用户名: 密码: 验证码:
岩土材料工程性质数值试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选定PFC颗粒流软件作为数值分析平台,fish语言建立了满足一定统计分布的颗粒集聚体,虚拟实现了岩石力学试验。在此基础上,针对岩土材料细观参数的宏观响应、岩土材料内尺度比、尺寸效应、加载率效应、颗粒大小对材料工程性质的影响和岩石材料破裂过程及其分形特性等六个问题设计了专门的数值虚拟试验,分析所得主要结论如下:
     1、一个简单的颗粒间力学关系可以反映一个复杂的力学过程。细观参数与宏观参数的关系不是简单求和,是整体与部分的辩证关系,整体的力学行为是部分力学行为的增强和放大。摩擦系数、接触半径乘子、弹性模量等颗粒细观参数对数值试件的影响是全面的,弹性模量的增加,会引起裂纹数量的增加,能量急剧减少,强度没有规律性变化;接触半径乘子的增加会使得材料强度和变形性能均提高,裂纹和能量均有提高;摩擦系数的增加会引起强度和变形性能的提高,裂纹和能量变化不大,但是摩擦能增加明显。细观强度的影响相对独立,只引起了宏观强度的提高,对变形没有影响。
     2、通过设计的0.05-2.00mm粒径12种单轴压缩数值试验和巴西圆盘试验计算方案,分析发现岩土材料作为颗粒集聚体,的确存在内尺度比,即最大颗粒与试件直径的比,大于材料固有的内尺度比,则其工程性质出现较大波动;小于该值,则测试结果相对较为稳定。经分析,砂岩的内尺度比约等于0.01。
     3、经过用破裂形态、裂纹系统数量和空间位置、应力应变曲线、能量演化等4类手段综合分析设计的不同长径比、不同围压数值试验,发现:通过应力应变曲线、峰值强度、割线模量和试件破坏形态等分析得到岩石几何尺寸最佳长径比在2.5-3.0之间,但存在数据波动和离散问题。而用能量方法分析得到的最佳长径比稳定在3.0。综上,最佳长径比为3.0,能量方法评价尺寸效应稳定性好。端部摩擦效应在低围压下和低长径比下对材料试验结果影响较大;在长径比大于2.5,围压大于10MPa后,端部效应影响相对减弱。低长径比时,材料表现出伪高强度;高长径比时,材料表现出伪高脆性。
     4、加载速率越高材料破损过程中不再存在剪切优势带,剪切带等速发展,锥形破坏明显。随着应变速率的提高,岩石的峰值强度提高,变形参数也提高了。材料破损机理在于首先积聚粘结能,克服粘结强度,产生微裂纹,随后在积聚的弹性应变能驱动下扩展贯通,随后摩擦作用开始发挥作用,摩擦能急剧提高。裂纹贯通后,材料本身的强度特性不再起主导作用,局部弱化带主导了材料的后期变形和失稳过程。
     5、经过对不同半径、不同数量团簇结构的力学分析发现:团簇数量越多,对材料性质的提高越显著;团簇半径越大、结构体系越稳定,则性质增强效果好。团簇材料的破损机理在于:随着团簇半径的增加,基质所占比例减小,基质中更容易产生微裂纹,但是其绝对数量有限,粘结能地位降低。而应变能则由于团簇强度高,较难以破坏,其主要受力或者传递力,则应变能储能作用增强。破坏经常绕着骨料发生,颗粒越大,越多,由于其竖向密度大,连接较好,侧向连接有限,而且边界作用明显,所以裂纹经常沿垂向发展,径向张开,呈雁行排列。
     6、利用数值试验方法,结合图像处理,对不同规格数值试件的破裂体系进行了追踪、描述和研究,发现:岩石破裂体系具有统计自相似性,长径比显著的试件sandbox法测试结果异常值较多,这是方法缺陷。盒计数法对于不同形状数值试件的适应性要比sandbox法好,结果稳定。随着围压增加岩石破裂的分维数减小。加载造成材料劣化,这种性质劣化加剧了初始随机分布损伤的不均匀程度,劣化呈现局部发展,使得裂纹系统变得更为复杂,分数维增加。
The particle flow is selected to do the numerical test. The particle assembly meeting the specified probability distribution is built by program compiled by embedded language of fish. Then, the virtual implementation of rock mechanics experiment is done based on these. Six problems, such as the macro-response of rock and soil material’s micro-parameters, inner scale ratio, size effect, effect of loading rate, engineering characteristics of material affected by particle size and the rupture process of rock with its fractal feature are studied by the specialized numerical virtual test. The main conclusion is drawn as follows.
     1. A simple mechanics relation between particles can result in a complex response. The relation of micro-parameter and macro-parameter is not a simple summation, which is the dialectical relationship of overall with some. The mechanics behavior of the assembly is the enhancement and enlargement of the particles’mechanics behavior. The effects of friction coefficient, contact radius multiplier and elastic modulus are comprehensive. The increasing of elastic modulus can cause the decreasing of strain, additional fracture, sharp reduction in energy and the irregular vibration of strength. The increase of contact radius multiplier results in the enhancement of material strength and deformation features, increase of rupture number and energy. So is the law of friction coefficient. However, the effect of micro-strength is independent, whose increase only affects the macro-strength.
     2. The twelve kinds of computing schemes of uniaxial compression numerical test are designed to analyze the inner ratio of rock and soil material being the maximum of particle diameter divided by the diameter of sample. If the ratio is large than the inherent ratio of material, the engineering features of material appear big vibration. Conversely, the experimental results are stable. It is found that the sandstone’s scale ratio is 0.01 which illustrates the existence of the scale ration in particle assembly material.
     3. The numerical test with different height-to-diameter ratio and confining pressure is comprehensively analyzed by means of rupture process, spatial location and number of fracture system, curve of stress and strain, energy evolution methods. It is found that the optimum ratio is 2.5-3.0, obtaining by curve of stress and strain, peak strength, secant modulus and rupture shape of numerical sample methods, that the optimal height-to-diameter ratio drawn by energy method is 3.0, and that the latter method is more stable than the former. End friction effect is apparent under condition of lower confining pressure and height-to-diameter ratio. If the ratio being large than 2.5 and confining pressure large than 10MPa, the end effect is weakened. When the ratio is small value, the material presents the pseudo-high-strength. Conversely, the rock appears false-high-brittle.
     4. The priority developing shear zone don’t any longer exist during the rupture process of material because of the increase of loading rate, which makes the shear zone expands with the similar velocity, resulting in cone shape of rupture surface. It is found that the peak strength and deformation parameters of rock are enhanced with the developing of loading rate. The damage and rupture mechanism of material lies in which the cohesion energy is firstly cumulative, then cohesion strength is overcome, the little fracture is produced, the fracture is driven by cumulative elastic strain energy, finally the apparent rupture surface through the sample, when the local weak zone leads the post-peak phase of material’s deformation and instability process. The own strength of material don’t determine the damage process.
     5. The computing schemes with different clump radius, number and spatial location or with the same spatial location and number of clumps are designed to study the mechanics behavior of clump structure. It is found that the material features are improved with the increase of clump number and radius. The damage mechanism of material with different dimension clumps lies in which the clump radius increasing can results in the decrease of matrix quantity within the material, rupture is easily produced in matrix, so the number of fracture is lessened and the action of cohesion energy is lowered, conversely the action of the strain energy is enlarged. The clump with high strength isn’t easily damaged, its action is delivering force to matrix. Therefore, damage often happens around the clump. Because the density of clump in vertical direction is large than the horizontal, and the horizontal confining is limit, the rupture often vertically expands and horizontally opens, looking like Yan arrange. 6. The rupture process of numerical samples with different dimension is tracing, describing and studying by means of virtual implementation method and image disposal. It is found that there exists statistical self-similarity in rock rupture system, that the applicability of box-counting-method used to calculate fractal dimension is better than sandbox method, whose computing result often vibrates with the different height-to-diameter of sample, that the fractal dimension is decreasing with the confining pressure and increasing with the loading process, because the loading changes the initial uneven degree of random defects within rock, which limits the deterioration of material features within local zone and worsens the complexity of fractures.
引文
[1] 唐春安,朱万成.混凝土损伤与断裂—数值试验[M].北京:科学出版社,2003.
    [2] 唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].科学出版社,2002.
    [3] 俞茂宏,工程强度理论[M].北京:高等教育出版社,1999.
    [4] 张清,杜静,岩石力学基础[M].北京:中国铁道出版社,1997.
    [5] 周维垣,高等岩石力学[M].北京:水利水电出版社,1990.
    [6] 唐春安,岩石破裂过程的试验研究[D].东北工学院博士论文,1988.
    [7] 朱万成,唐春安,梁正召.应用数值试验方法,推进岩石力学实验的教学[J].力学与实践,2004,26(2):76-77.
    [8] 朱万成,唐春安,杨天鸿等.岩石破裂过程分析(RFPA2D)系统的细观单元本构关系及验证[J].岩石力学与工程学报,2003,22(1):24-29.
    [9] 王水林,葛修润,章 光.受压状态下裂纹扩展的数值分析[J].岩石力学与工程学报,1998,18(6):671~675
    [10] 唐 春 安 . 岩 石 声 发 射 规 律 数 值 模 拟 初 探 [J]. 岩 石 力 学 与 工 程 学报,1997,16(2):368~374
    [11] Tang C A. Numerical simulation of rock failure and associated seismicity[J]. Int. J. Rock Mech. Min. Sci., 1997, 34:249~262.
    [12] 崔维成.复合材料结构破坏过程的计算机模拟[J].复合材料学报,1996,13(4):102~111
    [13] Brady B H G, Brown E T. Rock Mechanics for Underground Mining[M]. Second Edition, London:Chapama&Hall, 1993,106~108.
    [14] 高峰,谢和平.脆性材料的分形统计强度理论[J].固体力学学报,1996,17(3):239~245
    [15] Horii H, Nemat N S. Compression-induced microcrack growth in brittle solids: axial splitting and shear failure[J]. Journal of Geophysical Research,1985,90(B4):3105~3125.
    [16] 胡传忻.断裂力学及其工程应用[M],北京:北京工业大学出版社.1980.
    [17] 黄克智,王自强.材料的宏微观力学与强韧化设计[M],北京:清华大学出版社,2003.
    [18] 郑长卿,周利,张克实.金属韧性破坏的细观力学及其应用研究[M],北京:国防工业出版社.1995.
    [19] 李洪升,周承芳.工程断裂力学[M].大连:大连理工出版社,1990.
    [20] Cox H L.A general introduction to fracture mechanics. Mechanical Engineering Publication Limited,London,1978.
    [21] Griffith A. A. The phenomenon of rupture and flow in solids. PhilosophicalTransactions of Royal Society. London, A221. 1920: 163-198P.
    [22] Mott NEBrittle fracture in mild steel plates. Engineering. 1948, 165: 16-18P.
    [23] Begley J.A. and Landes J.D. The J-integral as a Fracture Criterion. Fracture Toughness, ASTM STP 1972, 514:1-20P.
    [24] Irwin G. R. Fracture Dynamics. In: Fracturing of Metals. Cleveland: Am. Soc. Metals, 1948: 147-166P.
    [25] Orowan E. Fracture and Strength of Solids. In: Rep. On Progr. In Phys., V. Vll, 1948: 185P.
    [26] Irwin G. R. Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics. 1957, 24: 361-364P.
    [27] Hult J. A., McClintock F. A. Elastic-plastic distribution around sharp notches under repeated shear. Proceedings of 9th International Congress on Applied Mechanics. Brussels,1956, 8: 51 一 62P.
    [28] 尹双增,断裂遇伤理论与应用[M],清华大学出版社,1992.
    [29] 杨更社、张长庆著,岩体损伤及检测[M],西安:陕西科学技术出版社,1998 年7 月.
    [30] 余天庆编著,损伤理论及其应用[M],北京:国防工业出版社,1993 年.
    [31] 夏蒙芬等,统计细观损伤力学和损伤演化诱致突变(Ⅰ ),力学进展[J],25(1),1995:1-14.
    [32] 夏蒙芬等,统计细观损伤力学和损伤演化诱致突变(Ⅱ ),力学进展[J],25(2),1995:1-7.
    [33] 谢和平著,岩石混凝土损伤力学[M],北京:中国矿业大学出版社,1990 年 2 月.
    [34] 李兆霞.损伤力学及其应用北京科学出版社,2002.
    [35] 杨光松.损伤力学与复合材料损伤.北京国防工业出版社,1995.
    [36] 沈珠江、陈铁林,岩土破损力学:基本概念、目标和任务,岩石力学新进展与西部开发中的岩土工程问题[C],北京:中国科学技术出版社,2002 年 8 月,9-12.
    [37] 沈珠江,土体结构性数学模型,21 世纪土力学的核心问题,岩土工程学报 [J],1996,18(1):95-97.
    [38] 陈铁林,岩土材料二元介质模型的初步研究,博士后研究报告[R],北京:清华大学,2004.
    [39] 陈铁林,沈珠江.岩土破损力学的系统论基础[J],岩土力学,2004,Vol.25 Supp.2:21-26.
    [40] 沈珠江.岩土破损力学与双重介质模型[J].水利水运工程学报,2002,(4):1-6.
    [41] 沈珠江,陈铁林.岩土破损力学—结构类型与荷载分担[J],岩石力学与工程学报,2004,Vol.23(13):2137~2142.
    [42] 沈珠江岩土破损力学:理想脆弹塑性模型岩 土 工 程 学 报 第 25 卷 第3 期 Vol.25 No.3253-257.
    [43] 沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [44] 刘恩龙,沈珠江.岩土材料破损过程的细观数值模拟[J], 岩石力学与工程学报,2006, Vol.25 No.91790-1794.
    [45] Taylor G 1, J. Inst. Metals[M], 1938,62:307.
    [46] 葛修润,任建喜,蒲毅彬.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004.
    [47] Budiansky B., Micromechanics, Symposium on Advances and Trends in Structure and Solid Mechanics[C], 1982.
    [48] Krajcinove D., Fonseka G U.The continuous damage theory of britle materials, partI and partII. ASMEJ. Appl. Mech., Vol.48,PP809-824,
    [49] Kachanov M. A microcrack model of rock inelasticity, part I:frictional sliding on microcrack. partI: propagation of microcracks. Mech Mat, 1982a(1):3-28.
    [50] Lemaitre J. A continuous damage mechanics model for ductile fracture Art. Trans. ASME, J. of Engng. Mat. and Techn, 1985,Vol.107:83-89.
    [51] 杨庆生.复合材料细观结构力学与设计[M].北京,中国铁道出版社,2000. 204-205.
    [52] 杨卫,细观力学和细观损伤力学[J],力学进展,1992, 22 (1): 1-9.
    [53] 杨卫著,宏微观断裂力学[M],北京:国防工业出版社,1995.
    [54] 谢和平,岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990, 152-166.
    [55] Schlangen E,Garboczi E.J., Fracture simulations of concrete using lattice models Computational aspects, Engineering Fracture Mechanics, Vo1.57, No.2/3: 319-332
    [56] Van Mier, Jan.g.m,Vervuurt A. and Van Vliet, M.MR.A.(1999), Material engineering of cement-based composites using lattice models, In: Computational FractureMechanics in Concrete Technology. Carpinteri,A. and Aliabadi M.eds.,WITPress, Boston, Southampton, Comoputational Mechanics Publications: 1-32.
    [57] Cundall P.A.(1971), A computer model for simulating progressive large scale movements in blocky rock system, Proc, Int, Symp, Rock Fracture: 2-8.
    [58] Cundall P.A. and Strack O.D.L.(1979), A discrete numerical model for granular assemblies, Geotechnique, Vo1.29: 47-65.
    [59] Zubelewics A. and Mroz Z.(1983), Numerical simulation of rockbursts progress treated as problems of dynamic instability, Rock Mechanics and Rock Engineering, VoL 16: 253-274.
    [60] Bazand Z.P, Tabbara M.R.(1990), Random particle models for fracture of aggregate or fiber composites. Journal of Engineering Mechanics, ASCE, Vo1.116, No.8:1686-1705.
    [61] Zhong X.X.,Chang C.S 工 1999),Micromechanical modeling for behavior of cementitious grandular material. Journal of Engineering Mechanics, ASCE, Vo1.125,No.11:1280-1285.
    [62] Yue Z Q,Bekking W,Morin I. Application of digital image processing to quantitative study on asphalt concrete microstructure[A]. In:USA National Research Council[C]. [s. l.]:[s. n.],1995. 53–60.
    [63] Yue Z Q,Morin I. Digital image processing for aggregate orientation in asphalt concrete mixtures[J]. Canadian Journal of Civil Engineering,1996,23:479–89.
    [64] Yue Z Q,Morin I. Digital image processing for aggregate orientations in asphalt concrete : reply to discussion by Ashraf M. Ghaly[J]. Canadian Journal of Civil Engineering,1997,24:334–334.
    [65] Yue Z Q,Chen S,Tham L G. Digital image processing based finite element method for rock mechanics[A]. In:Lin Y M,Tang C A,Feng X T,et al ed. New Development in Rock Mechanics and Rock Engineering :Proceedings of the 2nd International Conference,China[C]. [s. l.]:[s. n.],2002. 609–615.
    [66] Yue Z Q, Chen S , Tham L G. Finite element modeling of geomaterials using digital image processing[J]. Computers and Geotechnics,2003,30:375–397.
    [67] 岳中琦,陈 沙,郑 宏,等. 岩土工程材料的数字图像有限元分析[J]. 岩石力学与工程学报,2004,23(6):889–897.
    [68] Yue Z Q,Chen S,Tham L G. Seepage analysis in inhomogeneous geomaterials using digital image processing based on finite element method[A]. In:Proceedings of the 12th Pan-Amerian Conference for Soil Mechanics and Geotechnical Engineering and the 39th US Rock Mechanics Symposium,Soil and Rock America 2003[C]. Boston,USA:[s. n.],2003. 1 297–1 302.
    [69] Chen S,Yue Z Q,Tham L G,et al. Modeling of the indirect tensile test for inhomogeneous granite using a digital image-based numerical method[J]. Int. J. Rock Mech. Min. Sci.,2004,41(3):447–447.
    [70] Chen S,Yue Z Q,Tham L G. Digital image-based numerical modeling method for prediction of inhomogeneous rock failure[J]. Int. J. Rock Mech. Min. Sci.,2004,41(6):939–957.
    [71] 陈沙,岳中琦,谭国涣. 基于真实细观结构的岩土工程材料三维数值分析方法[J]. 岩石力学与工程学报(待刊).
    [72] 陈沙,岳中琦,谭国涣. 基于数字图像的非均质岩土工程材料的数值分析方法[J]. 岩土工程学报,2005,27(8):956–964.
    [73] 岳中琦,岩土细观介质空间分布数字表述和相关力学数值分析的方法、应用和进展[J],岩石力学与工程学报,2006, Vol.25 No.5 875-888.
    [74] 许江等,对单轴应力状态下砂岩微观断裂发展全过程的实验研究[J],力学与实践1986(4): 16-20.
    [75] 李长春等,岩石类脆性材料的细观损伤本构关系[J],岩土力学,1989, 10( 2): 55-68.
    [76] 凌建明,孙钧,脆性岩石的细观裂纹损伤及其时效特征[J],岩石力学与工程学报,1993, 12(4):304-312.
    [77] 赵永红等,岩石微破裂发育的扫描电镜即时观测研究[J],岩石力学与工程学报,1992, 11(3):284-2940
    [78] 凌建明,压缩荷载条件下岩石细观损伤特征的研究[J],同济大学学报,1993, 21(5): 483-487.
    [79] 赵永红等,岩石细观破裂的实验观测研究及其对认识地震活动性的启示[J],地球物理学报,1995, 38 (5): 627-635.
    [80] Dougill J W, Lau J C, Burt N J. Mechanics in Engineering[J]. Am. Soc. Civil Eng., 1976:333 -355.
    [81] 余寿文.断裂损伤与细观力学[J].力学与实践,1988, 10(6):12-17.
    [82] Model793.10 Multi-PurposeTest Wtare, Minnesota[Z].MTS Systems Corporation,USA,2003.
    [83] GB/T4338—2006 金属材料高温拉伸试验方法[S].北京:中国标准出版社,2007.
    [84] 朱之芳,刚性试验机[M],北京:煤炭工业出版社,1985
    [85] 俞茂宏.工程强度理论[M],北京:高等教育出版社,1999
    [86] J.C.耶格.N.GW 库克.岩石力学基础[M],北京:科学出版社,1981
    [87] 张清,杜静.岩石力学基础[M].北京:中国铁道出版社,1997
    [88] WAWERSIK W R, FAIRHURST C. A study of brittle rock fracture in laboratory compression experiments[J]. Int Rock Mech and Min Sci & Geomech Abstr, 1970, 7(5).
    [89] 葛修润, 周伯海, 刘明贵. 电液伺服自适应控制岩石力学试验机及其对岩石力学某些问题研究的意义[J]. 岩土力学,1992, 13(2): 8–13.
    [90] 葛修润, 周伯海, 刘明贵. 电液伺服自适应控制岩石力学试验机及其对岩石力学某些问题研究的意义[J]. 岩土力学,1992, 13(3): 8–13.
    [91] 葛修润, 周伯海. 岩石力学室内实验装置的新进展—RMT-64 岩石力学试验系统[J]. 岩土力学, 1994, 15(1).
    [92] Colombo S, Forde M C. AE monitoring of concrete bridge beams in situ [J]. The Structural Engineer, 2003,81(2): 41―46.
    [93] Iida T, Watanabe H, Tomoda Y, Ohtsu M. Damage estimation of concrete core by AErate process analysis[J]. Proceeding of Japan Concrete Institute, 2000, 22(1):271-277.
    [94] Ohtsu M. Rate process analysis of acoustic emission activity in core test of concrete [J]. Concrete Library,JSCE, 1992, (20): 143-153.
    [95] Sison M, Duke J C Jr, Lozev M G, Clemena G G. Analysis of acoustic emissions from a steel bridge hanger[J]. Research in Nondestructive Evaluation, 1998, 10(3):123-145.
    [96] Knopoff L. Surface emotion of a thin Plate. J. of Applied Physies,1958,29(4):661-670.
    [97] 袁振明.马羽宽,何泽云编著.声发射技术及其应用[M].北京:机械工业出版社。1985.1-16.
    [98] Yamaguchi K, Takahaslai K. Viitsuma H. Proceedings of the 10th international acoustic emission. JSVDI. Sendui, Japan. 1990:1-10.
    [99] Dunegan H L. Harris D U. Tatro C A. Fracture analysis by use of acoustic emission. Engrg. Fract. hiech. 1968. 1(I):105—122.
    [100] Kishi T. Takahashi K.. Ohrsu M. Proceedings of the 11th international acoustic emission. JSVDI. Fukuoka, Japan.1992:1-35 , 251-266.
    [101] Yamagvchi K. Kimpara I. Higo Y. Proceedings of the 9th international acoustic emission symposium. JSVDI. Kol.,Japan. 1988:39-49.
    [102] Ronnie K.Miller and Paul Mclntire eds, Vol.5, Acoustic Emission Testing, Nondestructive Testing Handbook, American Society for Nondestructive Testing, 1987.
    [103] T.Drouillard, “Acoustic Emission: A Bibliography with Abstracts”, Frances Laner, ed. New York, NY: IFI Plenum Data Company (1979).
    [104] T.F.Drouillard, “Acoustic Emission-The First Half Century”, Progress in Acoustic Emission Ⅶ, The Japanese Society for NDI, Japan, 1994.
    [105] 耿荣生,“声发射技术发展现状-学会成立 20 周年回顾”,无损检测,第 20 卷第6 期,1998 年 6 月,P151-154.
    [106] 纪洪广, 裴广文, 单小云. 混凝土材料声发射技术研究综述[J]. 应用声学, 2002, 21(4): 1-5.
    [107] 纪洪广, 李造鼎. 混凝土材料凯塞效应和 Felicity 效应关系的实验研究[J]. 应用声学, 1997, 16(6): 30-33.
    [108] Maeda I. Spectral and source parameters of acoustic signals emitted by microcrack generation in a granite sample. J. Phys. Earth, 1981, 29: 241-253.
    [109] Spetzler H A, Sobolev G A, Sondergeld C H, et al. Surface deformation crack formation and acoustic velocity changes in pyrophyllite under polyaxial loading. J. Geophys. Res.,1981, 86(B2):1070-1080.
    [110] 秦四清,李造鼎,林韵梅.低脆性岩石声发射与断裂力学的理论研究.应用声学,1991, 10(4):20.25.
    [111] Lockner.The role of acoustic emission in the study of rock. Int. J. Rock Mech. Min. Sci.,1993,30(7)二 883.899.
    [112] 蔡美峰,朱兴平.声发射在复合材料支护采空区非线性动力失稳监测中的应用[C].中国岩石力学与工程学会第七次学术大会论文集.北京:中国科学技术出版社,2002:672-675.
    [113] 赵永红,黄杰藩,王仁.岩石微破裂发育的扫描电镜即时观测研究.岩石力学与工程学报,1992, 11(3):284-296.
    [114] 马少鹏,刘善军,赵永红.数字图像灰度相关性用以描述岩石试件损伤演化的研究.岩石力学与工程学报,2006, 25(3):590-595.
    [115] 尚嘉兰,孔常静,李廷芥,等.岩石细观损伤破坏的观测研究.实验力学,1999, 14(3): 373-384
    [116] 唐春安.岩石单轴压缩下破坏失稳过程 SEM 即时研究.东北大学学报,426-429.
    [117] Eberhardt E, Stead D, Stimpson B. Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. Int. J. Rock Mech. Min. Sri.,1999, 36(3):361-380.
    [118] Cundall, P. A. “Distinct Element Models of Rock and Soil Structure,” in Analytical and Computational Methods in Engineering Rock Mechanics, Ch. 4, pp. 129-163. E. T. Brown, Ed. London: Allen & Unwin., 1987.
    [119] Bathe, K. J., and E. L.Wilson. Numerical Methods in Finite Element Analysis. Englewood Cliffs: Prentice-Hall, Inc., 1976.
    [120] Marti, J., and P. Cundall. “Mixed Discretization Procedure for Accurate Modelling of Plastic Collapse,” Int. J. Num. & Analy. Methods in Geomech., 6, 129-139, 1982.
    [121] Nagtegaal, J. C., D. M. Parks and J. R. Rice. “On Numerically Accurate Finite Element Solutions in the Fully Plastic Range,” Comp. Meth. Appl. Mech. & Eng., 4, 153-177, 1974.
    [122] Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. Numerical Recipes: The Art of Scientific Computing. Cambridge: Cambridge University Press, 1986.
    [123] Itasca Consulting Group, Inc. FLAC (Fast Lagrangian Analysis of Continua), Version 4.0. Minneapolis: ICG, 2002.
    [124] Jirasek M, Zimmermann T .Embedded crack model:I. Basic formulation[J].Int J Numer. Methods Eng. 2001;50:1269-90.
    [125] Jirasek M, Zimmermann T. Embedded crack model:11: Combination with smeared cracks[J].Int. J. Numer Methods Eng. 2001;50:1291-305.
    [126] Bolandford GE, Ingraffea AR, Ligget JA. Two dimensional stress intensity factor computation using the boundary element method[J], Int. J. Num. Methods Eng. 1981:Vol.17:387-406.
    [127] Potela A. Dual boundary element incremental analysis of crack growth[D], Wessex Institute of Technology, Portsmouth University, Southampton, UK,1992.
    [128] Aliabadi MH, Rooke DF. Numerical fracture mechanics[M], Southampton: Computational Mechanics Publication, Dordrecht: Klurwer Academic Publisher, 1991.
    [129] Bonnet M, Maier G, Polizzotto C. Symmetric Galerkin Boundary element methods[J], Appl. Mech. Rev. 1998, Vol.51(11): 669-704.
    [130] Brebbia CA, Telles JCF, Wrobel LC. Boundary element techniques: theory & applications in engineering[M], Berlin: Springer, 1984.
    [131] 王泳嘉,邢纪波.离散单元法及其在岩土工程中的应用[M],沈阳:东北工学院出版社,1991.
    [132] Cundall, P. A. “A Computer Model for Simulating Progressive Large-Scale Movements in Blocky Rock Systems,” in Proceedings of the Symposium of the International Society for Rock Mechanics (Nancy, France, 1971), Vol. 1, Paper No. II-8, 1971.
    [133] Itasca Consulting Group, Inc. UDEC (Universal Distinct Element Code), Version 4.0. Minneapolis: ICG, 2004.
    [134] Itasca Consulting Group, Inc. 3DEC (3-Dimensional Distinct Element Code), Version 3.0. Minneapolis: ICG, 2003.
    [135] 石根华(裴觉民译).数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997
    [136] Shi G H. Modeling rock joints and blocks by manifold method[A]. Proceedings of 32nd U.S. Symposium on Rock Mechanics[C]. New Mexico: Santa Fe, 1992. 639-648.
    [137] Guangqi Chen, Yuzo Ohnishi, Takahiro Ito. Development of highorder manifold method[J]. International Journal for Numerical Methods in Engineering, 1998, 43(4):685-712.
    [138] Ming Lu. High-order manifold method with simplex integration[A]. Fifth International Conference on Analysis of Discontinuous Deformation[C]. Israel: Beer Sheva, 2002. 75-83.
    [139] 张湘伟, 蔡永昌, 廖林灿. 数值流形方法物理覆盖系统的自动剖分[J]. 重庆大学学报, 2000, 23(1): 28-32.
    [140] Nayroles B. Touzot G. and Villon F., Generalizing the finite element methods: diffuseapproximation and diffuse element[J], Comput. Mech., 1992,10:307-318.
    [141] Element-free Galerkin Methods[J], Int. J. for Num. Methods in Engrg., 1994,37:229-256.
    [142] Lu Y.Y., Belytschko T. and Gu L., A new implementation of the element-free Galerkin method[J], Comput. Methods Appl. Mech. Engrg. 1994,113:397-414.
    [143] 周维垣,寇晓东,无单元法及其工程应用[J],力学学报,1998,30(2):193-201.
    [144] 寇晓东,周维垣,应用无单元法追踪裂纹扩展[J],岩石力学与工程学报,2000,19(1):18-23.
    [145] Cundall, P. A., and O. D. L. Strack. “A Discrete Numerical Model for Granular Assemblies,” Géotechnique, 29, 47-65 (1979).
    [146] Itasca Consulting Group, Inc. PFC (Particle Flow Code), Version 3.0. Minneapolis:ICG, 2004.
    [147] Bazant Z P,Chen E P. Scaling of structural failure[J]. Appl Mech Rev,1997,50(10):593-627.
    [148] Bazant Z P,Chen E. 结构破坏的尺度律[J]. 力学进展,1999,29(3):383~433.
    [149] 中华人民共和国煤炭工业部. 煤与岩石物理力学性质测定方法[S]. 北京:中国标准出版社,1988.
    [150] 中华人民共和国地质矿产部. 岩石物理力学性质试验规程[S]. 北京:地质出版社,1995.
    [151] 中华人民共和国国家标准·工程岩体试验方法标准,GB/T50266-99,北京:中国计划出版社,1999.
    [152] 中华人民共和国行业标准·水利水电工程岩石试验规程,SL264-2001,北京:中国水利水电出版社,2001.
    [153] 电力部,水利部,水利水电工程岩石试验规程(81),北京:水利出版社,1982.
    [154] 杨圣奇,苏承东,徐卫亚. 岩石材料尺寸效应的试验和理论研究[J].工程力学,2005,22(4):112–118.
    [155] 尤明庆.岩石试样的强度和变形破坏过程[M]. 北京:地质出版社,2000,45~46.
    [156] 尤明庆,邹友峰. 岩石材料的非均质性和岩样强度的尺寸效应[J].岩石力学与工程学报,2000,19(3):391~395
    [157] Tang C A,Tham L G,Lee P K K,et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression-part Ⅱ : constraint ,slenderness,and size effect[J]. Inter. J. Rock Mech. Min. Sci.,2000,37(4):571~583.
    [158] 潘一山,魏建明. 岩石材料应变软化尺寸效应的试验和理论研究[J].岩石力学与工程学报,2002,21(2):215~218.
    [159] 尤明庆 苏承东.大理岩试样的长度对单轴压缩试验的影响[J],岩石力学与工程学报,2004,Vol.23(22):3754~3760.
    [160] BROWN E T, GONANO L P. Improved compression test technique for soft rock[J].Journal of the Soil Mechanics and Foundation Division,ASCE,1974,100:197-199.
    [161] 谢和平. 分形–岩石力学导论[M]. 北京:科学出版社,1996:15–29.
    [162] 孙霞,吴自勤,黄昀. 分形原理及其应用[M]. 中国科学技术大学出版社,合肥,2003:38–51.
    [163] Yang Z Y,Zhou A N. Fractal characteristic and fractal dimension measurement on broken surfaces of aluminum electric porcelain[J]. Journal of Wuhan University of Technology,2005,20(1):37–41.(in Chinese)
    [164] Xie H P , David J. Sanderson. Fractal kinematics of crack propagation in geomaterials[J]. Journal of China University of Mining & Technology,1995,5(1):1–8.(in Chinese)
    [165] Zhang W,Liang C H. Study of pitting morphology fractal characteristic of corroded surface of stainless steel in FeCl3 environment[J]. Journal of China University of Mining & Technology,2004,14(1):86–89.(in Chinese)
    [166] 徐志斌,谢和平. 断裂尺度的分形分布与其损伤演化的关系[J]. 地质力学学报,2004,10(3):268–275.
    [167] 郭隽,郭成璧. 高温疲劳表面短裂纹的分形研究[J]. 固体力学学报,2002,23(2):173–176.
    [168] 回丽,曹志韬,谢里阳,等. 钛合金焊缝金属表面疲劳短裂纹的分形研究[J]. 东北大学学报,2004,25(8):790–792.
    [169] 高峰,谢和平,巫静波. 岩石损伤和破碎相关性的分形分析[J]. 岩石力学与工程学报,1999,18(5):497–502.
    [170] 涂新斌,王思敬,岳中琦. 风化岩石的破碎分形及其工程地质意义[J]. 岩石力学与工程学报,2005,24(4):587–595.
    [171] 周金枝,徐小荷. 分形几何用于岩石损伤扩展过程的研究[J]. 岩土力学,1997,18(4):36–40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700