用户名: 密码: 验证码:
辽宁兴城地区中元古界大红峪组古海啸事件及沉积环境
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽宁兴城地区中元古界长城系地层发育较好,在基底太古宙绥中花岗岩之上沉积了常州沟组、串岭沟组、团山子组和大红峪组。近年来在中国地质调查局《辽宁1:25万锦西市幅区调修测》项目的支持下,本文对研究区内长城系岩石地层特征进行了详细研究,在大红峪组底部发现了极为难得且罕见的古海啸岩,可能是目前华北克拉通已知最古老的海啸事件报道。通过沉积学分析与对比,对古海啸岩的识别特征、海啸事件的引发机制及海啸等级进行了系统分析,并讨论了它的全球构造背景和古地理意义。
     本文对兴城地区长城系岩石地层的划分和特征进行了总结和修订,选择兴城东部夹山地区公路西侧长城系剖面为代表,并对大红峪组岩石地层特征展开详细研究。该剖面地层序列的特征与天津蓟县标准剖面基本可以对比,但由于地处燕山裂陷槽东部边缘,也具有一定特色,可划分为4个岩性段:一段为灰白色厚层石英砂岩质砾岩和含砾长石石英砂岩,其最底部发育复成分角砾岩(海啸岩);二段为灰白色厚层石英砂岩和厚层—巨厚层长石石英砂岩,夹薄层灰白色粉细砂岩及凝灰岩;三段为灰黑色粉砂质页岩夹灰白色长石石英砂岩及凝灰质粉砂岩;四段为岩屑长石石英砂岩夹粉砂岩。区内大红峪组可以角度不整合覆盖在常州沟组、串岭沟组或团山子组之上,也可直接覆盖在太古宙基底花岗岩之上,前人曾将这一现象解释为一次地壳运动—“兴城运动”,但尚存争议,本文对这一角度不整合接触关系进行了详细观测和分析。
     兴城地区大红峪组中保留有古海啸事件。本文详细描述了出露在茶棚庵、月亮山和夹山地区该组底部一套特殊的复成分角砾岩,它们明显异于正常的背景沉积。通过沉积岩石学、沉积结构、沉积序列和沉积环境等方面的研究得出该复成分角砾岩为准原地或短距离搬运的异地沉积,形成于异常高能的条件中,属于海啸沉积物,并对其进行了系统研究。通过与古海啸和大量现代海啸事件研究实例的对比,结合兴城地区中元古代古地理环境,总结了海岸古海啸岩的识别特征,如撕裂的碎屑;巨砾出现在沉积物中;砾石极差的分选性;向上变细的层序;复杂的沉积物来自下伏地层;侵蚀的基底。这些特征组合在一起,也适用于其他古海啸岩的识别,具有一定的普遍意义。
     论文分析了中元古代兴城地区在华北克拉通所处的构造环境,它靠近燕山—汎河古地震带(1700~1200Ma)东部界线。在大红峪组沉积早期,燕山裂陷槽南界发育滦县—建昌断裂带,该断裂以突发性和剧烈性为特征。兴城地区距离该断裂约50km,受其活动的影响,可能引发地震,属于地震海啸。结合区内古地理环境,讨论海啸岩可能经历了以下沉积过程:(1)产生和传播;(2)洪泛及沉积;(3)回流;(4)正常的背景沉积。根据现代国际海啸级别的判别标准,对该古海啸的级别和规模进行了推测。本文对兴城地区团山子期末期—大红峪期初期的沉积环境进行了详细分析。团
     山子组顶部白云岩中发育有叠层石,均属于燕山、太行地区长城系Gruneria-Eucapsiphora组合。根据岩石组合特征和叠层石形态垂向分布规律得出该组沉积环境演化为海退沉积序列(浅滩到潮间、潮上带)到海侵沉积序列(潮间、潮上带到潮间、潮下带),团山子期末期应属于潮坪环境。大红峪期沉积环境属于滨海相—浅海相沉积,海啸事件发生在两者过渡在海岸环境,海岸带开阔,地势平坦。海啸来自南西方向,与后期海侵方向相同。将区域构造活动与全球动力学背景相结合分析,认为燕山裂陷槽、华北克拉通
     以及哥伦比亚超大陆(Columbia)是处于同一全球伸展、拉张构造背景之下,考虑到大红峪组沉积时代与Columbia超大陆裂解时代的一致性,可以认为,华北克拉通上记录的一系列地质事件,比如海啸事件、火山喷发事件等是哥伦比亚超大陆的裂解在华北克拉通上的微观响应。
The strata of Mesoproterozoic Changcheng System are well developed in the Xingcheng area, Liaoning Province, China. The successions are composed of the Changzhougou Formation (Fm.), the Chuanlinggou Fm., the Tuanshanzi Fm., and the Dahongyu Fm., and they are sedimentary contact over the basement of Archean'Suizhong Granites'. Recently, under the support of the China Geological Survey (1:250000Scale Regional Geological Mapping Project of Jinxi City, Liaoning Province), the features of the Changcheng System in study area are detailed revised. The rare ancient tsunamite are found in the Dahongyu Fm., which is probably the oldest tsunami event in the North China Craton. The identification of tsunamite, triggering mechanism and magnitude of tsunami event are studied systematically by analysis and comparison in sedimentology. The meaning of the tsunami event in the global tectonic setting and palaeogeography is discussed.
     The feature of the Changcheng System in the Xingcheng area is summarized and revised, and the section at Jiashan was here proposed as a typical section in this area. The feature of the Dahongyu Fm. is detailed studied, and it could be correlated with that in strata type of the Jixian County, Tianjin. However, it also has some special Characteristics, since the area is tectonically located in the eastern margin of the Yanshan Taphrogenic Trough. The whole of the formation could be subdivided into4members:the1st Member is composed of thick bedded quartz conglomerates, and pebble contained arkose conglomerates, and a suit of specially formed breccia (tsunamite) in some places; the2nd Member is composed of grayish-white thick bedded quartz sandstones and thick to huge thick bedded feldsparthic quartz sandstones, and interbedded with some grayish-white thin bedded fine-silt sandstones and tuff; the3rd Member is grayish-black silt shales and interbedded with grayish-white feldsparthic quartz sandstones; the4th Member is composed of lithic quartz sandstones and fine-silt sandstones. The Dahongyu Fm. unconformably overlays the Changzhougou Fm., the Chuanlinggou Fm. or the Tuanshanzi Fm., and even the Archean granites, it is explained as a crust movement'Xingcheng Movement', and there is a debate on it. In current thesis, this angular unconformity relationship is re-observed and confirmed.
     The Dahongyu Fm. preserves the ancient tsunami event in the Xingcheng area. This paper detailed describes the special breccia from the bottom of the Dahongyu Fm. at Chapen'an, Yueliangshan, and Jiashan. These breccia are markedly different from normal sediments, and are analyzed in terms of sedimentary petrology, sedimentary texture and sedimentary sequence, and sedimentary environment. Based on the analyses of sedimentary facies, the special breccia is identified as tsunamite. They were deposited in abnormal high-energy sedimentary conditions, and belonged to parautochthonous and allochthonous deposits. After the comparison with the ancient and modern examples of tsunamite, and based on the lithofacies palaeogeography in the Xingcheng area, there are some features to identify the tsunamite:rip-up clasts; boulders exclusively appear in the deposits; poorly sorted gravels; fining-upward sequences; complex sediment sources of the underlying strata; erosional bases. These combined features also widespread apply to identification of other ancient tsunamite.
     The tectonic setting of the Xingcheng area is detailedly discussed, and it is close to the eastern edge of the ancient Yanshan-Fanhe Seismic Belt (1700-1200Ma). The Luanxian-Jianchang Fault lies at the southeastern edge of the Taihang-Yanshan Taphrogenic Trough, and occurred at the early stage of the Dahongyu Fm., it is characterized by abrupt and pulsing activities. The study area is about50km from this fault, and is affected by the fault. The tsunami was probably triggered by the earthquake, which resulted from the activities of the Luanxian-Jianchang Fault in the early Mesoproterozoic. Based on the analyses of lithofacies palaeogeography and sedimentary facies, the depositional process was discussed in the following:(1) Generation and propagation;(2) Inundation and deposition;(3) Backwash flow;(4) Normal background deposits. Acorrding to international magnitude of tsunami, the magnitude of the acient tsunami is discussed.
     The sedimentary environment of the later Tuanshanzi Stage-the later Dahongyu Stage is analysed in the paper. Stromatolites occur in the top of the Tuanshanzi Fm., they belong to the Changcheng System type stromatolite zone(Gruneria-Eucapsiphord) in Yanshan and Taihang Ranges. According to the lithostratigraphic characteristics, and the relationship between the vertical distribution rule of stromatolites' morphology and the paleoenvironment, the sedimentary environment history of the Tuanshanzi Stage in the Xingcheng area should be from regression (shallows to intertidal zone and supratidal zone) to transgression (intertidal zone and supratidal zone to intertidal zone and subtidal zone). The sedimentary facies was a tidal flat environment in the later Tuanshanzi Stage, and the depth of water cannot exceed50m. The sedimentary facies of the Dahongyu Stage are littoral-shallow marine. Therefore, the studied area was in an open coastal environment, and the terrain was flat in the Mesoproterozoic. The direction of tsunami waves should be from SW to NE, it is the similar direction as the later marine transgression.
     Based on the analyses of the regional and global tectonic backgrounds, the Yanshan Taphrogenic Trough, the North China Craton and the Columbia Supercontinent were in the same global extensional tectonic setting. Having considered the simultaneity and the consistent geodynamic pattern of regional and global tectonic backgrounds, some events, such as tsunamis and volcanic eruptions should be recognized as effects of the breakup of the Columbia Supercontinent in the North China Craton.
引文
[1]曹瑞骥,袁训来.叠层石[M].合肥:中国科学技术大学出版社,2006.
    [2]常绍泉,高复函.辽宁震旦亚界划分和对比问题[J].东北地质科技情报,1976(3):44-57.
    [3]常绍泉,张维芳,汪凤鸣,等.辽宁锦西葫芦岛的中元古界并论兴城运动的意义[J].辽宁地质学报,1984,(1):51-54.
    [4]陈从云,王东方.辽北中-晚元古代地层的划分与研究[J].中画地质科学院地质研究所所刊,1989,19:38-49.
    [5]陈晋镳,张惠民,朱士兴,等.蓟县震旦亚界的研究[C]//中国科学院天津地质矿产研究所.中国震旦亚界.天津:天津科学技术出版社,1980:56-114.
    [6]程远兵,李国斌,李靖.海啸对沿海地区桥梁结构的破坏及抵御对策[J].华北水利水电学院学报,2012,33(5):21-23.
    [7]崔盛芹,杨振升,仇甘霖,等.燕山地区晚元古代(震旦亚代)岩相古地理演化史[J].长春地质学院学报.1979,(4):29-52.
    [8]地球科学大词典编委会.地球科学大词典[M].北京:地质出版社,2006.
    [9]杜远生,龚一鸣,曾雄伟,等.广西泥盆系弗拉斯-法门期之交的事件沉积及其对小行星碰撞引起的大海啸的启示[J].中国科学:D辑,2008,38(12):1504-1513.
    [10]杜远生,韩欣.论海啸作用与海啸岩[J].地质科技情报,2000a,19(1):19-22.
    [11]杜远生,韩欣.论震积作用和震积岩[J].地球科学进展,2000b,15(4):389-394.
    [12]杜远生,张传恒,韩欣,等.滇中中元古代昆阳群的地震事件沉积及其地质意义[J].中国科学:D辑,2001,31(4):283-289.
    [13]段吉业,刘鹏举,万传彪.华北燕山中一新元占代震积岩系及其地震节律[J].地质学报,2002,76(4):441-445.
    [14]高林志,丁孝忠,曹茜,等.中国晚前寒武纪年表和年代地层序列[J].中国地质,2010,37(4):1014-1020.
    [15]高林志,张传恒,史晓颖,等.华北青白口系下马岭组凝灰岩锆石SHRIMPU-Pb定年[J].地质通报,2007,26(3):249-255.
    [16]高林志,张传恒,尹崇玉,等.华北古陆中、新元古代年代地层框架SHRIMP锆石年龄新依据[J].地球学报,2008,29(3):366-376.
    [17]高维,张传恒,高林志,等.北京密云环斑花岗岩锆石SHRIMPU-Pb年龄及其构造意义[J].地质通报,2008,27(6):25-30.
    [18]龚一鸣.风暴岩、震积岩、海啸岩—几个名词含义的商榷[J].地质论评,1988,34(5):481-482.
    [19]郭增建,陈鑫连.地震对策[M].北京:地震出版社,1986.
    [20]国家地质总局天津地质矿产研究所,中国科学院南京地质古生物研究所,内蒙古自治区地质局.蓟县震旦亚界叠层石的研究[M].北京:地质出版社,1979:39-48.
    [21]和睦.葫芦岛地区长城系常州沟组-团山子组沉积环境的初步分析[J].辽宁地质,1984(1):51-62.
    [22]和政军,孟祥化,葛明.燕山地区长城纪沉积演化及构造背景[J].沉积学报,1994,12(2):10-19.
    [23]和政军,宋天锐,丁孝忠,等.燕山中元古代裂谷早期同沉积断裂活动及其对事件沉积的影响[J].古地理学报,2000a,2(3):83-91.
    [24]和政军,宋天锐,丁孝忠,等.北京及邻区长城纪火山事件的沉积记录[J].沉积学报,2000b,18:510-514,520.[25]和政军,张新元.燕山地区长城纪扇三角洲沉积[J].岩相古地理,1993,13(5):36-43.
    [26]河北省、天津市区域地层编写组.华北地区区域地层表-河北省、天津市分册(一)[M].北京:地质出版社,1979.
    [27]河北省地质矿产局.河北省北京市天津市区域地质志[M].北京:地质出版社,1989.
    [28]河北省地质矿产局.河北省岩石地层[M].北京:中国地质大学出版社,1996.
    [29]洪作民.试论辽宁地壳运动[J].辽宁地质,1984,1:1-14.
    [30]姜在兴.沉积学[M].北京:石油工业出版社,2003.
    [31]柯长青.印度洋地震海啸(2004-12-26)及其对中国的警示[J].中国地质灾害与防治学报,2006,36(4):91-96.
    [32]李怀坤,李惠民,陆松年.长城系团山子组火山岩颗粒锆石U-Pb年龄及其地质意义[J].地球化学,1995,24(1):43-47.
    [33]李怀坤,陆松年,李惠民,等.侵入下马岭组基型岩床的锆石和斜锆石U-Pb精确定年—对华北中元古界地层划分方案的制约[J].地质通报,2009,28(10):22-29.
    [34]李明荣,王松山,裘冀.京津地区铁岭组、景儿峪海绿石40Ar-39Ar年龄[J].岩石学报,1996,12(3):416-423.
    [35]李尚林,王根厚,马伯永,等.藏北比如县玛双布上三叠统波里拉组震积事件沉积的发现及意义
    [J],吉林大学学报:地球科学版,2008,38(6):973-979.
    [36]梁定益,聂泽同,宋志敏,等.北京房山世界地质公园中元古界雾迷山组地震-海啸序列及地质特征—以野三坡园区为例[J].地质通报,2009,28:30-37.
    [37]梁玉左.论晚前寒武纪叠层石的生物地层学意义[C]//邱树玉,梁玉左,曹瑞骥,等.晚前寒武纪叠层石及相关矿产.西安:西北大学出版社,1992:19-60.
    [38]辽宁省地质局区域地质调查队.中华人民共和国区域地质调查报告(锦西幅K-51-XXV;兴城幅K-51-XXXI)[R].大连:辽宁省地质局区域地质调查队,1983.
    [39]辽宁省地质矿产局.辽宁省区域地质志[M].北京:地质出版社,1989.
    [40]辽宁省地质矿产局第四地质大队.中华人民共和国区域地质调查报告(高桥幅K-51-110-B;锦西幅K-51-110-D)[R].阜新:辽宁省地质矿产局第四地质大队.1992.
    [41]辽宁省地质矿产勘查开发局.辽宁省岩石地层[M].北京:中国地质大学出版社.1997.
    [42]林晓辉,吴昌华.燕山西段及太行山区长城系底界的讨论[J].地层学杂志,2002,26(1):46-49.
    [43]刘波,李锉,陈晋镳,等.辽宁兴城小盖州地区元古宙火山岩及扇-三角洲沉积[J].辽宁地质,1994,1-2:21-29.
    [44]刘鸿允.前寒武系的划分[C]//前寒武纪论文集.北京:地质出版社,1982.
    [45]刘鹏举.河北平泉中元古代高于庄组震积岩及地震节律[J].现代地质,2001,25(3):266-268.
    [46]陆松年,李怀坤,相振群.中国中元古代同位素地质年代学研究进展述评[J].中国地质,2010,37(4):1002-1013.
    [47]陆松年,李惠民.蓟县长城系大红峪组火山岩的单颗粒格石U-Pb法准确定年[J].中国地质科学院院报,1991,(22):137-146.
    [48]陆松年,王惠初,李怀坤.解读国际地层委员会2004年前寒武纪地层表及2004-2008年参考方案[J].地层学杂志,2005,29(2):180-187.
    [49]陆松年,杨春亮,李怀坤,等.华北古大陆与哥伦比亚超大陆[J].地学前缘,2002,9:225-233.
    [50]陆松年,张学祺,黄承义,等.蓟县-平谷长城系地质年龄数据新知及年代格架讨论[J].中国地质科学院天津地质矿产研究所所刊(23),1990:11-23.
    [51]马永生,仲力.风暴沉积、风暴岩的研究现状[J].地质科技情报,1990,9(3):9-14.
    [52]潘建国,曲永强,马瑞,等.华北地块北缘中新元古界沉积构造演化[J].高校地质学报,2013,19(1):109-122.
    [53]乔秀夫,高林志,张传恒.中朝板块中、新元古界年代地层柱与构造环境新思考[J].地质通报,2007a,26(5):503-509.
    [54]乔秀夫,高林志.燕辽裂陷槽中元古代古地震与古地理[J].古地理学报,2007b,9(4):337-352.
    [55]乔秀夫,李海兵.沉积物的地震及古地震效应[J].古地理学报,2009,11(6),593-609.
    [56]乔秀夫,马丽芳.华北地台中、晚、新元古代的地壳运动[J].中画地质科学院地质研究所所刊,1982,(4):1-14.
    [57]乔秀夫,宋天锐,高林志,等.碳酸盐岩振动液化地震序列[J].地质学报,1994,68(1):16-32.
    [58]乔秀夫,宋天锐.地震灾变事件地层—地质学的分支学科[C]//乔秀夫等.地层中地震记录,北京:地质出版社,2006:1-3.
    [59]乔秀夫.中朝板块元古宙板内地震带与盆地格局[J].地学前缘,2002,9(3):141-149.
    [60]曲永强,潘建国,梁利东,等.燕辽裂陷槽中元古界不整合面的性质[J].沉积与特提斯地质,2012,32(2):11-22.
    [61]全国地层委员会.中国区域年代地层(地质年代)表.北京:地质出版社,2001.
    [62]全国地层委员会.关于震旦系的决议[J].中国地质,1982,(1):32.
    [63]全国地层委员会.中国区域年代地层(地质年代)表说明书[M].北京:地质出版社,2002.
    [64]全国地层委员会《中国地层表》编委会.中国地层表.北京:中国地质调查局,2012.
    [65]全国地层委员会《中国地层表》编委会.中国地层表.北京:中国地质调查局,2013.
    [66]任富根.蓟县大红峪组火山-沉积岩系的基本特征[J].中国地质科学院天津地质矿产研究所所刊,1987b,16:91-108.
    [67]任富根.蓟县长城纪火山-侵入岩浆活动问题[C]//中国地质科学院天津地质矿产研究所文集(16),1987a:109-121.
    [68]宋天锐,和政军,丁孝忠,等.北京十三陵中元古代串岭沟期地质事件的探索[J].地质论评,2000,46(4):400-406.
    [69]宋天锐.北京十三陵前寒武纪碳酸盐岩地层中的一套可能的地震一海啸序列[J].科学通报,1988,38(8):609-611.
    [70]苏文博,李怀坤,HuffW.D.,等.铁岭组钾质斑脱岩锆石SHRIMPU-Pb年代学研究及其地质意义.科学通报,2010,55(22):2197-2206.
    [71]天津市地质矿产局.天津市区域地质志[M].北京:中国地质大学出版社,1992.
    [72]天津市地质矿产局.天津市岩石地层[M].北京:中国地质大学出版社,1996.
    [73]万渝生,张巧大,宋天锐.北京十三陵长城系常州沟组碎屑锆石SHRIMP年龄:华北克拉通盖层物源区及最大沉积年龄的限定[J].科学通报,2003,48(18):1970-1975.
    [74]王恒升,侯德封.辽宁葫芦岛附近锦西锦县一带地质矿产[J].质汇报,1931(16):83-117.
    [75]王立成,王成善,李亚林,等.海啸和海啸沉积[J].沉积学报,2010,28(3):596-609.
    [76]王旖旎,张梅生,李晓波,等.辽宁兴城夹山地区中元古界团山子组叠层石的发现及其地层学意义[J].吉林大学学报(地球科学版),2012,42(S1):336-343.
    [77]王曰伦,陆宗斌,邢裕盛,等.中国上前寒武系的划分与对比[C]//中国科学院天津地质矿产研究所.中国震旦亚界.天津:天津科学技术出版社,1980:56-114.
    [78]王泽九.斑脱岩中锆石SHRIMP测年在前寒武纪地层中的应用—前寒武纪年代地层学研究的新思路[J].地层学杂志,2010,1:56-59.
    [79]温献德.华北北部中、上元古界的大陆裂谷模式和地层划分[J].前寒武纪研究进展,1997,20(3):21-28.
    [80]邢裕盛,刘桂芝,乔秀夫,等.中国地层-中国的上前寒武系[M].北京:地质出版社,1989:1-314.
    [81]邢裕盛,尹崇玉,高林志.震旦系的范畴、时限及内部划分[J].现代地质,1999,13(2):202-205.
    [82]薛艳,朱元清,刘双庆,等.地震海啸的激发与传播[J].中国地震,2010,26(3):283-295.
    [83]严恺.海岸工程[M].北京:海洋出版社,2002.
    [84]杨明,张梅生,李晓波,等.辽宁兴城地区中元古代团山子期的古岩溶事件[C]//中国石油大学(华东),“地球·资源”全国博士生学术论坛会议论文摘要集,青岛,2011.
    [85]于荣炳,张学祺.地质矿产部中国晚前寒武纪地质科研项目研究成果之十三-燕山地区晚前寒武纪同位素地质年代学的研究[C]//中国地质科学院天津地质矿产研究所文集(11),1985.
    [86]张国栋,王益友,朱静昌,等.现代滨岸风暴沉积—以舟山普陀岛、朱家尖岛为例[J].沉积学报, 1987,5(2):17-28.
    [87]张焕翘.关于兴城运动[J].辽宁地质,1986(2):129-135.
    [88]张梅生,王锡魁,郭巍,等.地球科学野外实习指导书—兴城地质[M].北京:地质出版社,2013.
    [89]张振克,谢丽,杨达源,余克服.国际海啸沉积研究进展与展望[J].海洋地质与第四纪地质,2010,30(6):133-140.
    [90]中国地层典委员会.中国地层典-中元古界[M].北京:地质出版社,1999.
    [91]中国地层委员会.中国地层表(试用稿).北京:地质出版社,2012.
    [92]钟富道.从燕山地区震旦地层年表同位素年龄论中国震旦地质年表[J].中国科学(B辑),1977,(2):151-161.
    [93]朱士兴,曹瑞骥,赵文杰,等.中国震旦亚界蓟县层型剖面叠层石的研究概要[J].地质学报,1978(3):209-226.
    [94]朱士兴,黄学光,孙淑芬.华北燕山中元古界长城系研究的新进展[J].地层学杂志,2005,29:437-449.
    [95]朱士兴.燕山西段长城系团山子组叠层石与沉积环境和微生物的关系[C]//朱士兴.中国叠层石.天津:天津大学出版社,1993:187-198.
    [96]祝会兵,于颖,戴世强.海啸数值计算研究进展[J].水动力学研究与进展(A辑),2006,21(6):714-723.
    [97]Aalto, K.R., Aalto, R., Garrison-Laney, C.E., et al. Tsunami (?) sculpturing of the Pebble Beach wave-cut platform, Crescent City area, California[J]. The Journal of Geology,1999.107,607-622.
    [98]Aigner, T. Strom Depositional System[M].Berlin:Springer-Verlag,1985.
    [99]Awramik, S.M. Ancient Stromatolites and Microbial Mats[C]//Cohen, Y.,Castenholz, R.W., Halvorson,H.O.,et al. Microbial Mats:Stromatolites. New York:Alan R Liss Inc,1984:1-22.
    [100]Bhattacharya, H.N., Bandyopadhyay, S. Seismites in a Proterozoic tidal succession, Singhbhum, Bihar, India[J]. Sedimentary Geology,1998.119,239-252.
    [101]Bondevik, S., Svendsen, J.I., Mangerud, J. Tsunami sedimentary facies deposited by the Storegga tsunami in shallow marine basins and coastal lakes, western Norway [J]. Sedimentology,1997,44,1115-1131.
    [102]Bourgeois, J., Hansen, T.A., Wiberg, P.L, et al. A tsunami deposit at the Cretaceous Tertiary boundary in Texas[J]. Science,1988,241(4865):567-570.
    [103]Bourgeois, J.. Geological effects and records of tsunamis[C]//In:The Sea, Volume15:Tsunamis, Robinson, A.R., Bernard, E.N.(eds). Boston:Harvard University Press,2009,53-91.
    [104]Brookfield, M.E, Blechschmidt, I, Hannigan, R., et al. Sedimentology and geochemistry of extensive very coarse deep-water submarine fan sediments in the Middle Jurassic of Oman, emplaced by giant tsunami triggered by submarine mass flows [J]. Sedimentary Geology,2006,192(1-2):75-98.
    [105]Bryant, E. Tsunami:The underrated hazard [M]. Melbourne:Cambridge University Press,2001:27-47.
    [106]Byerly, G.R., Lowe, D.R., Wooden, J.L., et al. An Archean impact layer from the Pilbara and Kaapvaal cratons[J]. Science,2002,291,1325-1327.
    [107]Cantalamessa, G., Celma, C.D. Sedimentary features of tsunami backwash deposits in a shallow marine Miocene setting, Mejillones Peninsula, northern Chile[J]. Sedimentary Geology,2005,178,259-273.
    [108]Cita, M.B., Aloisi, G. Deep-sea tsunami deposits triggered by the explosion of Santorini (3500y BP), eastern Mediterranean[J]. Sedimentary Geology,2000,135,181-203.
    [109]Cita, M.B., Camerlenghi, A., Rimoldi, B. Deep-sea tsunami deposits in the eastern Mediterranean:New evidence and depositional models[J]. Sedimentary Geology1996,104,155-173.
    [110]Condie, K.C. Proterozoic Crustal Evolution, Developments in Precambrian Geology10[M].Elsevier:New York,1992.
    [111]Dawson, A.G. Geomorphological effects of tsunami run-up and backwash[J]. Geomorphology1994,10,83-94.
    [112]Dawson, A.G., Shi, S. Tsunami deposits[J]. Pure ana Applied Geophysics,2000,,157,875-897.
    [113]Dawson, A.G., Stewart, I. Tsunami deposits in the geological record[J]. Sedimentary Geology,2007,200,166-183.
    [114]Donaldson, J. A. Paleoecology of Conophyton and Associated Stromatolites in the Precambrian Dismal Lakes and Rae Groups,Canada[C]//Walter,M.R., Stromatolites:Developments in Sedimentology. Amsterdam:Elsevier Scientific Publishing Company,1976:523-534.
    [115]Einsele, G., Chough, S.K., Shiki, T. Depositional events and their records-an introduction [J]. Sedimentary Geology,1996,104,1-9.
    [116]Emma, M. Indian Ocean fault line poses threat of further earthquakes [J]. Nature,2005,433:183-1841.
    [117]Fujino, S., Masuda, F., Tagomori, S., et al. Structure and depositional processes of a gravelly tsunami deposit in a shallow marine setting:Lower Cretaceous Miyako Group, Japan[J]. Sedimentary Geology,2006,187,127-138.
    [118]Fujiwara, O., Kamataki, T. Identification of tsunami deposits considering the tsunami waveform: An example of subaqueous tsunami deposits in Holocene shallow bay on southern Boso Peninsula, Central Japan[J]. Sedimentary Geology,2007,200,295-313.
    [119]Fujiwara,O., Masuda, F., Sakai, T.,et al. Tsunami deposits in Holocene bay mud in southern Kanto region, Pacific coast of central Japan[J]. Sedimentary Geology,2000,135,219-230.
    [120]Gao, L.Z., Zhang,C.H., Liu, P.J., et al. Reclassifcation of the Meso-and Neoproterozoic chronostratigraphy of North China by SHRIMP zircon ages[J]. Acta Geologica Sinica,2009,83(6):1074-1084.
    [121]Gao, L.Z., Zhang,C.H.,Shi, X.Y., et al. A new Shrimp age of the Xiamaling Formation in the North China Plate and its geological significance[J]. Acta Geologica Sinica,2007,81(6)1103-1109.
    [122]Glikson, A.Y. Early Precambrian asteroid impact-triggered tsunami:Excavated seabed, debris flows, exotic boulders, and turbulence features associated with3.47-2.47Ga-old asteroid impact fallout units, Pilbara craton, Western Australia[J]. Astrobiology,2004,4,19-50.
    [123]Goff, J., McFadgen, B.G., Chague-Goff, C. Sedimentary differences between the2002Easter storm and the15th-century Okoropunga tsunami, southeastern North Island, New Zealand[J]. Marine Geology,2004,204,235-250.
    [124]Goodwin, A.M. Principles of Precambrian Geology[M]. London:Academic Press,1996.
    [125]Grabau, A.W.. The Sinian System[J]. Bulletin of the GeologicalSociety ofChina,1922,1(1-4)44-88.
    [126]Gradstein, F.M., Ogg, J.G., Smith, A.G., et al. A Geologic Time Scale[J]. Cambridge:Cambridge University Press.2004.
    [127]Hamblin, W.K., Christiansen, E.H. Earth's dynamic systems[M]. New Jersey:Prentice Hall, Pearson Education,2003,130-131.
    [128]Hassler, S.W., Robey, H.F., Simonson, B.M. Bedforms produced by impact-generated tsunami,-2.6Ga Hamersley basin, Western Australia[J]. Sedimentary Geology,2000,135,283-294.
    [129]Hoffman, F.P. Did breakout of Laurentia turn Gondwana inside-out?[J].Science,1991,252,1409-1411.
    [130]Hou, G.T., Santosh, M., Qian, X.L., et al. Tectonic constraints on1.3-1.2Ga final breakup of Columbia supercontinent from a giant radiating dyke swarm[J]. GondwanaResearch,2008,14,561-566.
    [131]International Commission on Sratigraphy. Interantional Chronostratigraphic Chart.2013.
    [132]International Commission on Sratigraphy. Interantional Chrono stratigraphic Chart.2009.
    [133]Kao, C.S., Hsiung, Y.H., Kao, P. Preliminary notes on sinian stratigraphy of north China[J]. Bulletin of the Geological Society of China,1934,13,243-288.
    [134]Kortekaas, S., Dawson, A.G. Distinguishing tsunami and storm deposits:An example from Martinhal, SW Portugal[J]. Sedimentary Geology,2007,200,208-221.
    [135]Lee, J.S.,Chao,Y.T..Geology of the gorge district of the Yangtze (from Ichang to Tzekuei) with special reference to the development of the gorges [J]. Bulletin of the Geological Society of China,1924,3,351-391.
    [136]Li, S.Z., Zhao, G.C. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids:Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton[J]. Precambrian Research,2007,158(1-2),1-16.
    [137]Li, S.Z., Zhao, G.C., Santosh, M., et al. Paleoproterozoic structural evolution of the southern segment of the Jiao-Liao-Ji Belt, North China Craton[J]. Precambrian Research,2012,200-203,59-73.
    [138]Liang, Y.Z., Zhu, S.X.,Zhang, L.Y.,et al. Stro-matolite Assemblages of the Late Precambrian in China [J]. Precambrian Research,1985,29(1/2/3):15-32.
    [139]Lu, S.N., Yang, C.L., Li, H.K.,et al. A Group of Rifting Events in the Terminal Paleoproterozoic in the North China Craton[J]. GondwanaResearch,2002,5,123-131.
    [140]Major, J.J. Debris flow[C]//In:Encyclopedia of Sediments and Sedimentary Rocks, Middletonm, G.V.(eds). Dordrecht:Kluwer Academic Publishers,2003,188-196.
    [141]Masaitis, V.L. The middle Devonian Kaluga impact crater (Russia):new interpretation of marine setting [J]. Deep-Sea Research Part Ⅱ,2002,49(5):1157-1169.
    [142]Matsushita Susumu.Sinian System in Nearby Huludao.Jinzhou Pro vice. Southern Manchuria [J].The Journal of the Geological Society of Japan,1941,48:301-302.
    [143]Maurrasse, F.J.M.R., Sen, G.. Impacts, tsunamis, and the Haitian Cretaceous-Tertiary boundary layer[J]. Science,1991,252(5013):1690-1693.
    [144]Morton, R.A., Gelfenbaum, G., Jaffe, B.E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples[J]. Sedimentary Geology,2007,200,184-207.
    [145]Mutti, E., Lucchi, R.F., Seguret, M., et al. Seismoturbidites:a new group of resedimented deposits[J]. Marine Geology,1984,55(1-2):103-116.
    [146]Nanayama, F., Shigeno, K., Satake, K., et al. Sedimentary differences between the1993Hokkaido-nansei-oki tsunami and the1959Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan[J]. Sedimentary Geology,2000,135,255-264.
    [147]Nichols, G. Sedimentology and stratigraphy[M]. Chichesten: John Wiley&Sons Ltd,2009,129-150.
    [148]Pratt, B.R. Bordonaro, O.L. Tsunam is in a storm y sea:Middle Cambrian innershelf limes tones of western Argentina [J]. Journal of Sedimentary Research,2007,77(4):256-262.
    [149]Pratt, B.R. Oceanography, bathymetry and syndepositional tectonics of a Precambrian intracratonic basin:integrating sediments, storms, earthquakes and tsunamis in the Belt Supergroup (Helena Formation, ca.1.45Ga), western North America[J]. Sedimentary Geology, 2001,(141-142):371-394.
    [150]Pratt, B.R. Storms versus tsunam is:Dynamic interplay of sedimentary, diagenetic, and tectonic processes in the Cambrian of Montana [J]. Geology,2002,30(5):423-426.
    [151]Pumpelly.Geological researches in China, Mongolia, and Japan[J].1867.
    [152]Reddy, S.M., Mazumder, R., Evans, D.A.D., Collins, A.S.(eds).Palaeoproterozoic supercontinentsand global evolution[M]. London:Geological Society,2009.
    [153]Rogers, J.J.W., Santosh, M. Configuration of Columbia, a Mesoproterozoic supercontinent[J]. Gondwana Research,2002,5,5-22.
    [154]Rossetti, D., Ges, A.M., Truckenbrot, W., et al. Tsunami-induced large-scale scour-and-fill structures in Late Albian to Cenomanian deposits of the Graja Basin, northern Brazil [J]. Sedimentology,2000,47(2):309-323.
    [155]Scheffers, A., Kelletat, D. Sedimentologic and geomorphologic tsunami imprints worldwide-a review[J]. Earth-Science Reviews,,2003,63,83-92.
    [156]Schnyder, J., Baudin, F., Deconinck, J.F. A possible tsunami deposit around the Jurassic-Cretaceous boundary in the Boulonnais area (northern France)[J]. Sedimentary Geology,2005,177,209-227.
    [157]Shanmugam, G. The tsunamite problem. Journal of Sedimentary Research,2006,76,718-730.
    [158]Shiki, T., Tachibana, T., Fujiwara, O., et al. Characteristic features of tsunamiites[C]//In: Tsunamiites: Features and Implications, Shiki, T., Tsuji, Y., Yamazaki, T., Minoura, K.(eds) Oxford:Elsevier,2008,319-340.
    [159]Smit, J., Montanari, A., Swinburne, N.H.M., et al. Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico [J]. Geology,1992,20,99-103.
    [160]Smit,J., Montanari, A., Swinburne,N.H., M., et al. Tektite-bearing deep-water clastic unit at the Cretaceous Tertiary boundary in northeastern Mexico[J]. Geology,1992,20(2):99-103.
    [161]Su, D.C., Qiao, X.F., Su, A.P.,et al. Large earthquake-triggered liquefaction mounds and a carbonate sand volcano in the Mesoproterozoic Wumishan Formation, Beijing, North China[J]. GeologicalJournal,2013,DOI:10.1002/gj.2501.
    [162]Su,W.B., Zhang,S.h., Huff, W.D., et al. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation:Implications for revised subdivision of the Meso-to Neoproterozoic history of the North China Craton[J]. GondwanaResearch,2008,14:543-553.
    [163]Takashimizu,Y, Masuda,F., Depositional facies and sedimentary success ions of earthquake-induced tsunami deposits of Upper Pleistocene incised valley fills, central Japan [J]. Sedimentary Geology,2000,135(1-4):231-239.
    [164]Takayama, H., Tada, R., Matsui, T., et al. Origin of the Penalver Formation in northwestern Cuba and its relation to K/T boundary impact event[J]. Sedimentary Geology,2000,135,295-320.
    [165]Tappin, D.R.Sedimentary features of tsunami deposits-their origin, recognition and discrimination:an introduction[J]. Sedimentary Geology,2007,200,151-154.
    [166]Turtle, M.P., Ruffman, A., Anderson, T.,et al. Distinguishing tsunami from storm deposits in eastern North America:the1929Grand Banks tsunami versus the1991Halloween storm [J]. Seismological Research Ietters,2004,75,117-131.
    [167]Warme, J.E., Kuehner, H.C. Anatomy of an anomaly:the Devonian catastrophic Alamo impact breccia of southen Nevada [J]. International Geology Review,1998,40(3):189-216.
    [168]Zhang, S.H., Zhao, Y., Yang, Z.Y, et al. The1.35Ga diabase sills from the northern North China Craton:Implications for breakup of the Columbia (Nuna) supercontinent [J]. Earth and Planetary SceinceLetters,2009,288:588-600.
    [169]Zhao, G.C., Li, S.Z., Sun, M., et al. Assembly, accretion, and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent:record in the North China Craton revisited[J]. International GeologyReview.,2011,53,1331-1356.
    [170]Zhao, G.C., Sun, M., Wilde, S.A., et al. A Paleo-Mesoproterozoic supercontinent:assembly, growth and breakup [J]. Earth-Science Reviews,2004,67,91-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700