用户名: 密码: 验证码:
扫描探针显微镜智能自动化策略研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米科技已经成为二十一世纪最核心的技术之一,而纳米科技的竞争,很大程度上体现在纳米表征和纳米操纵仪器的竞争。提高作为纳米科技的“眼”和“手”的扫描探针显微镜(SPM)的测量和定位精度,是纳米仪器界始终追求的目标。本文就扫描探针显微镜自动化关键技术—压电执行器的滞后补偿控制和非线性、非正交误差校正以及SPM标定等问题,进行了深入分析和应用研究,主要成果如下:
     (1).针对扫描探针显微镜控制系统中包括z方向执行器、探针和被测样品在内的广义被控对象存在的大滞后问题,设计了鲁棒自整定Smith预估控制器,使得闭环系统不仅具有在过程增益、滞后时间和时间常数等动态性能参数变化时的鲁棒稳定性,而且具有良好的动态特性,如小超调、快响应速度和强抗干扰能力等等。
     (2).针对传统DNA计算中存在的设计变量编码长度与计算精度之间的矛盾,提出了自适应范围DNA(ARDNA)软计算方法,将设计变量取值范围自适应机制引入DNA软计算,给出了基于标准正态分布表计算分位数Pr的简化公式,通过有限长的DNA编码实现了预定的计算精度。函数优化应用实例表明了ARDNA对设计变量的取值范围无需先验知识,且具有较强的全局搜索能力。
     (3).针对扫描探针显微镜中x、y压电执行器的回滞非线性问题,提出了回滞非线性在线辨识和实时校正策略。该策略中,首先基于对x、y压电执行器的非线性特性分析,建立了其回滞非线性参数化模型结构,采用ARDNA软计算方法,同时优化模型结构和模型参数,获取压电执行器最优回滞非线性模型。接着,将所获得的回滞非线性模型作为参考模型,通过设计增量式反馈控制器,构建压电执行器回滞伪逆模型。然后,为消除压电执行器回滞非线性建模误差,采用递推最小二乘法(简称RLS),在线辨识压电执行器,实时修正其参考模型,以确保所构建伪逆模型逼近其逆模型。最后,压电执行器与其伪逆模型串连,实现了回滞
    
    非线性校正.数字仿真结果验证了算法的有效性。
     (4).智能校正和标定的实现策略研究。为获取x、y压电执行器的输入一输出
    数据,以建立其模型,给出了基于一维或二维标准光栅SPM图像的特征数据测量
    算法。根据sPM扫描机理并考虑压电执行器回滞非线性影响,提出了x、y压电
    执行器双向多项式模型,给出了相应的非线性校正算法。基于经非线性校正的二
    维标准光栅的sPM图像,给出了x、y压电执行器夹角测量算法和非正交误差校
    正算法.另外,基于本文引入的压电执行器标定因子的概念,提出了相应的标定
    算法.
     (5).基于上海爱建纳米科技发展有限公司研制的AJ一I等系列产品的系统框
    架,将系统辨识、Smith预估和PI控制相结合,开发了Smith在线辨识预估+PI
    控制算法,并嵌入到AJ一I型扫描隧道显微镜(sTM)注’的DsP控制器中,获得
    良好的控制效果,基本满足了STM对恒流的要求。将x、y压电执行器非线性、
    非正交误差校正和sPM标定算法编制到AJ一m型原子力显微镜(AFM)注2的
    DsP控制器中,并开发了一套SPM中压电执行器模型参数与x、y方向压电执行
    器夹角和标定因子等参数的获取软件,以配合实现非线性、非正交误差校正和sPM
    标定。实验结果表明:l)仅需用户点击几次鼠标,即可得到压电执行器模型参数
    以及x、y方向压电执行器夹角和标定因子等参数,实现非线性和非正交误差校正,
    基本消除了图像特征扭曲;2)仅仅通过设定和修改x、y方向压电执行器标定因
    子,即可实现扫描探针显微镜的标定,在降低了标定复杂度的同时,提高了标定
    精度,从而增强了SPM自动化和智能化程度。
As high-tech of 21st century, nanometer science and technology have been focused on by the world. And almost all countries are competing more and more heatedly in the R&D of nanometer microscope in order to have an advantage in the nanometer research. It is an objective for nanometer instrument researcher to improve the measurement precision of scanning probe microscope (SPM), the eye and hand of nanometer science and technology. In this paper, I analyze the working mechanism of SPM and research deeply the key automation problems, which include: 1) delay compensation control; 2) hysteresis nonlinearity correction; 3) nonorthogonality correction; and 4) SPM calibration. The main contributions are as follows:
    (1) A robust auto-tuning Smith prediction controller was designed to resolve the long delay time problem of the general controlled object, which consisted of Z-PZT, probe and scanned sample etc. The simulation results indicate that the closed system not only is stable robustly when gain, time constant and delay time of the process vary with the time in the given scope, but also is of good dynamic characteristics, which are small overshoots, fast response and strong ability to eliminate noise and so on.
    (2) An adaptive-range DNA (ARDNA) soft computing was brought forward. ARDNA solves the contradiction between long coding and high computing precision, which exists in the traditional DNA soft computing. The method is used in function optimization and the simulation results show that ARDNA not only does not need the prior knowledge about the range of the design variables, but also is of strong ability to search globally.
    (3) Based on the analysis of the nonlinearity of the X-PZT and Y-PZT of SPM, the structure of parameterized hysteresis model was constructed. And the optimized model of PZT was attained by ARDNA, which could optimize the structure and parameters of model simultaneously. Then, the model was used as the reference model, and an incremental feedback controller was designed to get the pseu-inverse model of PZT. In order to eliminate the error between PZT and its reference model, recursive least square (RLS) was introduced to identify the PZT on line. When RLS was stable, the
    
    
    
    pseu-inverse model of PZT converged to its inverse model. At last, the PZT was in series with its pseu-inverse model to correct its nonlinearity. The simulation results indicate that the nonlinearity correction method is effective.
    (4) A forward-backward polynomial model was given, which could describe the hysteresis of PZT approximately. In order to get the model, the characteristic data measurement algorithm was investigated from the SPM image of one-dimension or two-dimension raster to get the input-output of PZT. Based on the model, the nonlinearity correction algorithm was put forward to eliminate the image distortion. In addition, we researched the measurement algorithm for the degree of nonorthogonality of X-PZT and Y-PZT and the corresponding nonorthogonality correction algorithm.
    (5) In this paper, the system identification algorithm is incorporated with Smith predictor to realize Smith on-line identification prediction control in order to compensate the delay of the general controlled object. And it was successfully applied in the AJ-I STM, which was manufactured in the Shanghai Aijian Nanometer Sci. & Tech. Corporation Ltd. The experiment results demonstrate that the method is of strong self-adaptability. And it meets the requirement on tunneling current in AJ-I STM. The nonlinearity correction algorithm, nonorthogonality correction algorithm and SPM calibration algorithm were successfully used in AJ-III AFM which was manufactured in the Shanghai Aijian Nanometer Sci. & Tech. Corporation Ltd.. And a corresponding software was developed by Visual C in order to obtain the parameters for the above-metioned algorithms. The experiment results demonstrate that: 1) all of parameters can be obtained only through few mouse pressing and the image distortion can be eliminated; and 2) the SPM
    calibration can be realiz
引文
[1] Feynman R.. There's plenty of room at the bottom. Invited talk at the American Physical Society, 1959. Also Reprinted in J. Microelectromech, 1992, 1:60-66
    [2] Binning G, Roher H, Gerbe Ch,et al..Surface studies by scanning tunneling microscopy. Phys Rev Lett, 1982, 49(1)
    [3] Kobayashi A, Grey F, Williams R S, et al..Formation of nanometer-scale grooves in silicon with a scanning tunneling microscope. Science, 1993,259:1724-1726
    [4] Hewon Jung, Jong Youp Shim and DaeGab Gweon. New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep. Reviews of scientific instruments, 2000, 71(9): 3436-3440
    [5] Bing, G, Quate C. F. and Gerber, Ch.. Phys. Rev. Lett., 1986, 56:930
    [6] Durig D., Pohl D. W. and Rohner E. Near-field optical-scanning microscopy. J. Appl. Phys.,1986, 59(10): 3318-3327
    [7] Harootunian A., Bezig E., Isaacson M. et al. Super-resolution fluorescence near-field scanning optical microscopy. Appl. Phys. Lett., 1986, 49(11): 674-676
    [8] Reddick R. C., Warmack R. J. and Ferrel T. L.. New form of scanning optical microscopy. Phys. Rev.,1989, B39(1): 767-770
    [9] Pohl, D.W.. Proceedings of Ernst Abbe Conference, Jena, Friedrich-Schiller-Universitat Jena, Eds. B. Willbelmi, 1989
    [10] Wichramasinghe, H.K.. J. Vac. Sci. Tech., 1990, A8, 363
    [11] Wichramasinghe, H.K.. Scientific American, Oct. 98
    [12] Hansma, P.K., Drake, B., Marti, O., Gould S. A. and Prater, C.B.. Science, 1989, 243:641
    [13] Kaiser W. J. and Bell, L. D.. Phys. Rev. Lett., 1988, 60:1406
    [14] Barrett R.C. and Quate, C. E, J.. Vac. Sci. Tech., 1990, A8: 400
    [15] L M Eng, K D Jandt and D Descouts. Rev. Sci. Instrum., 1994, 65(2):390-393
    [16] 范细秋,徐龙,曾灵丹,张鸿海.模块化扫描探针显微镜的研究.工具技术,1998,32(2):32-33
    [17] 汪学方,张鸿海,王生,徐龙.基于针式传感器的多功能扫描探针显微镜.华中理工大学学报,2000,28(5):1-3
    [18] Dario P. Journal of Robotics Research, 1987, 16(3):25-48
    [19] 刘安伟,陈峰,胡小唐,张国雄.STM管式扫描器交叉耦合及非正交误差的研究.天津大学学报,1999,32(2):133-136
    [20] Bryan, J., Brooks, H. and Clouser, R.. Piezoelectric-supported thrust bearing for the tool slide of a diamond turning machine. Annals of CIRP, 1975, 24:355-356
    [21] Kouno, E..A fast response piezoelectric actuator for servo correction of systematic errors in precision machining. Annals of CIRP, 1984, 33:369-372
    [22] Newcomb, C.V.. Improving the linearity of piezoelectric ceramic actuators. Electronics letters,1982, 18:442-444
    [23] Ochi, A., Takahashi, S. and Tagami, S.. Temperature characteristics for multilayer piezoelectric
    
    ceramic actuator. Japanese journal of applied physics(supplement), 1985, 24:209-212
    [24] Vieira, S.. The behavior and calibration of some piezoelectric ceramics used in the STM. IBM journal of research and development, 1986, 30:553-556
    [25] Ping Ge and Musa Jouaneh. Modeling hysteresis in piezoceramic actuators. Precision Engineering, 1995, 17(3): 211-220
    [26] Shengyuan Yang and Wenhao Huang. Three-dimensional displacements of a piezoelectric tube scanner. Rev.Sci.instrum., 1998, 69(1): 226-229
    [27] H. Richter, E.A. Misawa, D.A. Lucca and H. Lu. Modeling nonlinear behavior in a piezoelectric actuator. Precision engineering, 2001, 25:128-137
    [28] C. Z Cai, X. Y. Chen, Q. Q. Shu, and X. L. Zheng. Computer correction for distorted STM images. Review on scientific instruments, 1992, 63(12): 5649-5652
    [29] R.C Barrett and C.F. Quate. Optical scan-correcton system applied to atomic force microscopy. Review on science instrument, 1991, 62:1393-1399
    [30] 江月山,王晓光,杨乃恒,高聚宁,刘宁,杨海强,时东霞,庞世瑾.压电陶瓷对STM图像的影响及计算机校正.真空科学与技术,1997,17(4):264-268
    [31] Bryant, M.D. and Reeves, R.B..Precise positioning problems using piezoelectric actuator with force transmission through mechanical contact. Precision engineering, 1984, 6:129-134
    [32] Yonezawa, H., Hirata, Y. and Sasai, H.. Positioning table with high accuracy and high speed. Annals of CIRP, 1980, 39:433-436
    [33] J. A.Main and E. Garcia. Piezoelectric stack actuators and control system design: Strategies and pitfalls. Journal of Guidance, Control and Dynamics, 1997, 20(3), 479-485
    [34] D. Croft, G.Shedd and S. Devasia. Creep, hysteresis and vibration compensation for piezoactuators: atomic force microscopy application.Proceedings of the American Control Conference, Chicago, Illinois, 2000
    [35] Seung-Bae Jung and Seung-Woo Kim. Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control. Precision engineering, 1994, 16(1): 49-55
    [36] Akila J., Wadhwa S.S.. Correction for nonlinear behavior of piezoelectric tube scanners used in scanning tunneling and atomic force microscopy. Review of scientific instruments, 1995, 66(3)
    [37] Jiang Yueshan, Wang Xiaoguang, et al. Compputer correction for distorted STM images caused by piezoceramics. Vacuum science and technology, 1997, 17(4)
    [38] V. Yu. Yurov and A.N. Klimov.Scanning tunneling microscope calibration and reconstruction of real image: drift and slope elimination. Review of Scientific Instruments, 1993, 65(5).
    [39] Hewon Jung,Jong Youp Shim and DaeGab Gweon. New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep. Reviews of scientific instruments, 2000, 71(9): 3436-3440
    [40] J.F.Jorgensen, K. Carneio and L.L.Madsen.J.Vac.Sci.Tech.,1994,B12:1702
    [41] 刘晖,朱日宏,陈进榜.改善PZT微位移线性的一种方法.光电工程,1998,25(5):66-69
    [42] Huang Ziyuan and Fei Minrui. A Novel Method to Correct the Nonlinearity of Piezoelectric Scanner in STM by DNA Evolution Algorithm. IEEE TENCON'02, Beijin, 2002
    [43] 王艳菊,张大彪.扫描隧道显微镜中的扫描驱动器的特性改善.河北工业大学学报,2001,30(2)
    [44] Basedow R .W., Cocks T. D.. J Phys E Sci Instrm, 1980, 13:840
    [45] Dieter W Pohl. IBM J Res Dev, 1986, 30(4): 417
    
    
    [46] Poirier G.E., White J. M.. Rev Sci Instrum, 1990, 61(12): 3917
    [47] Simpson A. M., Wolfs W.. Rev Sci Instrum, 1987, 58(11): 2193
    [48] Van de Leemput L E C et al. Rev Sci Instrum, 1991, 62(4), 989
    [49] H. Kaizuka.Application of capacitor insertion method to scanning tunneling microscopes. Reviews of Scientific Instruments, 1989, 60(10): 3119-3122
    [50] Kiyono, Satoshi, et al. Correction of SPM images by hardware and software methods. Transactions of the Japan society of mechanical engineers, 1996, part C, 62(601)
    [51] 胡志强,胡志敏,李永丰,孙洁林,胡钧,李民乾.数字扫描探针显微镜中的DSP技术.电子显微学报,2000,19(1)
    [52] 黄洪全,李尚平,卢子广,李俚,王宗俐,傅卫红.宽范围扫描隧道显微镜控制系统.电子与仪表,1998,3:18
    [53] Huang Ziyuan, Fei Minrui and Hu Zhiqiang. Smith Online Identification Prediction Control and Its Application in STM. WCICA '2002, Shanghai, China, p2254-2257
    [54] 傅星,胡小唐.模糊控制在压电陶瓷控制中的应用.压电与声光,1999,21(3)
    [55] 杨学恒,陈安,何光宏,冯晓娟,王应芳,詹捷,唐志良.扫描隧道显微镜系统.重庆大学学报,2001,24(3)
    [56] 高思田,赵克功,王春艳.计量型原子力显微镜的非线性误差及轴间耦合误差的校准.仪器仪表学报,1999,(87)
    [57] K.Hasche,赵克功,高思田等.计量型原子力显微镜.计量学报,1998,19(1)
    [58] AJ-Ⅰ型STM用户手册.上海爱建纳米科技发展有限公司,2001
    [59] 白春礼.扫描隧道显微技术及其应用.上海:上海科学技术出版社,1992
    [60] 胡永康.扫描探针显微镜的研究及应用.大连理工大学硕士论文,2000
    [61] T. K.Caughey. Random Excitation of a System with Bilinear Hysteresis. ASME Journal of Applied Mechanics, 1960, 60, 649-652
    [62] R. W. Clough. Effect of Stiffness Degradation on earthquakes Ductility Requirements. Structures and Materials Research, Technical Report, Department of Civil Engineering, University of California, Berkeley, 1966
    [63] T.Takeda and N. N. Nielson. Reinforced Concrete Response to Sinulated Earthquakes. ASCE Journal of the Structural Division, 1970, 96, No. ST12, 2557-2573
    [64] W.D. Iwan. A Distributed-Element Model for Hysteresis and its Steady-State Dynamic Response. ASME Journal of Applied Mechanics, 1966, 33, 893-900
    [65] H. Takemiya and L. D. Lutes. Stationary Random Vibration of Hysteretic Systems. ASCE Journal of the Engineering Mechanics Division, 1977, 103, No. EM4, 673-687
    [66] Patrick M. Sain, Michael K. Sain and B.F. Spencer. Models for hysteresis and application to structural control. Proceedings of the American Control Conference, 1997, pp. 16-20
    [67] Michael Goldfarb and Nikola Celanovic. Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control Systems Magazine, vol. 17, n.3, pp.69-79, June 1997
    [68] Michael Goldfarb and Nikola Celanovic. Behavioral implications of piezoelectric stack actuators for control of micromanipulation. Proceedings of the 1996 IEEE International Conference on Robotics and Automation Minneapolis, Minnesota, April 1996
    [69] Gi Sang Choi, Hie-Sik Kim and Gi Heung Choi. A study on position control of piezoelectric actuators. ISIE'97
    [70] Musa Jouaneh and Huawei Tian. Accuracy enhancement of a piezoelectric actuator with
    
    hysteresis. Japan/USA Symposium on Flexible Automation, vol. 1, ASME 1992
    [71] Mayergoyz. Mathematical Models of Hysteresis. New York: Springer-Verlag, 1991
    [72] T. Doong andⅠ. Mayergoyz. On numerical implementation for hysteresis models. IEEE Trans. Magnetics, 1985, vol. 21, pp. 1853-1855
    [73] P. R. Dahl. Solid fraction damping of mechanical vibrations. AIAA, 1976, vol. 14, Dec.
    [74] P. R. Dahl. Math model of hysteresis in piezoelectric actuators for precision pointing systems. EL Segundo, California, Feb. 1985
    [75] Tian Hong and Timothy N. Chang. Control of nonlinear piezoelectric stack using adaptive dither. Proceedings of the 1995 American Control Conference, Seattle, WA., pp. 76-80
    [76] Hartmut Janochu and Klaus Kuhnen. Real-time compensation of hysteresis and creep in piezoelectric actuators. Sensors and actuators, (A), 2000, 79:83-89
    [77] 韩曾晋.自适应控制.北京,清华大学出版社,2003
    [78] Astrom, K.J..Tuning and Adaption. Proc. Of IFAC 13th, San Francisco, America, 1996
    [79] Caldwell, W.I. Control System with Automatic Response Adjustment. American Patent 257081, Field 25, Apr., 1947
    [80] Draper, C.S., Li, Y.T. Principls of Optimizing Control Systems and Applications to Internal Combusion. ASME publicatons, 1952
    [81] Whitaker, H.E, Yamron, J., Kezer, A. Design of Model Reference Adaptive Control Systems for Aircraft. Report R-164, Instrumention Laboratory, MIT, Cambridge, 1958
    [82] Butchart, L., Shackcloth, B. R. Synthesis of Model Reference Adative Control Systems by Lyapunov's Method. Proc. Of 2nd IFAC Symp. On Theory of Self-adaptive Systems,.Teddington, Plemum Press, 1966
    [83] Parks, EC.. Lyapunov Redesign of Model Reference Adaptive Control Systems. IEEE Trans. On Automatic Control, 1966, AC-11, pp362-367
    [84] Landau, I.D.. A Hyperstability for Model Reference Adaptive Control Systems. IEEE Trans. On Automatic Control, 1969, AC-14, pp552-555
    [85] Monopoli, R.V.. Model Reference Adaptive Control With an Argumented Error Signal. IEEE Trans. On Automatic Control, 1974, AC-19, pp474-484
    [86] Astrom, K. J., Wittermark, B.. On Self-tuning Regulators. Automatica, 1973, Vol. 9, pp. 185-199
    [87] Clark, D. W., Grawthrop, P.J.. A Self-tuning Controller. IEE Proc., 1975, Vol, 122, Pt.D, pp.929-934
    [88] Wellstead, P.E., Prager, D., Zanker, P.. Pole Assignment Self-tuning Regulators. IEE Proc., 1979, Vol., 129, Pt.D, No. 8, pp. 781-787
    [89] Allidina, A.Y., Hughes, F.M.. Generalized Self-tuning Controller with Pole Assignment. IEEE Proc., Pt.D, 1980, Vol. 127(1), pp. 13-18
    [90] R. L. Eberhardt, D. G. Ward. Indirect adaptive flight control system interactions. International Journal of robust and nonlinear control, Vol. 9, Issue 14, pp. 1023-1031, Dwc. 1999
    [91] M. Huzmezan, J. M. Maciejowski. Reconfigurable flight control of a high incidence research model using predictive control. Control'98. UKACC International Conference on Vol. 2, No. 455, pp.1169-1174
    [92] J. D.Boskovic, R. K. Mehra. Stable multiple model adaptive flight control for accommodation of a large class of control effector failures. American Control Conference, Vol.3, pp. 1920-1924, June 1999
    
    
    [93] Y. Le Gorrec, J. Magni, C, Doell, C. Chiappa. Modal multimodel control design approach applied to aircraft autopilot design. Journal of Guidance, Control, and Dynamics, Vol.21, No.0731-5090, pp.77-83, Feb. 1985
    [94] A. J.Calise, M. Sharma, S. Lee. Direct adaptive reconfigurable control of a tailless fighter aircraft. Georgia Inst. of Technology, No.(s):AIAA Paper 98-4108, pp.88-97, 1988
    [95] Amerongen J. Van. Adaptive steering ofships——a model reference approach. Automatica, Vol.20, No. 1, 1984
    [96] Kallstrom C. G., Astrom K. J., Thorell N. E. et at. Adaptive autopilot for tanker. Automatica, Vol.15, No.3, 1979
    [97] Mehre, R.K., Rouhan, R.. Model Algorithm Control Theoretical Results on Robustness. Proc. ACC, Denver, 1979
    [98] Cutter, C.R.,Ramaker, B.L.. Dynamic Matrix Control Algorithm. Proc. ACC, Sanfrancisco, 1980
    [99] Carcia, C.E., Morari, M..Internal Model Control: A Unifuing Review and Some New Results. IEC Process Des Dev, 1982
    [100] Clark, D.W., Mohtadi, C., Tufts, P.S.. Generalized Predictive Control-Part Ⅰ: The Basic Algorithm. Automatic, 1987, Vol. 23(2), pp. 137-148
    [101] 席裕庚,厉隽怿.广义预测控制闭环分析.控制理论与应用,1991,(8):419-424
    [102] 吴玮琦,席裕庚,耿晓军.广义预测控制的鲁棒化改进.控制与决策,1999,14(6):663-668
    [103] 杜晓宁,席裕庚,李少远.分布式预测控制优化算法.控制理论与应用,2002,19(5):793-796
    [104] Macfarlane A G J and PostlethwaiteⅠ. The generalized Nyquist stability criterion and multivariable root loci. International Journal of Control, 1977, 25:81-127
    [105] Youla D C, Habr H and Bongiomo J J Jr. Modem Wiener-Hopf design of optimal controllers-Part Ⅱ: the multivariable case. IEEE Transactions on Automatic Control, 1976, AC-21:319-338
    [106] Youla D C. On the factorization of rational matrices.IRE Tractions on Information Theory, 1961, IT-7(3): 172-189
    [107] Zames G. Functional analysis applied to nonlinear feedback systems. IEEE Transaction on Circuit Theory, 1963, CT-10:392-404
    [108] J.C. Doyle, B.A. Francis 和A. R. Tannenbaum著,慕春棣译.反馈控制理论.清华大学出版社,1993
    [109] 褚健,俞立,苏宏业.鲁棒控制理论及应用-国家“九五”重点图书.浙江大学出版社,1993
    [110] 曹永岩,孙优贤等.现代控制理论的工程应用-国家“九五”重点图书.浙江大学出版社,2000,5
    [111] 周克敏,J.C.Doyle,K.Glover著,钟宜生等译.鲁棒与最优控制.国防工业出版社,2002
    [112] Doyke J C. Analysis of feedback systems with structured uncertainties. IEE Proc. 1982,129, Part D, No. 6:242-251
    [113] Shen T, Zhang H and Tamura K. Robust H_∞ control of uncertain nonlinear system via
    
    state feedback. IEEE Transaction on automatic control, 1995, AC-40:766-768
    [114] Lin W and Shen T. Robust passivity and feedback design for minimum-phase nonlinear systems with structural uncertainty.Automatica, 1999, 35:35-47
    [115] Shen T, Xie L and Tamura K. Robust almost disturbance decoupling for nonlinear systems with structural uncertainty.Proceedings of the 37th IEEE CDC, Tampa, 1999, 4:4107-4108
    [116] Shen T and Tamura K et al. Robust nonlinear control of parametric uncertain systems with unknown friction and its application to a pneumatic control value. J. of dynamic systems, measurement, and control, 2000, 122:257-263
    [117] Shen T, Tamura K and Nikiforuk P N. Robust feedback design of cascaded nonlinear systems with structured uncertainty. Transaction of IEEJ, 2000, 120-c: 692-698
    [118] Ochi K, Shen T and Tamura K. Robust stabilization of cascaded nonlinear systems with gain bouded uncertainty. Electrical engineering in Japan, 2000, 120-c: 138-143
    [119] Jiao X, Shen T and Tamura K. Robust L_2 disturbance attenuation for nonlinear systems with input dynamical uncertainty. Transaction of IEEJ, 2002, 122-C: 980-988
    [120] Ishi C, Shen T and Qu Z. Lyapunov recursive design of robust adaptive tracking control with L_2 gain performance for electrically driven robot manipulators. Int. J. Control, 2002, 74: 811-828
    [121] Okajima K, Liu K Z, et al. Improvement of the transient response of the automatic transmission of a car by H_∞ control. Trans. Of SCIE, 1999, 35(1): 147-149
    [122] Duchi S, Liu K Z, et al. Mine train control by H_∞ control. Trans. Of SCIE, 1998, 34(3): 225-231
    [123] Liu F, Mei S, et al. The nonlinear internal control of STATCOM: theory and application. Electrical power and energy system, 2003, 25(6):421-430
    [124] Mei S, Chen J, et al. Nonlinear multi-target controller for Thyristor-Controlled series Compensation. IEE Proc.-Gener. Transm. Distrib., 2001, 148(6):557-561
    [125] 陈颀.智能控制综述.思茅师范高等专科学校学报,2003,19(3):21-24
    [126] 费敏锐,陈伯时.专家模糊控制方法.控制与决策,1996,11(2):256-260
    [127] 吴勤勤等.一种专家模糊控制器.工业过程模型化与控制,1998,311-316
    [128] 吴友政,谢建君,王斌.专家模糊控制在球磨机上的应用.华东电力,2001,8:13-15
    [129] 王殊,杨宗凯,何建华.神经网络模糊推理系统在火灾探测中的应用[J].数据采集与处理,1998,13(2):6
    [130] 易继锴,张蔚蔚.模糊神经网络技术及其在火灾探测过程中的应用.北京工业大学学报,2001,27(3):337-341
    [131] Alley R A, Fazlollahi B, Vahidov R M. Genetic algorithm-based learning of fuzzy neural networks, part1:Feed-forward fuzzy neural networks. Fuzzy Sets and Systems, 2001, 118(2):351~358
    [132] Kim H M, Mendal J M. Fuzzy basis functions:comparisons with other basis functions. IEEE Trans. on Fuzzy Systems, 1995, 3(2):158~168
    [133] Spooner J T, Passino K M. Stable adaptive control using fuzzy systems and neural networks. IEEE Trans. on Fuzzy Systems, 1996, 4(3):339~359
    [134] 郁滨,张昊.自适应优化得模糊预测系统及其应用.控制理论与应用,1999,16(4)
    
    
    [135] 杨智,刘暾东,赵克中.一种新的模糊内模预估控制器.甘肃科学学报,2000,12(1):12-18
    [136] 张广明,张琦.永磁交流伺服系统神经网络模型参考自适应控制.解放军理工大学学报,2000,1(6)
    [137] 孙金刚.一种模糊神经网络自适应预测控制方案得研究.系统工程与电子技术,1999,21(11)
    [138] 张乃晓,栾天.基于模糊神经网络的模型参考自适应控制.自动化学报,1996,22(4):476-480
    [139] 梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.北京:清华出版社,2003
    [140] Smith O J. A Controller to Overcome Dead Time. ISA J., 1959, 6(2): 28~33
    [141] Giles, R.F., Gaines, Larry D.. Contrlling Inerts in Ammonia Synthesis. Instrumentation Technology, 1977, Vol. 24(10), pp. 41-45
    [142] Hang C.C. A performance study of control system with dead time. IEEE IECI, 1980, 27:23 4-241
    [143] 梁春燕,谢剑英.大纯滞后系统的自适应补偿控制.控制理论与应用,2001,18(2):176-180
    [144] 张晋,李平,杨智.无自衡大时滞过程Smith预估鲁棒控制方法.浙江大学学报,2002,36(5):490-493
    [145] 刘文定,谢克明.连续消毒塔系统的自适应模糊PID控制.太原工业大学学报,1997,28(4):36-39
    [146] 毛剑琴,矛洪波,张建刚.卷染机模糊控制系统设计.自动化学报,1997,2(123):195-200
    [147] Takagi T and Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Systems, Man, Cybernetics, 1985, 15(1): 116-132
    [148] 王建辉,齐昕,顾树生.一类纯滞后系统模糊Smith控制策略的研究.控制与决策,1998,13(2):141-145
    [149] 王慧琴,郭芳瑞.对大滞后系统的一种Fuzzy-Kalman预测算法的研究.西安建筑科技大学学报,1999,31(2):138-140
    [150] 杜海树,杨智,邱熔胜,王君.神经智能PID控制算法应用.甘肃工业大学学报,1999,25(3):72-76
    [151] 高靖,杨智,邱熔胜,王树东.预测型智能自整定PID控制器.甘肃工业大学学报,1999,25(2):56-61
    [152] 赵英凯,李胜,林锦国,蔡宁.基于ANFIS的锅炉蒸汽温度预测控制系统.基础自动化,2002,9(1):25-27
    [153] 杨智,杜海树,邱熔胜.时变大时滞最优预报神经智能PID控制算法.1999中国控制与决策学术年会论文集.辽宁:东北大学出版社,1999,pp592-596
    [154] 王耀南,张昌凡,李孟秋.复杂工业过程的模糊神经网络自适应控制.电子测量与仪器学报,2000,14(2):46-51
    [155] 任立红,丁永生,邵世煌.采用DNA遗传算法优化设计的TS模糊控制系统.控制与决策,2001,16(1):16-24
    [156] 王耀南.基于遗传算法的模糊神经控制及其应用.高技术通讯,1997,3:25-28
    [157] 白瑞林,李军.大纯滞后系统的Smith-NN预估控制.电子测量与仪器学报,2000,14(4):40-44
    
    
    [158] 丁永生,任立红.一种新颖的模糊自调整免疫反馈控制系统.控制与决策,2000,15(14):443-446
    [159] M.H. Garzon and R. J. Deaton. Biomolecular computing and programming. IEEE Trans. Evolutionary Computation, 1999, 3(3):236-250
    [160] Adleman L M. Molecular Computation of Solutions to Combinatorial Problems. Science, 1994, 266(5187):1021-1023
    [161] Lipton R J. DNA solution of hard computational problems. Science, 1995, 268(5210):542-545
    [162] D. Bonch, C. Dunworth, R.J. Lipton and J. Sgall. On the computational power of DNA. Technical Report CS-TR-499-95, Princeton University, 1995
    [163] Bach E et al. DNA Models and Algorithms for NP-complete Problems. Proceedings Eleventh Annual IEEE Conference on Computational Complexity, Philadelphia, PA, USA,24-27 May 1996:290-300
    [164] Gibbons A et al. Models of DNA Computation. Proceedings of 21st International Symposium on Mathematical Foundations of Computer Science 1996, MFCS'96, Cracow,Poland, 2-45 Sept. 1996:18-36
    [165] Gibbons A et al. DNA Computing. Current Opinion in Biotechnology, 1997, 8(1):103-106
    [166] Murphy R C et al. A New Algorithm for DNA Based Computation. Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC'97), Indianapolis, IN, USA, 13-16 April 1997:207-212
    [167] Reif JH. Parallel Molecular Computation: Models and Simulations. Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms and Architectures, Santa Barbara, June 1995
    [168] Roo βD, Wagner K W. On the Power of DNA-Computing. Information and Computation, 1996, 131(2):95-109
    [169] Zauner K P, Conrad M. Parallel Computing with DNA: toward the Anti-Universal Machine. Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, Berlin, Germany, 22-26 Sept. 1996:696-705
    [170] Kari L. DNA computing: arrival of biological mathematics. The Mathematical Intelligence, 1997, 19(2): 9-22
    [171] Ren L H, Ding Y S, Shao S H. The study of DNA computing: Current state and future directions. Information and Control, 1999, 28(4): 241-248
    [172] Yamamoto, Masahito et al. A separation method for DNA computing based on concentration control. New Generation Computing, 2002, 20(3): 251-261
    [173] Xiao Peng, Prahlad Vadakkepat and Tong Heng Lee. DNA coded GA for the Base Optimization of a Fuzzy Logic Controller. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, May 27-30 2001:1191-1196
    [174] Deaton R et al. A DNA Based Implementation of an Evolutionary Search for Good Encodings for DNA Computation. Proceedings of 1997 IEEE International Conference on Evolutionary Computation, Indianapolis, IN, USA, 13-16 April 1997:267-271
    [175] Doi H, Furusawa M. Evolution is Promoted by Asymmetrical Mutations in DNA Replication-Genetic Algorithm with Double-Stranded DNA. Fujitsu Scientific and Technical Journal, 1996, 32 (2): 248-255
    
    
    [176] Manganaro G and Gyvez JP D. DNA Computing Based on Chaos. Proceedings of 1997 IEEE International Conference on Evolutionary Computation(ICEC'97), Indianapolis, IN, U SA, 13-16 April 1997:255-260
    [177] Nakano K et al. A Self-Organizing System with Cell-Specialization. Proceedings of 1997 IEEE International Conference on Evolutionary Computation, Indianapolis, IN, USA, 13-16 April 1997:279-284
    [178] Yoshikawa T et al. Emergence of Effective Fuzzy Rules for Controlling Mobile Robots Using DNA Coding Method. Proceedings of 1996 IEEE International Conference on Evolutionary Computation (ICEC'96), Nagoya, Japan, 20-22 May 1996:581-586
    [179] Yoshikawa T et al. DNA Coding Method and a Mechanism of Development for Acquisition of Fuzzy Control Rules. Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, New Orleans, LA, USA, 8-11 Sept. 1996, 3:2194-2200
    [180] Csuhaj Varju E et al. DNA Computing Based on Splicing: Universality Results. Proceedings of First Annual Pacific Symposium on Biocomputing, Hawaii,(L. Hunter, T. E. Klein,eds),World Sci. Publ.,Singapore, 1996:179-190
    [181] 丁永生,任立红,邵世煌.DNA计算与软计算.系统仿真学报(增刊),2001,13:198-201
    [182] Akira OYAMA, Shigeru OBAYASHI and Kazuhiro NAKHASHI. Real-coded adaptive range genetic algorithm and its application to aerodynamic design. JSME, Series A, 2000, 43(2): 124-129
    [183] 白春礼,田芳.扫描力显微术.北京,科学出版社,2000.
    [184] 方崇智,萧德云.过程辨识.北京:清华大学出版社,1988
    [185] Weidong Zhang, Xiaoming Xu, Youxian Sun. Quantitative performance design for integrating processes with time delay. Automatica, 1999, 35, 719-723.
    [186] 张晋,杨智.不确定时滞过程Smith预估鲁棒H_∞控制器的设计.甘肃工业大学学报,2001,27(1):59-63
    [187] Sanchez P S. Robust systems theory and applications[M].New York: John W Wiley and Sons Inc., 1998
    [188] 龙升照,汪培庄.模糊控制规则的自调整问题.模糊数学,1982,4(3):105-182
    [189] 李士勇等.模糊控制和智能控制理论与应用.哈尔滨工业大学出版社,1989
    [190] 彭晓华,郭嗣琮,杨芳春.一种基于模糊控制思想的非线性变权PD控制器及仿真.辽宁工程技术大学学报(自然科学版),1998,17(1):89-91
    [191] 金以慧,方崇智.过程控制.北京:清华大学出版社,1997,pp27
    [192] Lucca DA, Hocken RJ, et al. An ultra-precision instrument for controlled nanoindenting and nanocutting. Progress in precision engineering and nanotechnology. Proceedings of the 9th international precision engineering seminar/4th international conference on ultraprecision in manufacturing engineering, Braunschweig, Germany, 1997, p: 725-728
    [193] D. Croft, G. Shedd and S. Devasia. Creep, hysteresis and vibration compensation for piezoactuators: atomic force microscopy application. Proceedings of the American Control Conference, Chicago, Illinois, 2000, p :2123-2128
    [194] 汪荣鑫.数理统计.西安:西安交通大学出版社,2000
    [195] 丁永生,任立红,邵世煌.DNA计算与软计算.系统仿真学报(增刊),2001,13:
    
    198-201
    [196] Hartmut Janochu and Klaus Kuhnen. Real-time compensation of hysteresis and creep in piezoelectric actuators. Sensors and actuators, (A), 2000, 79:83-89
    [197] 周长发.科学与工程数值算法.北京:清华大学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700