonal group by multilocus sequence typing. Journal of clinical microbiology.2005,43(12):5860-5864.
    [80]Baldo L, Hotopp JCD, Jolley KA, et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Applied and environmental microbiology.2006, 72(11):7098-7110.
    [81]Larkin MA, Blackshields G, Brown NP, et al. Clustal W and clustal X version 2.0. Bioinformatics.2007,23(21):2947-2948.
    [82]Khan HA, Arif IA, Bahkali AH, et al. Bayesian, Maximum Parsimony and UPGMA Models for Inferring the Phylogenies of Antelopes Using Mitochondrial Markers. Evolutionary Bioinformatics.2008,4:263-270.
    [83]Backeljau T, DeBruyn L, DeWolf H, et al. Multiple UPGMA and neighbor-joining trees and the performance of some computer packages. Molecular Biology and Evolution.1996,13(2):309-313.
    [84]Gronau I, Moran S. Optimal implementations of UPGMA and other common clustering algorithms. Information Processing Letters.2007,104(6):205-210.
    [85]Drummond A, Rodrigo AG. Reconstructing genealogies of serial samples under the assumption of a molecular clock using serial-sample UPGMA. Molecular Biology and Evolution.2000,17(12):1807-1815.
    [86]Highton R. The relationship between the number of loci and the statistical support for the topology of UPGMA trees obtained from genetic distance data. Molecular phylogenetics and evolution.1993,2(4):337-343.
    [87]Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution.1987,4(4):406-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700