用户名: 密码: 验证码:
EASM1模型的建立及在城市污水生物添加强化脱氮中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数值模拟是研究活性污泥法处理城市污水这一复杂生化过程并对其进行控制的有效手段。本研究在国际水协会ASM1模型的基础上进行了扩展,增加了除磷功能,建立了具有除碳、脱氮、除磷功能的EASM1模型(Extention of ActivatedSludge Model No.1),利用欧盟基准BSM1(Benchmark Simulation Model No1)和国际水协会ASM2对EASM1模型进行了验证。
     将EASM1模型分别应用于序批式工艺(SBR)和连续流工艺(A~2/O)的生物添加强化生物脱氮系统。依据生物添加的特征,提出了投加比a(投加流量与进水流量的比值)的概念,用于表征生物添加过程。模拟结果表明,在短污泥龄(SRT=6d)的条件下,投加比越大,硝化速率越大,氨氮转化率越高,生物添加强化效果越好。无生物添加时(a=0),硝化能力较差,经50天运行,氨氮去除率仅为17%,出水氨氮为35mg/L;当a=0.01时,经50天运行,氨氮去除率可达到80%以上,出水氨氮可降至5mg/L;当a=0.2时,仅经15天后,出水氨氮降至1mg/L以下。将模拟结果与实验结果进行对比,两者结果基本一致,说明本研究提出的拓展模型和模拟方法可较好地模拟活性污泥生物添加强化生物脱氮系统。
     针对现有活性污泥模型的参数识别方法,如人工试错法、遗传算法等,算法复杂、收敛速度慢、准确率低,提出采用支持向量机法的模型参数识别方法。结果表明,选取5个敏感性较强参数(Y_H,μ_H,b_H,μ_a, k_h),选用支持向量机法时,平均相对误差为1.335%,其中Y_H为0.015%, H为2.76%,b_H为1.43%,μ_a为0.58%, k_h为1.89%,整体相对误差波动较小;当选用遗传算法时,平均相对误差为1.622%,其中Y_H为0.03%,μ_H为4.47%,b_H为1.47%,μ_a为0.46%,k_h为1.68%,整体相对误差波动较大,说明支持向量机法的平均识别准确率优于遗传算法。
     借鉴现代控制理论,用状态空间法描述污水水质与控制参数之间的变化关系,借助变步长加速法进行寻优,从而达到对活性污泥系统进行基于模型的控制。以A~2/O中试系统为研究对象,以出水氨氮和硝氮为指标,其主要控制参数为污泥龄、曝气量和污泥回流比。在传统控制策略下,仅能凭经验对控制参数的变化量进行选择和控制,且无法预知控制结果。当污泥龄为15天,溶解氧为1.65mg/L,内回流比为50%时,出水氨氮为13.53mg/L,硝氮24.12mg/L,氨氮超过国家城镇污水处理厂污染物排放标准中的一级B标准。以活性污泥模型为基础,利用状态空间法和变步长加速法,选取出水氨氮及硝氮为控制变量,以溶解氧及内回流比为操作变量(污泥龄不变条件下),经模拟计算,确定溶解氧增量为1.84,内回流比增量为0.75。以模拟计算的参数对实际系统进行控制,2天后,出水氨氮由13.53减少至4.1mg/L左右,出水硝氮由24.12减少至9.4mg/L左右。以上结果表明当进水水质不变时,该控制方法可以实现对控制参数的定量操作及对污水处理系统进行定量控制。通过监测进水水质的变化,应用该方法还可实现对处理系统的前控制。
Simulation is an effective method for studying and coltrolling complicatedbiological process. A modified model named EASM1(Extented Activated SludgeModel No.1) was developed based on ASM1(Activated Sludge Model No.1) by addedphosphorus removal function and verified by using BSM1model (BenchmarkSimulation Model No1) and ASM2(Activated Sludge Model No.2) model. Finally, themodel was applied in bio-augmention process to enhance nitrogen removal in municipalwastewater treatment.
     Although ASM1was used widely in the world, it just can be applied to simulatecarbon and nitrogen removal. Based on ASM1model EASM1have been develpoed byadded phosphorous removal, and applied to simulate sequencing batch reactor (SBR)and continuous flow system (A~2/O). According to the characteristics of bio-augmention,this article put forward the specific dosing value (the ratio of dosing flow and influentflow, notes for “a” in percentage), and used specific dosing value to bio-augmentprocess. The simulation results show that under short sludge age conditions (SRT=6d),the more specific dosing flow added, the higher nitrification rate increased. When nobiological dosing flow added (a=0), the system of nitration ration is low, for simulationof50days, ammonia nitrogen removal rate is only17%, ammonia nitrogenconcentration of effluent is35mg/L, When a=0.01, for simulation of50days, removalrate of ammonia nitrogen can achieve80%above, and the ammonia nitrogen of effluentcan plunge to5mg/L; When a=0.2, only for15days of simulation later, the ammonia nitrogen of effluent almost drop down to zero. Compared the simulation results withexperiment results of SBR and A~2/O peocesses, it was concluded that the EASM1model and simulation method is suitable for apply to bio-augmention process toenhance nitrogen removal.
     Some existing methods of parameter identification which was applicated inactivated sludge model, such as artificial testing method, genetic algorithm, and so on.These methods have some disadvantages, such as algorithm complex, low speedconvergence and low accuracy. It was proposed the support vector machine (SVM)method of pattern recognition applied to activated sludge process. The simulationresults show that, the selection of five sensitivity parameters(Y_H,μ_H,b_H, a, k_h),was choosed to support vector machine (SVM), the average relative error is1.335%, therelative error of five parameters are0.015%,2.76%,1.43%,0.58%,1.89%, and selectedwith the genetic algorithm method, the average relative error is1.622%, which relativeerror of parameters are0.03%,4.47%,1.47%,0.46%,1.68%, these compared resultshow that the accuracy of support vector machines method is more than geneticalgorithm.
     For the control based on activated sludge model, which was used the state spacemethod and step acceleration algorithm to describe relationship between the control andwater quality, this article was put forward a kind of control algorithm based on activesludge model. Through analysed the simulation result which have been done theexperiment of A~2/O system, the ammonia nitrogen and nitrate nitrogen were selected astarget variables of effluent flow, dissolved oxygen and inside return sludge ratio wereslected as the control variables. Under the traditional strategy of control, it was couldnot select and confirm the controlled parameter by experience.When sludge age (SRT)is for15days, dissolved oxygen is0.65mg/L, the inside return sludge ratio is50%,ammonia nitrogen of effluent is13.53mg/L, nitrate nitrogen of effluent is24.12mg/L.Ammonia nitrogen and nitrate nitrogen are more than the B level of urban sewagedischarge standard. Through simulation of calculation, dissolved oxygen increment is1.84, the inside return sludge ratio of increment is0.75. After simulating of control,ammonia nitrogen was below4.1mg/L, and nitrate nitrogen of effluent was below9.4mg/L by contorl. The results show that this method can operate the control parameter quantitatively as influent is constant in the wastewater treatment system. Thoughmonitored the quality of influent, this method also achieved forward control inwastewater treatment system.
引文
[1]高廷耀,顾国维.水污染控制工程(下册)[M].第二版.北京:高等教育出版社,2003:133-255.
    [2] Arden E, et al. Experiments on the Oxidation of Sewage without the Aid offiliters [J]. J Soc Chem Ind,1914,33:523.
    [3] Buswel A M, et al. Miicrobiology and Theory of Activated Sludge [J]. J Ampollut Wks Assn,1923,10(2):309.
    [4] McKee J E, et al. load Distribution in the Activated Sludge Process [J]. sewageWorks J,1942,14(1):121.
    [5] Ducleauk. Traite de Microbiology [J]. Masson et Cie Paris,1898:208.
    [6] Monod, J. La technique de culture continue, theroie et applications [J]. Ann InstPasteur,1950,79:390-410.
    [7] Pirt, S J. The maintenance energy of bacteria in growing culture [J]. Proc RoySoc Series B,1965,163:224-231.
    [8] Stanier R Y, Doudoroff M, Kunisawa R, et al. The role of organic substrates inbacterial photosynthesis [J].Proc Narl Acad Sci USA,1959,45:1246-1249.
    [9] Zevenhuizen L P T M and Ebbink A G. Interrelations between glycogen,ploy-β-hydroxybutyrate and liqids during accumulation and subsequentutilization in a Pseudomonas [J]. Ann van Leenwengock,1974,40:103-120.
    [10] Chudoba J, Cech J S, Farkac J, et al. Control of activated sludge filamentousbilking II Selection of microorganisms by means of a selector [J]. Wat Res,1973,1389-1406.
    [11] Van den Eijnde E, Vriens L, Wynants M, et al. Transinet behaviour and timeaspects of intermittently and continuously fed bacterial cultures with regard tofilamentous bulking of activated sludge [J]. Appl Microbiol Biotechnol,1984,19:44-52.
    [12] wentzel M C, Lotter L, Loewenhal R E, et al. Metabolic behaviour ofAcinetabacter spp. In enhanced biological phosphorous removal a biochemicalmodel [J]. Water S A,1986,12:209-224.
    [13] Satoh H, Mino T and Matsuo T. Uptake of organic substrates and accumulation ofpolyhyroxyalkanoates linked with glycolysis of intercellular carbohydrates underanaerobic conditions in the biological excess phosphorus removal process [J].Wat Sci Tech,1992,26:933-942.
    [14] Clifft R C and J F Andrews. Predicting of the dynamics of oxygen utilization inthe activated sludge process [J]. WPCF,1981,53(7):1219-1228.
    [15] van Loosdrecht M C M, Pot M A and Heijnen J J. Importance of bacterial storagepolymers a bioprocess [J]. Wat Sci Tech,1997,35(1):41-47.
    [16] Krishna C and van Loosdrecht M C M. Effect of temperature on storage polymersand settleability of activated sludge [J]. Wat Res,1999,33(10):2374-2382.
    [17] Krishna C and van Loosdrecht M C M. Substrate flux into storage and growth inrelation to activated sludge modeling [J]. Wat Res,1999,33(14):3149-3161.
    [18] Dircks K, Henze M, van Loosdrecht M C M, et al. Storage and degradation ofploy-β-hydroxybutyrate in activated sludge under aerobic conditions [J]. Wat Res,2001,35(9):2277-2285.
    [19] Carta F, Benu J J, van Loosdrecht M C M, et al. Simultaneous storage anddegradation of PHB and glycogen in activated sludge cultures [J]. Wat Res,2001,35(11):2693-2701.
    [20] Beun J J, Dircks K, van Loosdrecht M C M and Heijnen J J.ploy-β-hydroxybutyrate metabolism in the dynamically fed mixed microbialcultures [J]. Wat Res,2002,36:1127-1180.
    [21] Antonio M P, Martins, Heijnen J J, et al. Effect of feeding pattern andstorage on the sludge setteability under aerobic conditions[J]. Wat Res,2003,37:2555-2570.
    [22] Porges N, Jascwic L and Hoover S R.Aerobic treatment of dariy vraste [J]. ApplMicrobiol,1953,1:261-270.
    [23] Herbert. The chemical composition of micro-organisam as a function of theirenvironmemt[J]. Rec Progress in Microbiol,1958:391-416.
    [24] Dawes E A and Ribbon D W. The endogenous metabolism of micro-orgamsms[J].Ann Review Microbiology,1962,16:241--264.
    [25] Jones G L. Bacterial growth kinetics: measurement and significance in theactix;ated sludge process[J]. Wat Res,1973,7(10):1475-1492.
    [26] Kountz R R and Forney C. Metabolic energy balances in a total oxidationactivated sludge system [J]. Sew Ind Wastes,1959,31:819-826.
    [27] McKinney R E.Complete mixing activated sludge[J]. Wat Sew Works,1960,121:246-259.
    [28] Washington D R and Symons J M. Volatile solids accumulation in activatedsludge systems [J]. JWPCF,1962,37:707-790.
    [29] Grady C P L and Roper R E.A model for the bio-oxidation process whichincorporates the viability concept[J]. Water Research,1974,8:471-483.
    [30] Dold P L, Ekama G and Marais G V-R.A general model for the activated sludgeprocess [Jl.Prog Wat Tech,1980,12(6):47-77.
    [31]赵耘挚.SBR及其改良工艺数学模型与仿真软件研究[D].上海:东华大学.2003:19-21.
    [32] Mark C M, van Loosdrecht and Henze M.Maintenance, endogeneous respiration.lysis, decay and predation[Jl. Wat Sec Tech,1999,39(1):107-117.
    [33] Winogradsky S.Recherches sur le orgamnismes de la nitrification [J]. Ann InstPasteur,1890,4:213-231.
    [34] Breal E.De la presence, dans la paille, d'un ferment aerobie, reducteur des nitrates[J]. Compte rendu Andu Acad Sci,1892,114:681-684.
    [35] Kluyver A J and Donker H J K. Die einheit in der biochemie[J]. Chem Zelle uGewebe,1926,13:134-190.
    [36] Beijerinck M W and Minkman D C J.Bildung and verbrauch von stickoxyduldurch bacterien [J]. Zentralbl Bakteriol Parastienk Abt11,1910,25:30-63.
    [37]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社.2002.
    [38] Voets J P9Vanstaen H and Verstraete W. Removal of nitrogen fromⅪgMynitrogenouswastewaters[J]. Water Pollution Control Fed,1975,47:394-398.
    [39] Turk O and MavinciD S. Selective inhibition: a novel concept for removingn.itrogen from highly nitrogenous wastes [J]. Environ TechnolLett,1987,8:419-426.
    [40] Villaverde S, Garcia-Encina P A, Fdz-Poianco F. Influence of pH over Ilitrifyingbiofilm activity in sumerged biofilers[J]. Wat Res,1997,31(5):1180-1186.
    [41]马勇,王淑莹,曾薇等.A/O生物脱氮工艺处理生活污水中试(一).短程硝化反磷化的研究[J].环境科学学报,2006,26(5):703-709.
    [42]马勇,李军,吴学蕾等.AlO生物脱氮工艺处理生活污水中试(三)短程硝化过程控制的研究[J].环境科学学报,2006,26(5):716-721.
    [43] Robertson L A and Kuenen J G.Combined heterotrophic nitrification amd aerobicdenitrification in Thioshaera pantotropha and other bacteria[J]. Ant VanLeeuwenhock,1990,56:989-299.
    [44] Muller E B, Stouthamer A H and Verserveld H W. Simultaneous NH30xidationand N2production at reduced O2concentrations by sewage sludge subculturedwith chemolithotrophic medium[J]. Biodegradation,1995,6:339-349.
    [45] Book E I, Stuevea R and Zart D.Nitrogen loss caused by denitrifyingNitrosomonas ceHs using ammonium or hydrogen as electron donors and nitriteas electron acceptor[Jl. Arch Microbiol,1995,163:16-20.
    [46] Schmidt I and Bock E. Anaerobic ammonia oxidation with nitrogen dioxide byVitrosomonas eutropha[Jl. Archives of Microbiology,1997,167:106-111.
    [47] Jetten M,Strous M, et al.The anaerobic oxidation of ammoruum. FEMSMicrobiol Rev[J],1999,22:421-437.
    [48]荑明,张学洪,王敦球等.城市污水生物脱氮除磷机理研究进展[J].广西科学院学报,2004,20(1):29-33.
    [49]董姗燕,姚重华.活性污泥生物除磷数学模型研究进展[J].化工环保,2005,20(4)281-285.
    [50] Carucci A, Lindrea K, Majone M, et al. Different mechamsms for the anaerobicstorage of organic substrates and their effecton enhanced biological phosphorusremoval[J]. Wat Sci Tech,1999,39(6):21-28.
    [51] Jeon C O and Park J M. Enhanced biological phosphorus removal in a sequencingbatch reactor supplied with glucose as a sole carbon source[J]. Wat Res,2000,34(7):2160-2170.
    [52] Wang N D, Peng J and Hill G. Biological model of glucose induced enhancedbiological phosphorus removal under anaerobic condition[Jl. Wat Res,2002,36(1):49-58.
    [53] Gerber A, de Villiers H, Mostert E S et al. The phenomenon of simultaneousphosphate uptake and release, and its importance in biological nutrientremoval[C]. Ramadori R. Biological Phosphate Removal from Wastewaters:Advances in Water Pollution Control No.2, Oxford: Pergamon Press:1987,123-134.
    [54] Comeau Y, Oldham W K and Hall K J. Dynamics of carbon reserves inbiological dephosphatation of wastewater[C]. Ramadori R. Biological PhosphateRemoval from Wastewaters: Advances in Water Pollution Control No.2, Oxford:Pergamon Press,1987,39-55.
    [55] Kerrn-Jespersen J P and Henze M. Biological phosphorus uptake under anoxicand aerobic conditions[J]. Wat Res,1993,27(4):617-624.
    [56] Kuba T, Smolders G J F, van Loosdrecht M C M, et al. Biological phosphorusremoval from wastewater by anaerobic-anoxic sequencing batch reactor[Jl. WatSci Tech,1993,27:241-252.
    [57] Kuba T, Wachtmeister A, van Loosdrecht M C M and Heijen J J. Effect of nitrateon phosphorus release in biological phosphorus removal systems[J]. Wat SciTech,1994,30:263-269.
    [58] Kuba T, van Loosdrecht M C M and Heijen J J.A metabolic model for thebiological phosphorus removal by denitrifying organisms[Jl. Biotechnol andbioeng,1996,52:33-40.
    [59] Kuba T, van Loosdrecht M C M and Heijen J J. Effect of cyclic oxygen exposureon the activity of denitrifying phosphorus removing bacteria[J]. VVat Sci Tech,1996,33-34.
    [60] Kuba T, van Loosdrecht M C M and Heijen J J.Phosphorus and nitrogen removalwith minimal COD requirement by integration of denitrifying dephosphatationand nitrifying in a two-sludge system [J]. Wat Res,1996,30(7):1702-1710.
    [61] Kuba T, van Loosdrecht M C Ma'nd Heijen J J. Biological dephosphatation byactivated sludge under denitrifying conditions: pH influence and occurrence ofdenitrifiying dephosphatation in a full-scale wastewater treatment plant[J]. WatSci Tech,1997,36(12):75-82.
    [62] Wachtmeister A, Kuba T, van Loosdrecht M C M, et al. A sludgecharacterization assay for aerobic and denitrifying phosphorus Removingsludge[Jl. Wat Res,1997,31(3):471-478.
    [63] Cech J S and Hartman P. Competition between polyphosphate andpolysaccharide accumulating bacteria in enhanced biological phosphate removalsystem[Jl. Wat Res,1993,27:1219-1225.
    [64] Wen-Tso Liu, Mino T, Nakamura K, et al. Glycogen accumulating populationand its anaero'oic substrate uptake in anaerobic aerobic activated sludge withoutbiological phosphorus removal[J]. Wat Res,1996,30(1):75-82.
    [65] Fang H P H, Zhang T and Liu Y. Characterization of an acetate-degrading sludgewithout intracellular accumulation of polyphosphate and glycogen[J]. Water Res,2002,36(13):3211-3218.
    [66] Okunuki S, Kawaharasaki M, Tanaka H, et al. Changes in phosphorus removingperformance and bacterial community structure in an enhanced biologicalphosphorus removal reactor[J].Wat Res,2004,38:2432-2438.
    [67] Zeng R J, Yuan Z G and Keller J. Enrichment of denitrifyingglycogen-accumulating organisms in anaerobic/anoxic activated sludgesystem[J].Biotechnology and Bioengineering,2003,81(4):397-404.
    [68] Lopez C, Pons M N and Morgenroth E. Endogenous process during long-termstarvation in activated sludge performing enhanced biological phosphorusremoval[J]. Wat Res,2006,40:1519-1530.
    [69] Lopez-Vazquez C M, Song Y, Hooijmans C M, et al. Short-term temperatureeffects on the anaerobic metabolism of glycogen accumulating organisms[Jl.Biotechnology and Bioengineeering,2007,97(3):483-495.
    [70] Filipe C D M, Daigger G T and Leslie Grady Jr C P.A metabolic model foracetate uptake under anaerobic conditions by glycogen accumulating organisms:Stoichiometry, kinetics and the effect of pH[J]. Biothechnology and Bioengineering,2001,76(1):17-31.
    [71] Zeng R J, van Loosdrecht M C M, Yuan Z, et al. Metabolic model forglycogen-accumulating organisms in anaerobic/aerobic activated sludgesystems[J]. Biotechnology and Bioengineering,2003,81(1):92-105.
    [72] Abeysinghe D, DeSilva D, Stahl D et al. The effectiveness of bio-augmentation inNitrifying systems stressed by a washout condition and cold temperature [J]. WatEnviron Res,2002,74(2):187-99.
    [73]全向春,刘佐才,范广裕等.生物强化技术及其在废水治理中的应用[J].环境科学研究,12(3):1999.
    [74] Kos R. Short SRT (solids retention time) nitrification Proeess/flowsheet [J]. WatSci Teeh,1998,38(l):23-29.
    [75] Kos P. Method and system for improved biological nitrification of wastewater atlow temperature [P]. US Patent No.882607,1998-9-22.
    [76]赵义,郝晓地,朱景义.侧流富集/主流强化硝化(BABE)升级工艺[J].中国给水排水,2006,22(2):5-8.
    [77] Berends D, Salem S, van der Roest H et al. Boosting nitrification with the BABEtechnology [J].Wat Sei Tech,2005,52(4):63-70.
    [78] Berends D, Janssen P, Salem S et al. Ready for business. Look at a new methodfor combining sludge liquor treatment and the augmentation of nitrifyingorganisms in the main treatment stream[J].Water21,2003,(4):32-34.
    [79] Salem S, Berends D, Heijnen J. Model-based evaluation of a new upgradingconcept for N-removal [J]. Wat SciTech,2002,45(6):169-176.
    [80] Salem S, Berends D, van der Roest H. Full-scale application of the BABEtechnology [J].Wat Sci Tech,2004,50(7):87-96.
    [81] Salem S, Berends D, Heijnen J. Bio-augmentation by nitrification with returnsludge[J].Wat Res,2003,37(8):1794-1804.
    [82] Honunel B, van der Zandt E, Bernds D et al. First application of the BABEprocess at S-Hertogenbosch WWYP. Proceeding of WEFTEC2006[CD-ROM],WEF, Alexandria, Virginia.
    [83] Monod J. Recherche sur la Croissance des Cultures Bacteriennes[J]. Herman etCie, Paris, France,1942.
    [84] Monod J. The Growth of Bacterial Cultures[J]. Ann Rev Microbiol,1949,3:371-394.
    [85] Michaelis L and Menten M L.Die Kinetik der Invertinwirkung[J]. BiochemZ,1913,49:333-369.
    [86] Holmberg A, et al.Procedures for Parameter and State Estimation of MicrobialGrowth Process Models[J]. Automatics,1982,18(2):181-193.
    [87] Vialas C, et al. An Experimental Approach to Improve the Monod ModelIdentification[C]. Proc. Modelling and Control of Biotechnological Processes:lst IFAC Symposium. Noordwijkerhout, The Netherlands,1985,175-180.
    [88] Ratkowsk D A.A Suitable Parametrization of the Michaelis-Menten EnzymeReaction [Jl. Biochem J,1986,240:357-360.
    [89] Derco J, et al. Dynamic Modelling of Activated Sludge Process (2): LinearizedKinetic Models[J]. Chemical Papers-Chemicke Zvesti,1990,44(5):659-668.
    [90]强锡辉,高等环境化学与微生物学原理及应用[M].北京:化学工业出版社,2001:159-161.
    [91] Eckenfelder W W and O-Connor D J. The Aerobic Treatment of OrganicWastes[Cl.Proc9th Industrial Waste Conf, Purdue University: Lafayette, Indiana,USA,1955.
    [92]张自杰,周帆.活性污泥生物学与反应动力学[M]北京中国环境科学出版社,1989:444-544.
    [93] Mc Kinney R E and San J.Mathematics of complete-mixing activated sludge[J].Eng Div,ASCE,1962,88(3).
    [94] Mc Kinney R E and Ooten R J.Concepts of Complete Mixing ActivatedSludge[C]. Trans.19th San Eng Conf, University of Kansas. Kansas. USA.1969,32-59.
    [95] Larrence A W and McCarty P L.Kinetics of ethane fermentation in anaerobictreatment[J]. J WPCF,1969,41(2): Rl-R17.
    [96] Marais G V R and Ekama G A.The Activated Sludge Process: Part l-Steady StateBehaviour[Jl. Water S A,1976,2:163-200.
    [97] Ekama G A, Marais G V R.Dynamic Behaviour of the Activated SludgeProcess [J]. Water Pollution Control Fed,1979,51:534-556.
    [98] Dold P L, Ekama G A and Marais G V R.A General Model for the ActivatedSludge Process[J]. Prog Wat Tech,1980,12:47-77.
    [99] Van Haandel A C, Ekama G A and Marais G V R.The Activated SludgeProcess: Part3-Single Sludge Denitrification[J]. Wat Res,1981,-15:1135-1152.
    [100] Henze M, Grady Jr C P L, Gujer W, et al.Activated Sludge Model [J] IAWQScientific and Technical Re port No.1,IAWQ, London, Great Britain,1987.
    [101]Gujer W, Henze M, Mino T, et al.Activated Sludge Model No.3[J].Wat Sci Tech,1999,39(1):183-193.
    [102] O Karaha-Gul, van Loosdrecht M C M and Orhon D. Modifying of Actnratedsludge model No.3.considering direct growth in primary substrate [J]. Wat SciTech,2003,47(11):219-225.
    [103] Krist V G, van Loosdrecht M C M, Henze M, et al. Activated sludge wastewatertreatment plant modelling and simulation: state of the art[J].EnvironmentalModelling&Software,2004.19:763-783.
    [104] Wentzel M C, Loewenthal R E, Ekama G A, et al. Enhanced polyphosphateorganism cultures in activated sludge systems. Part I: enhanced culturedevelopment[J]. Water SA,1988,14(2):81-92.
    [105] Wentzel M C, Ekama G A, Loewenthal R E, et al. Enhanced polyphosphateorganism cultures in activated sludge systems Part II:experimental behaviour[J].Water SA,1989,15(2):71-88.
    [106] Wentzel M C, Dold P L, Ekama G A, et al. Enhanced polyphosphate organismcultures in activated sludge systems. Partm:kinetic model [Jl. Water SA,1989,15(2):89-102.
    [107] Wentzel M C, Ekama G A, Marais G V R.Process and modelling of nitrificationdenitrification biological excess phosphorus removal systems-a review[J]. WatSci Tech,1992,25(6):59-82.
    [108] Henze M, Gujer W, Mino T, et al. Activated sludge model No.2IAWQ Scientificand Technical Report No.3[R]. London, UK: IAWQ,1995.
    [109] Barker P S and Dold P L. General model for biological nutrient removalactivated sludge systems: model presenta tion[J]. Water Environ Res,1997.69(5):969-984.
    [110] Henze M, Gujer W, Mino T, et al.Activated sludge model No.2d[J]. Wat SciTech,1999,39(1):165-182.
    [111] Wentzel M C, Ekama G A and Marais G V R. Process and modelling ofnitrification denitrification biological excess phosphorus removal systems-areview [Jl. Wat Sci Tech,1992,25(6):59-82.
    [112] Smolders G J F, van Loosdrecht M C M and Heijnen J J. A model of theanaerobic metabolism of the biological phosphorus removal process;stoichiometry and pH influence[J]. Biotech Bioeng,1994,43:461-470.
    [113] Smolders G J F, van Loosdrecht M C M and Heijnen J J.Stoichiometric modelof the aerobic metabolism of the biological phosphorus removal process[Jl.Biotech Bioeng,1994,43:837-848.
    [114] Smolders G J F, van der Meij J, van Loosdrecht M C M, et al.A structuredmetabolic model for the anaerobic and aerobic stoichiometry and kinetics of thebiological phosphorus removal process [J]. Biotech Bioeng,1995,47:277-287.
    [115] Kuba T, Murnleitner E, van Loosdrecht M C M, et al. A metabolic model forthe biological phosphorus removal by denitrifying organisms[Jl. Biotech Bioeng,1996,52:685-695.
    [116] Murnleitner E, Kuba T, van Loosdrecht M C M, et al. An integrated metabolicmodel for the aerobic and denitrifying biological phosphorus removal process[J].Biotechnol. Bioeng,1996,52:685-695.
    [117] Van Veldhuizen H M,van Loosdrecht M C M and Heijnen J J. Moclellingbiological phosphorus and nitrogen removal in a full scale activated sludgeprocess[J]. Wat Res,1999,33(16):3459-3468.
    [118] Brdjanovic D, van Loosdrecht M C M', Versteeg P, et al. Modeling COD, N andP removal in a full-scale wwtp Haarlem Waarderpolder [J]. Wat Res,2000,34(3):846-858.
    [119] Meijer S C F, van Loosdrecht M C M and Heijnen J J. Metabolic modelling offull-scale enhanced biological phosphorus removing wwtp's[Jl. Wat Res,2001,35(11):2711-2723.
    [120] Meijer S C F, van Loosdrecht M C M and Heijnen J J. Modelling the start-up ofa full-scale biological phosphorous and nitrogen removing WWTP[J]. Wat Res,2002,36:4667-4682.
    [121] Rieger L, Koch G, Kuhni M, et al. The EAWAG bio-P module for activatedsludge model No.3[J]. Wat Res,2001,33(16):3887-3903.
    [122]王建平,程声通,贾海峰.环境模型参数识别方法研究综述[J].水科学进展,2006,17(4):573-580.
    [123] April J, Glover F. Practical introduction to simulation optimization. Proc WinterSimulation Conference,2003.71-781.
    [124] Beven K, Binley A. The future of distributed models: model calibration anduncertainty prediction [J]. Hydrological Processes.1992,6:279-2981.
    [125] Duan Q, Sorooshian S. Effective and efficient global optimization for conceptualrainfall to runoff models [J]. Water Resources Research.1992,28:1015-10311.
    [126] Neuman S P Calibration of distributed parameter groundwater flow modelsviewed as a multiple-objective decision process under uncertainty[J]. WaterResources Research.1973,9(4):1006-10211.
    [127] Yeh W W G. Review of parameter identification procedures in ground hydrology:the inverse problem [J]. Water Resources Research.1986,22(2):95-1081.
    [128] David A K, Ioannis KT.3D eutrophication modeling of hamilton harbour:analysis of remedial options [J].Great Lakes Res.1999,25(1):3-25.
    [129]Jorgensen S E. An improved parameter estimation procedure in lake modeling [J].Lake&Reservoirs:Research and Management,1998,3:139-142.
    [130] Shen J, Kuo A Y Eutrophication model calibration as a coupled inverse problem.Estuarine and Coastal Modeling: Proceedings of the Seventh InternationalConference.2001.585-599.
    [131]钱伟长.变分法及有限元[M].北京:科学出版社,1980.
    [132] Hornberger GM, Spear P C. Eutrophication in Peel Inlet-I, The problem definingbehaviour and mathematical model for the phosphorus scenario [J]. Wat. Res.1980,14:29-421.
    [133] Spear R C,Hornberger GM. Eutrophication in Peel Inlet-II,Identification ofcritical uncertainties via generalized sensitivity analysis[J]. Wat. Res.1980,14:43-49.
    [134] Kirkpatrick S, Gelatt C D, Vecchi M P Optimization by simulated annealing [J].Science.1983,220(4598):671-680.
    [135] Foge D B. Evolutionary Computation:The Fossil Record [M]. NewYork:IEEEPress,1998.
    [136]Glover F, Laguna M. Tabu Search [M]. Boston, M A: KluwerAcademic Publisher,1997.
    [137] Chen J, Wheater H S. Identification and uncertainty analysis of soil waterretention models using lysimeter data [J]. Water Resources Research.1999,35(8):2401-2414.
    [138] Ng A W M, Pererab B J C. Selection of genetic algorithm operators for riverwater quality model calibration [J]. Engineering Applications of ArtificialIntelligence,2003,16:529-541.
    [139]王小平,曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [140] Mulligan A E, Brown L C. Genetic algorithms for calibrating water qualitymodels [J]. Journal of Environmental Engineering.1998,124(3):202-21I.
    [141]鞠兴华.城市污水活性污泥生物脱氮模型及模拟研究[D].西安:西安建筑科技大学,2008:54-67.
    [142]王巍,曾光明,秦肖生.GSA法在水质模型参数估值中的应用[[J].上海环境科学,2003,22(9):619-623.
    [143] Karama A, Bernard O, Gouze J L, et al.Hybrid neural modeling of an anaerobicdigester with respect to biological constraints [J]. Wat Sci. Tech.,2001,43(7):1-8
    [144] Martin Cote, Bernard P A Grandjean, Paul Lessard, et al. Dynamic modeling ofthe activated sludge process improving prediction using neural networks [J]. Wat.Sci. Tech,1995,29(4):995-1004.
    [145] Jose Ragot, Gerard Grapin et al. Modeling of a water treatment plant: Amulti-model representation [J]. Environmetrics.2001,12:599-611.
    [146] Aoi T, Okaniwa Y, K Hagiwara, et al. A direct ammonium control system usingfuzzy inference in a high-load biological denitrification process treating collectedhuman excreta [J]. Wat. Sci. Tech,1992,26(5-6):1325-1336.
    [147] Ferrer J, Rodrigo M A, Seco A, et al. Energy saving in the aeration process byfuzzy logic control [J]. Wat. Sic. Tech,1998,38(3):209-217.
    [148] J.Alex, U Jamar, R Tschepetzki. A fuzzy controller for activated sludgewastewater plants. IFAC Artificial Intelligence in Real Time Control, Valencia,Spain,1994.
    [149] Lindberg C F. Multivariable modeling and control of an activated sludge process[J]. Wat. Sci. Tech.,1998,37(12):149-156.
    [150] A. Sanchez, M. R. Katebi. Predictive control of dissolved oxygen in an activatedsludge wastewater treatment plant[C]. Proc. of the European Control ConferenceECC'2003, Cambridge, UK.
    [151] Ko K Y-J, Mclnnis B C, Goodwin G C. Adaptive control and identification of thedissolved oxygen process [J]. Automaitca,1982,18(6):727-730.
    [152] Olsscn G, Randqwist L, Ericsson L, et al. Self-tuning control the dissolvedoxygen concentration in activated sludge systems.In: Halme A. Instrumentationand Control of Water and Wastewater Treatment and Transport System [J].Proc.4th IAQPRC Workshop. Pergamum, Oxford,1985:473-480.
    [153] Marsili-Libelli S, Giardi R, Lasagni M. Self-tuning control of the activated sludgeprocess [J]. Environment Technology Letter1985,6(12):576-583
    [154] Lee B K, Sung S W, Chun H D, et al. Automatic control for DO and PH in theactivated sludge process in a coke wastewater treatment plant [J]. Water Scienceand Technology,1998,37(12):141-148.
    [155] Guangtao Fu, David Butler, Soon-Thiam Khu. Multiple objective optimal controlof integrated urban wastewater systems [J]. Environmental Modeling&Software.2008,23:225-234.
    [156] Jose M. V. Lara, Basilio E. A. Milani, Oscar A. Z. Sotomayor. Adaptivepredictive control of ammonium level based on dissolved oxygen variableset-point control in an activated sludge process [C]. Decision and Control,2005and2005European Control Conference. CDC-ECC apos;05.44th IEEEConference on Volume, Issue,12-15Dec.2005:3043-3048.
    [157] Ping Fang, Qiong Wan, Linfang Yu, etc. Modeling and Simulation of EnhancingNitrification in Wastewater Treatment though Bio-augment[C]. InternationalConference on Remote Sensing, Environment and Transportation Engineering(RSETE2011).Vol.6:5080-5083.
    [158] Ping Fang, Qiong Wan, Linfang Yu, etc. Modeling and Simulating forEnrichment of Nitrifying Bacteria by Reject water to Enhance Nitrification inWastewater Treatment[C]. International Conference on New Technology ofAgricultural Engineering (ICAE2011) Vol1:563-566.
    [159]房平,邵瑞华.最小二乘支持向量机应用于西安霸河口水质预测[J].系统工程,2011,29(6):113-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700