用户名: 密码: 验证码:
选择性去细胞猪皮的研制与临床应用及其复合基因修饰细胞促进创面愈合的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨一种保留表皮层结构,去除真皮层细胞,具有低抗原性的选择性去细胞猪皮(selectively decellularised porcine skin, SDPS)的制备方法,并验证其生物安全性。将SDPS与自体微粒皮复合移植用于修复大面积深度烧伤创面,通过临床观察,了解SDPS作为烧伤创面覆盖物的临床应用效果,探讨其替代冷冻异体皮的可行性。通过腺病毒介导构建VEGF基因修饰脐带间充质干细胞(umbilical cord mesenchymal stem cell, UCMSC),将SDPS与基因修饰细胞复合移植用于修复大鼠全层皮肤缺损创面,探讨其促进创面愈合的效果,为临床应用研究奠定实验基础。
     方法1切取健康白色家猪的全层皮,采用戊二醛-胰酶-去污剂的方法制备SDPS,通过大体及组织学观察确定各环节试剂的浓度和作用时间。微生物学检测包括细菌、真菌及病毒检测。采用Instron拉力机测定极限抗拉强度和断裂拉伸应变率。采用高效液相色谱法,测定SDPS浸提液中戊二醛含量。采用MTT法检测SDPS浸提液对NCTC clone 929细胞增殖的影响,参考美国药典评价体外细胞毒性。通过家兔皮内注射SDPS浸提液,对其产生刺激反应的潜在性做出评价。取成年Wistar大鼠72只,随机分为SDPS、新鲜猪皮、大鼠异体皮3组,于大鼠背部皮下分别植入1cm×1cm皮片,并于术后第1、2、4、8、12、16周行大体观察和组织学观察,评价其生物相容性。
     2临床应用经解放军总医院第一附属医院伦理委员会同意并批准,术前均经患者或家属知情同意。31例烧伤患者(男性18例,女性13例),年龄21~60岁,平均(37.29±11.33)岁,烧伤面积45%-99%,平均(65.51±17.43)%,于伤后4-6d行切(削)痂植皮术,其中一部分切(削)痂创面移植SDPS加自体微粒皮,其余创面移植液氮冻存的异体皮加自体微粒皮,采取上下或左右部位作自身对比,观察创面移植物排斥脱落时间,比较术后3周创面愈合率,比较术后3个月残余创面发生例数,并根据温哥华瘢痕量表对创面瘢痕情况进行评估。其中1例于术后12d、3个月时取创面组织行病理学观察。所有病例随访到术后1-2年,观察术区外观与功能恢复情况。
     3 UCMSCs传代培养后,以腺病毒介导GFP基因进行体外转染,倒置荧光显微镜下观察细胞转染效果,流式细胞仪检测细胞转染效率,确定最佳病毒感染复数(multiplicities of infection,MOI)。通过腺病毒介导构建VEGF基因修饰UCMSCs,通过免疫荧光染色及Western blotting检测转染后UCMSCs表达VEGF蛋白的情况,RT-PCR检测VEGF基因mRNA的表达情况,ELISA检测培养液中VEGF浓度,MTT法评价转染对UCMSCs增殖的影响。
     4取成年Wistar大鼠45只,以大鼠背部急性皮肤全层缺损创面为模型,移植同等大小面积的SDPS,其真皮面均匀粘附大鼠微粒皮,按SDPS下注射物不同分为3组(每组15只):VEGF基因修饰UCMSCs移植组(A组)、UCMSCs移植组(B组)、PBS空白对照组(C组)。于术后7d、14d、21d、28d观察创面情况,观察并记录各组大鼠SDPS排斥与脱落时间,计算28d创面愈合率。于术后3d、7d、14d、28d切取移植区域组织,对术后7d、14d、28d标本行HE染色,对术后3d、7d、14d标本采用Western blotting检测VEGF的表达、免疫组化检测CD34的表达,并计算微血管密度(MVD),进行统计学分析。
     结果1采用戊二醛-胰酶-去污剂制备的SDPS表皮层细胞完整,真皮内基本无细胞成分、皮肤附件及血管,胶原纤维排列规则。微生物学检测未检出病原微生物。极限抗拉强度为(8.80±0.03)Mpa,断裂拉伸应变率为(77.60±1.60)%。无戊二醛残留。细胞毒性判定为1级,符合国家医疗器械生物学评价标准。动物皮内注射SDPS浸提液后24h、48h的原发性刺激反应类型为轻度,96h为极轻微。皮下植入实验显示3组皮片植入大鼠皮下后均出现炎性反应,SDPS和大鼠异体皮炎性反应较弱,真皮层内逐渐有新生血管生成和纤维样组织长入,植入皮片均逐渐降解,新鲜猪皮炎性反应较强,持续时间长,植入皮片逐渐变硬,不易降解。
     2临床资料显示,31例大面积深度烧伤患者切(削)痂创面移植的SDPS与异体皮于术后10d左右可在创基留存,表皮基本存在,基底转红,无明显渗出,随着自体微粒皮生长、成片,两种覆盖物逐渐脱落。SDPS与异体皮的排斥脱落时间分别为(17.5±3.3)d和(14.2±2.5)d(P<0.05),术后3周创面愈合率分别为(70.16±23.15)%和(75.45±22.38)%(P>0.05),术后3月残余创面发生例数分别为4例和5例(P>0.05),术后3月瘢痕评分平均值分别为7.8±3.6和8.1±3.3(P>0.05)。术后12d,两种覆盖物创面组织病理学观察均可见炎细胞浸润;术后3月均可见再生的表皮层,真皮层可见纤维细胞、小血管以及胶原成分,SDPS与异体皮移植术后皮肤形态学无明显差异。术后1-2年随访,31例患者SDPS移植区域与异体皮移植区域的外观和功能均无差异。
     3腺病毒介导的GFP基因对于UCMSCs具有较高的转染效率,转染效率与MOI值具有量效关系,当MOI=100时,转染效率达95%。转染VEGF基因后2d,UCMSCs在蛋白和mRNA水平上均可有效表达VEGF,免疫荧光染色、Western blotting、RT-PCR显示转染组细胞明显表达VEGF,ELISA结果显示7d时达到表达高峰,13d后仍可检测到VEGF的表达。介导VEGF基因转染的腺病毒对UCMSCs的增殖没有明显影响。
     4创面移植的SDPS脱落时间,A组比B组、C组延长(P<0.01)。28d大鼠背部皮肤缺损创面愈合率,A组比B组、C组增高(P<0.01),B组与C组两项指标之间的差异无统计学意义(P>0.05)。移植后7d,掀起SDPS观察创面基底情况,A组血管增生较B组和C组明显。移植后的3d、7d、14d各时间点A组VEGF及CD34表达明显强于B组、C组,且7d、14d时的血管密度(micro vessel density, MVD)明显高于B组、C组(P<0.01),而B组、C组之间无明显差异(P>0.05)。
     结论采用戊二醛-胰酶-去污剂制备的SDPS保留了表皮结构,去除了真皮层细胞,具有组织形态学优势,微生物学、理化性能及生物学检测验证了其安全性,符合医疗器械生物学评价标准。SDPS复合自体微粒皮移植修复深度烧伤创面的临床效果与异体皮复合微粒皮移植相当,可替代异体皮应用于覆盖大面积深度烧伤切(削)痂创面。UCMSCs是一种较理想的基因载体细胞,腺病毒介导VEGF基因可以有效转染UCMSCs,转染后VEGF基因可获得较高的表达水平。VEGF基因修饰UCMSCs与SDPS复合移植可促进创面早期血管化,缩短创面愈合时间,改善创面愈合质量。
Objective To prepare and detect selectively decellularised porcine skin (SDPS) which has the characteristics of the lower antigen, continuous epidermis and the dermal matrix without any cellular components, and to verify the biological safety. To explore the clinical efficacy of micro-autografts overlaid with SDPS in the repair of deep burn wounds so as to resolve the problem of the shortage and risk of cadaveric allograft skin. Through Ad-VEGF transfecting UCMSCs in vitro, VEGF-expressing UCMSCs plus SDPS were transplantated to cover relevant full-thickness defect wounds in animal models, to improve wound healing quality, which would lay the experimental foundation for clinical study.
     Methods 1 Healthy porcine skin was treated with glutaraldehyde, trypsin and detergent to prepare SDPS. Gross observation and histological examination of SDPS were used to explore the optimal concentration of the reagents and action time in different stage. Bacteria, fungi and virus were tested in microbiological examination. Ultimate tensile strength and fracture tensile strain rate were measured by Instron tensile machine. Concentration of glutaraldehyde in SDPS leaching liquor was assayed by HPLC. The effect of SDPS leaching liquor on NCTC clone 929 cell proliferation was determinated by MTT method for evaluating its cytotoxicity according to U.S. Pharmacopeia. The possible irritant reactions of SDPS were observed after intradermal injection of SDPS leaching liquor in rabbits. Seventy-two adult Wistar rats were randomly divided into three groups:SDPS group, fresh porcine skin group and rat allogeneic skin group. One square centimeter of relevant skingraft was subcutaneously implanted into rat back in each group. Gross observation and histological examination were used to evaluate biological biocompability of SDPS on week 1,2,4,8,12 and 16 postoperatively.
     2 The clinical study protocol was approved by the ethics committee of the first hospital affiliated to general hospital of PLA. Written informed consents were obtained from the patients and/or their family members before surgery. They were 18 men and 13 women, with a mean age of (37.29±11.33) years (range,21 to 60). The total burn area was (65.51±17.43)% TBSA (range,45% to 99%). All patients underwent escharectomy followed by resultant wound being closed with micro-autografts plus SDPS or micro-autografts plus cryopreserved human cadaver skin (CHCS) between 4 and 6 days post burn. The following parameters in all cases were investigated:time of rejection and exfoliation, wound healing rate 3 weeks after surgery, and number of cases with residual wound 3 months after surgery. Hypertrophic scars were graded by Vancouver scar scale (VSS) 3 months after surgery. Wound sample from one case was harvested for pathological examination 12d and 3 months after surgery. Appearance and function in all patients were observed following up 1 to 2 years.
     3 Adenoviral vector containing hVEGF165 gene was constructed and UCMSCs were passaged and expanded. The infection efficiency of adenovirus vector to UCMSCs was tested by Ad.GFP infection procedure. GFP expression efficiency was observed using the fluorescence microscope and flow cytometry. Ad.VEGF were transfected into the UCMSCs by recombinant adenovirus vector. VEGF expression in UCMSCs were measured by immunohistochemical staining, RT-PCR, and Western blotting, while its secretion levels in culture medium were measured by ELISA. Influence of recombinant adevirous on cell proliferation were evaluated by MTT method.
     4 Forty-five adult Wistar rats were randomly divided into 3 groups (n=15). Acute full-thickness skin defects were inflicted on back of all the rats as a wound model, followed by covering with equal size SDPS plus micro-autografts, and then injecting underneath with 3 different agents respectively, including VEGF genetically modified UCMSCs (A group), UCMSCs (B group) and PBS (C group). Wound condition was observed at 7d,14d,21d,28d after operation. The rejection and losing time of SDPS on wound were observed and recorded, and wound healing rate was determined at 28d postoperation. Excising transplanted tissue was carried out at 3d, 7d,14d, and 28d postoperation. HE staining of specimen was performed at 7d,14d, 28d postoperation. The expression of VEGF and CD34 at 3d,7d and 14d postoperation were detected by Western blotting and IHC respectively. The microvessel density (MVD) was measured. Statistical analysis was performed finally
     Results 1 The SDPS, produced by the glutaraldehyde-trypsin-detergent method, had well-conserved continuous epidermis and dermal matrix without any cellular components, skin appendage and blood vessels, and collagen fibers arranged regularly. Pathogenic microorganism was undetectable. Ultimate tensile strength was (8.80±0.03) Mpa, Fracture tensile strain rate (77.60±1.60)%. No residual glutaraldehyde was detected in SDPS leaching liquor. The cytotoxicity was proved to be first grade by biocompatibility test, according with national standards of biological evaluation of medical devices. The primary irritation was mild 24h and 48h after intradermal injection of SDPS leaching liquor, and very slight 96h after injection. The experimental results of subdermal implantation demonstrated that inflammatory reaction appeared in all 3 groups. In SDPS group and allogeneic skin group, inflammatory reactions were moderate and alleviated in a time-dependent manner, fresh vessels and fibroblasts appearing in dermal matrix, the implanted skin grafts being degraded and absorbed gradually. However, in fresh porcine skin group, severe inflammatory reaction occurred and lasted longer than that in the other two groups, the implanted skin grafts becoming stiff and hard to be degraded.
     2 Clinical data showed that SDPS and allogeneic skin survived on wound at 10d postoperation in 31 cases, with epidermis basically existing, base turning red, without obvious exudates. With the growth and flakiness of autologous skin particles, both covering materials gradually losed. The rejection and exfoliation time of the SDPS was (17.5±3.3) days and that of the CHCS was (14.2±2.5) days (P<0.05). The wound healing rate were (70.16±23.15)% and (75.45±22.38)% at 3 weeks after operation (P>0.05) respectively. Postoperation 3 months, cases having residual wound were 4 and 5 respectively (P>0.05), the mean score of hypertrophic scar being (7.8±3.6) and (8.1±3.3) respectively (P>0.05). Inflammatory reaction appeared in both skin substitutes 12d postoperation. Histopathological observation showed regenerative epidermis, and fibroblasts, small blood vessels and collagen in dermis 3 month postoperation. There was no significant difference in appearance and function between the two groups following up 1 to 2 years.
     3 UCMSCs could be effectively infected with adenovirus containing GFP gene in vitro. The transfection efficiency has dose-effect relationship with MOI. When MOI was 100, the infection efficiency was over 95%. In UCMSCs'lysate, The expression of VEGF was traced at 2d after infection. In culture medium, the expression of VEGF reached peak on 7d, and could be observed even on 13d. Recombinant adevirus transfection had no effect on the growth and proliferation of UCMSCs.
     4 The exclusion and losing time of SDPS on wound was longer in A group than that in B group and C group (P<0.01). Wound healing rate was higher in A group than that in B group and C group at 28d postoperation (P<0.01). But there were no differences in both indexes between B group and C group (P>0.05). Postoperation 7d, wound bed under SDPS was observed. Angiogenesis in A group was more clearly than that in B group and C group. Postoperation 3d,7d and 14d, compared with the other two groups, the expression of VEGF and CD34 were increased in A group. Postoperation 7d and 14d, MVD in A group was higher than that in the other two groups (P<0.01). But there was no statistical difference between B and C group in expression of VEGF and CD34, and MVD (P>0.05).
     Conclusion SDPS, produced by the glutaraldehyde-trypsin-detergent method, has morphological advantages of possessing well-conserved continuous epidermis and dermal matrix without any cellular components. Its biological safety was verified by microbiology, physical and chemical properties and biological testing, meeting national standards of biological evaluation of medical devices. The clinical effect of microskin autografts overlaid with SDPS in the repair of deep burn wounds is similar to that of microskin autograft overlaid with CHCS. So it could be selected as a new skin substitute for allo-skin to cover extensive deep burn wounds. Further, combined transplantation of SDPS plus VEGF-expressing UCMSCs augments early angiogenesis of wound, reduces wound healing time, and improves the wound healing quality.
引文
[1]柴家科,盛志勇.进一步重视大面积深度烧伤皮肤替代物的研究.中华烧伤杂志.2002,18(2):73-74.
    [2]Bello YM, Falabella AF, Eaglstein WH. Tissue-engineered skin:current status in wound healing. Am J Clin Dermatol.2001,2:305-313.
    [3]Yoshihiro T, Hideharu T, Takako W, et al. Accelerated epithelization of STSG donor wounds by cultured cellular sheet composed of mixture of keratinocytes and fibroblasts. Wound Repair Regen.2004,12:All.
    [4]Griffiths M, Oieh N, Livingstone R, et al. Survival of Apligraf in acute human wounds. Tissue Eng.2004,10:1180-1195.
    [5]Rissin Y, Fodor L, Talmon G, et al. Investigating human microskin grafting technique in a new experimental model. Burns.2009,35:681-686.
    [6]Zhang ML, Chang ZD, Han X, et al. Microskin grafting. I. Animal experiments. Burns Including Thermal Injury.1986,12:540-543.
    [7]Zhang ML, Wang CY, Chang ZD, et al. Microskin grafting. II. Clinical report. Burns Including Thermal Injury.1986,12:544-548.
    [8]Castagnoli C, Alotto D, Cambieri I, et al. Evaluation of donor skin viability: fresh and cryopreserved skin using tetrazolioum salt assay. Burns.2003,29: 759-767.
    [9]Obeng MK, McCauley RL, Barnett JR, et al. Cadaveric allograft discards as a result of positive skin cultures. Burns.2001,27(3):267-271.
    [10]Hansbrough JF, Mozingo DW, Kealey P, et al. Clinical trials of a biosynthetic temporary skin replacement, Dermagraft-transitional covering, compared with cryopreserved human cadaver skin for temporary coverage of excised bum wounds. J Bum Care Rehabil.1997,18:43-51.
    [11]Srivastava A, De Sagun EZ, Jennings LJ, et al. Use of porcine acellular derm matrix as a dermal substitute in rats. Ann Surg.2001,233:400-408.
    [12]蔡兴东,曾社平,韩金安,等.新鲜猪皮覆盖微粒皮治疗大面积烧伤13例.中华烧伤杂志.2005,21(6):466-467.
    [13]李传吉,吴少军,李俊,等.应用异种皮作微粒皮移植覆盖物治疗深度烧伤的临床观察.中华烧伤杂志.2006,22(6):456-457.
    [14]易先锋.几种医用猪皮的物理性能测定.实用医学杂志.1998,14(12):902-903.
    [15]Chai Jia-Ke, Liang Li-Ming, Yang Hong-Ming, et al. Preparation of laser micropore porcine acellular dermal matrix for skin graft:An experimental study. Burns.2007,33(6):719-725.
    [16]谭谦,邹忠桃,宁官森,等.低浓度胰蛋白酶消化加反复冻融法制备猪脱细胞真皮基质.中华烧伤杂志.2004,20(6):354-356.
    [17]Xu H, Wan H, Zuo W, et al. A porcine-derived acellular dermal scaffold that supports soft tissue regeneration:removal of terminal galactose-alpha-(1,3)-galactose and retention of matrix structure. Tissue Eng Part A.2009,15(7): 1807-1819.
    [18]杨红明,柴家科,刘强,等.选择性脱细胞猪皮的研制及早期临床应用.中国修复重建外科杂志.2004,18(5):423-425.
    [19]刘强,柴家科,杨红明,等.两种去细胞处理猪皮与微粒皮复合移植对创面愈合的影响.中国医师杂志.2004,6(3):291-294.
    [20]国家药典委员会.中华人民共和国药典.北京:化学工业出版社.2005:附录33.
    [21]中华人民共和国国家质量监督检验检疫总局.GB/T16886.5-2003医疗器械生物学评价第5部分:体外细胞毒性试验.北京:中国标准出版社.2003:83-88.
    [22]The United States Pharmacopeial Convention. USP29-NF24. Rockville:The United States Pharmacopeial Convention,1999:2525.
    [23]中国标准出版社第一编辑室.医疗器械生物学评价标准汇编.北京:中国标准出版社.2003:151-152.
    [24]中华人民共和国国家质量监督检验检疫总局.GB/T16886.6-1997医疗器械生物学评价第6部分:植入后局部反应试验.北京:中国标准出版社.1997:92-101.
    [25]郝和平.医疗器械生物学评价标准实施指南.北京:中国标准出版社.2000:117.
    [26]Chang Y, Hsu CK, Wei HJ, et al. Cell-free xenogenic vascular grafts fixed with glutaraldehyde or genipin:In vitro and in vivo studies. J Biotechnol. 2005,120(2):207-219.
    [27]杨晓芳,奚廷斐.生物材料生物相容性评价研究进展.生物医学工程学杂志.2001,18(1):123-128.
    [28]张国安,宁方刚,钟京鸣,等.脱细胞羊皮基质的制备与性能检测.中国组织工程研究与临床康复.2007,11(47):9421-9426.
    [29]卢天健,徐峰.皮肤的力学性能概述.力学进展.2008,38(4):393-426.
    [30]Yang Y, Chen X, Ding F, et al. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials.2007,28(9): 1643-1652.
    [31]Prasertsung I, Kanokpanont S, Bunaprasert T, et al. Development of Acellular Dermis From Porcine Skin Using Periodic Pressurized Technique. J Biomed Mater Res B Appl Biomater.2008,85(1):210-219.
    [32]Yuan JD, Nie WB, Fu Q, et al. Novel three-dimensional nerve tissue engineering scaffolds and its biocompatibility with Schwann cells. Chin J Traumatol.2009,12(3):133-137.
    [33]Wang Y, Yin Y, Li S, et al. Interaction of olfactory ensheathing cells with nerve repairing scaffolds. J Cent South Univ (Med Sci).2009,34(5):382-387.
    [34]孙秀娟,范代娣,朱晨辉,等.类人胶原蛋白-透明质酸血管支架的性能及生物相容性.生物工程学报.2009,25(4):591-598.
    [35]林旭初,惠延年,孟浩,等.猪脱细胞角膜基质的制备及组织学特征观察.国际眼科杂志.2007,7(1):49-51.
    [36]Jordan DR, Brownstein S, Dorey M, et al. Fibrovascularization of porous polyethylene (Medpor) orbital implant in a rabbit model. Opthal Plast Reconstr Surg.2004,20(2):136-143.
    [37]Dai NT, Yeh MK, Chiang CH, et al. Human single-donor composite skin substitutes based on collagen and polycaprolactone copolymer. Biochem Biophys Res Commun.2009,386(1):21-25.
    [38]Liuyun J, Yubao L, Chengdong X. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue. J Biomed Sci.2009,16:65.
    [39]Kashiwazaki H, Kishiya Y, Matsuda A, et al. Fabrication of porous chitosan/ hydroxyapatite nanocomposites:their mechanical and biological properties. Biomed Mater Eng.2009,19(2-3):133-140.
    [40]Sullivan T, Smith J, Dermode J, et al. Rating the burn scar. J Burn Care Rehabil.1990,11(3):256-260.
    [41]刘强,柴家科,杨红明,等.选择性去细胞异种(猪)皮与自体微粒皮复合移植对创面愈合的影响.中国临床康复.2004,8(11):2027-2029.
    [1]Himadri R, Shalini B, Seppo YH. Biology of vascular endothelial growth factors. FEBS Letters.2006,580:2879-2887.
    [2]Saito A, Sugawara A, Uruno A, et al. All-trans retinoic acid induces in vitro angiogenesis viaretinoic acid receptor:possible involvement of paracrine efects of endogenous vascular endothelial growth factor signaling. Endocrinology.2007,148:1412-1423.
    [3]Tischer E, Mitchell R. The human gene for vascular endothelial growth factor:multiple protein forms are encoded through alternative exon splicing. J Biol fihem.1991,266(11):947.
    [4]Shima DT, Deutsch U, D'Amore PA, et al. Hypoxic induction of vascular endothelial growth factor(VEGF) in human epithelial cells in mediated by increases in Mrna stability. EFBS Lett.1995,370:203-208.
    [5]Tsuda H, Wada T,Yamashita T, et al. Enhanced osteoinduction by mesen-chymal stem cells transfected with a fiber-mutant adenoviral BMP2 gene. J Gene Med.2005,7(10):1322-1334.
    [6]Secco M, Zucconi E, Vieira NM, et al. Multipotent stem cells from umbilical cord:cord is richer than blood. Stem Cells.2008,26(1):146-150.
    [7]张裕东,张宝仁,黄盛东,等.腺病毒介导的血管内皮生长因子体外转染心肌细胞的研究.第二军医大学学报.2004,25(5):485-488.
    [8]韩焱福,宋建星,刘军.血管内皮细胞生长因子165基因重组腺病毒的构建及其鉴定.中国组织工程研究与临床康复.2008,12(24):4651-4654。
    [9]VatsA, Bielby RC, TolleyNS, et al. Stem cells. Lancet.2005,366(9485): 592-602.
    [10]Minguell JJ, Erices A, Congel P. Mesenchymal stem cells. Exp Biol Med. 2001,226(6):507-520.
    [11]Kado G. Relative sensitivity of three cell substrates to the Sabin poliovirus strains. Dev Biol Strand.1976,37:261.
    [12]Tse HF, Kwong YL, Chan JK, et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet.2003,361(9351):47-49.
    [13]Ohara N, Koyama H, Miyata T, et al. Adenovirus-mediated ex vivo gene transfer of basic fibroblast growth factor promotes collateral development in a rabbit model of hind limb ischemia. Gene Ther.2001,8(11):837-845.
    [14]Bates DO, Jones RO. The role of vascular endothelial growth factor in wound healing. Int J Low Extrem Wounds.2003,2(2):107-120.
    [15]Odorisio T, Cianfarani F, Failla CM,et al. The placenta growth factor in skin angiogenesis. J Dermatol Sci.2006,41(1):111-119.
    [16]Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells.2007,25(6):1384-1392.
    [17]Schneider RK, Pullen A, Kramann R, et al. Long-term survival and characterisation of human umbilical cord-derived mesenchymal stem cells on dermal equivalents. Differentiation.2010,79(3):182-193.
    [18]Henry TD, Annex BH, Mckendall GR, et al. The viva trial:vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation. 2003,107(10):1359-1365.
    [19]Dulak J, Schwarzacher SP, Zwick RH, et al. Effects of local gene transfer of VEGF on neointima formation after balloon injury in hypercholesterolemic rabbits. Vasc Med.2005,10(4):285-291.
    [20]韩焱福,刘军,宋建星,等.腺病毒介导人血管内皮细胞生长因子基因感染NIH3T3细胞的实验研究.第二军医大学学报.2008,29(8):929-933.
    [21]Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties of Aequoria, a bioluminescent protein from the luminous Hydromedusan, Aequorea. J Cell Comp Physiol.1962,59(2):223-229.
    [22]吴沛桥,巴晓革,胡海.绿色荧光蛋白GFP的研究进展及应用.生物医学工程研究.2009,28(1):83-86.
    [23]Mark RS, Jason O, William PH, et al. Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB J.2005,19:440-442.
    [24]华平,陈炬,张慧忠,等.腺病毒介导血管内皮细胞生长因子基因体外转染骨髓间充质干细胞.中山大学学报(医学科学版).2007,28(1):1-5.
    [25]Gruss CJ, Satuamoorthy K, Berking C, et al. Stroma formation and angiogenesis by overexpression of growth factors, cytokines, and proteolytic enzymes in human skin grafted to SCID mice. J Invest Dermatol.2003,120(4): 683-692.
    [26]刘嘉锋,钟文慧,张一鸣,等.重组人VEGF基因对游离组织移植物血管形成的作用.中国美容医学.2007,16(10):1325-1328.
    [27]Pareek QShevehuk M,Amenakas NA,et al.The effect of finasteride on the expression of vascular endothelial growth factor and microvessel densit:a possible mechanism for decreased prostatic bleeding in treated patients. J Urol. 2002,169:20-23.
    [28]Madeddu P. Therapeutic angiogenesis and vasculogenesis for tissue regeneration. Exp Physiol.2005,90:315-326.
    [29]Senger DR, Ledbetter SR, Claffey KP, et al. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanism involving the ανβ3 integrin, osteopontin, and thrombin. Am J Pathol.1996,149:293.
    [30]Kockel, Weich H, Brandner G, et al. Mutant p53 potentiates protein kinase c induction of vascular endothelial growth factor expression. Oncogene.1994,9: 936.
    [31]Stewart DJ, Hilton JD, Arnold JM, et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease:a phase 2 randomized, controlled trial of AdVEGF(121) versus maximum medical treatment. Gene Therapy.2006,13:1503-1511.
    [32]Yla-Herttuala S, Rissanen TT, Vajanto I, et al. Vascular endothelial growth factors:biology and current status of clinical applications in cardiovascular medine. J Am Coll Cardiol.2007,49:1015-1026.
    [33]Cross SE, Robert M S. Defining a model to predict the distribution of topically applied growth factors and other solutes in excisional full-thickness wounds. J Invest Dermatol.1999,112(1):36-41.
    [34]Carmeliet P. VEGF gene therapy:stimulating angiogenesis or angiomagenesis. Nat Med.2000,6:1102-1103.
    [35]Kirmaz C, Ozbilgin K, Yuksel H, et al. Increased expression of angiogenic markers in patients with seasonal allergic rhinitis. Eur Cytokine Netw.2004, 15(4):317-322.
    [36]Hanson SE, Bentz ML, Hematti P. Mesenchymal stem cell therapy for nonhealing cutaneous wounds. Plast Reconstr Surg.2010,125(2):510-516.
    [1]Kusumanto YH, Weel VV, Mulder NH, et al. Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia:a double-blind randomized trial. Hum Gene Ther.2006,17(6):683-691.
    [2]Connolly DT, Heuvelman DM, Nelsen R, et al. Tumor vacular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest.1989, 84(5):1470-1478.
    [3]Brekken RA, Thorpe PE. Vascular endothelial growth factor and vascular targeting of solid tumors. Anticancer Res.2001,21(6B):4221-4229.
    [4]Himadri R, Shalini B, Seppo YH. Biology of vascular endothelial growth factors. FEBS Letters.2006,580(12):2879-2887.
    [5]Saito A, Sugawara A, Uruno A, et al. All-trans retinoic acid induces in vitro angiogenesis via retinoic acid receptor:possible involvement of paracrine efects of endogenous vascular endothelial growth factor signaling. Endocrinology.2007,148(3):1412-1423.
    [6]Himadri R, Shalini B, Seppo YH. Biology of vascular endothelial growth factors. FEBS Letters.2006,580:2879-2887.
    [7]Tischer E, Mitchell R. The human gene for vascular endothelial growth factor: multiple protein forms are encoded through alternative exon splicing. J Biol fihem.1991,266(11):947.
    [8]Bellomo D, Headrick JP, Silins GU, et al. Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res. 2000,86:E29-35.
    [9]Chilov D,Kukk E,Taira S,et al.Genomic organization of human and mouse genes for vascular endothelial growth factor C. J Biol Chem.1997,272: 25176-25183.
    [10]Yamada Y, Nezu J, Shimane M, et al. Molecular cloning of a novel vascular endothelial growth factor, VEGF-D. Genomics.1997,42:483-488.
    [11]Rziha HJ, Bauer B, Adam KH, et al. Relatedness and heterogeneity at the near-terminal end of the genome of a parapoxvirus bovis 1 strain(B177) compared with parapoxvirus ovis(Orf virus). J Gen Virol.2003,4:1111-1116.
    [12]Tombran-Tink J, Barnstable CJ. Osteoblasts and osteoclasts express PEDF, VEGF-A isoforms, and VEGF receptors:possible mediators of angiogenesis and matrix remodeling in the bone. Biochem Biophys Res Commun.2004, 316(2):573-579.
    [13]Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res.2006, 312(5):549-560.
    [14]Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr.1997,18(1):4-25.
    [15]Akira Wagatsuma. Endogenous expression of angiogenesis-related factors in response to muscle injury. Mol Cell Biochem.2007,298(1-2):151-159.
    [16]Yla-Herttuala S, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth. Nat Med.2003,9(6):694-701.
    [17]Lebherz C, von Degenfeld G, Karl A, et al. Theradpeutic angiogenesis/ arteriogenesis in the chronic ischemic rabbit hindlimb:effect of venous basic fibroblast growth factor retroinfusion. Endothelium.2003,10(4-5):257-265.
    [18]Shima DT, Deutsch U, and D'Amore PA. Hypoxic induction for vascular endothelial growth factor (VEGF) in human epithelial cells is mediated by increases in mRNA stability. FEBS Lett.1995,370(3):203-208.
    [19]Spector JA, Mehrara BJ, Luchs JS, et al. Expression of adenovirally delivered gene products in healing osseous tissues. Ann Plast Surg.2000,44:522-528.
    [20]Jeschke MG, Barrow RE, Hawkins HK, et al. Biodistribution and feasibility of non-viral IGF-1 gene transfers in thermally injured skin. Lab Invest.2000,80: 151-158.
    [21]Eming SA, Morgan JR, Berger A. Gene therapy for tissue repair:approaches and prospects. Br J Plast Surg.1997,50:491-500.
    [22]Sakurai F, Inoue R, Nishino Y, et al. Effect of DNA/liposome mixing ratio on the physicochemical characteristics, cellular uptake and intracellular traffick-ing of plasmid DNA/cationic liposome complexes and subsequent gene expression. J Controlled Release.2000,66:255-269.
    [23]胡大海,汤朝武,陈璧.脂质体介导质粒转染角朊细胞的影响因素.基础医学与临床.2001,21:180-184.
    [24]韩焱福,宋建星,刘军.血管内皮细胞生长因子165基因重组腺病毒的构建及其鉴定.中国组织工程研究与临床康复.2008,12(24):4651-4654.
    [25]Tai IT, Sun AM. Microencapsulation of recombinant cells:a new delivery system for gene therapy. FASEB J.1993,7(11):1061-1069.
    [26]Chang PL, Shen N, Westcott AJ. Delivery of recombinant gene products with micro-encapsulated cells in vivo. Hum Gene Ther.1993,4(4):433-440.
    [27]Chang TM. Artificial cell biotechnology for medical applications. Blood Purif. 2000,18(2):91-96.
    [28]Vallbacka JJ. Nobrega JN, Sefton MV. Tissue engineering as a platform for controled release of therapeutic agents:implantation of microencapsulated dopamine producing cell in brains of rats. J Control Release.2001,72(1-3): 93-100.
    [29]韩焱福,宋建星,刘军,等.微囊化血管内皮细胞生长因子基因修饰NIH3TT3细胞的制备及体外培养.第二军医大学学报.2008,29(5):491-494.
    [30]Lei Y, Husnain KH, Shujia J, et al. Improved angiogenic respone in pig heart following ischaemic injury using human skeletal myoblast simultaneously expressing VEGF165 and angiopoietin-1. European Journal of Heart Failure. 2007,9(1):15-22.
    [31]Shimpo M, Ikeda U, Maeda Y, et al. AAV-mediated VEGF gene transfer into skeletal muscle stimulates angiogenesis and improves blood flow in a rat hind limb ischemia model. Cardiovasc Res.2002,53(4):993-1001.
    [32]Rutanen J, Rissanen TT, Markkanen JE, et al. Adenoviral catheter-mediated intramyocardial gene transfer using the mature form of vascular endothelial growth factor-D induces transmural angiogenesis in porcine heart. Circulation. 2004,109(8):1029-1035.
    [33]Vincent KA, Jiang C, Boltje I, et al. Gene therapy progress and prospects: therapeutic angiogenesis for ischemic cardiovascular disease. Gene Ther.2007, 14(10):781-789.
    [34]O'Toole G, MacKenzie D, Lindeman R, et al. Vascular endothelial growth factor gene therapy in ischaemic rat skin flaps. Br J Plast Surg.2002,55(1): 55-58.
    [35]Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis For ischemic disease:Part Ⅰ. Angiogenic cytokines. Circulation.2004,109(21): 2487-2491.
    [36]Galeano M, Deodato B, Ahavilla D, et al. Effect of recombinant adeno-associated virus vector-mediated vascular endothelial growth factor transfer on wound healing after burn injury. Crit Care Med.2003,31(4):1017-1025.
    [37]Galeano M, Deodato B, Altarilla D, et al. Adeno-associated viral vector-mediated human vascular endothelial growth factor gene transfer stimulates angiogenesis and wound healing in the genetically diabetic mouse. Diabetologia.2003,46(4):546-555.
    [38]Yoon CS, Jung HS, Kwon MJ, et al. Sonoporation of the minicircle-VEGF(165) for wound healing of diabetic mice. Pharm Res.2009,26(4):794-801.
    [39]Buchler P, Reber HA, Buchler MW, et al. VEGF-RII influences the prognosis of pancreatic cancer. Ann Surg.2002,236(6):738-749.
    [40]韩焱福,刘军,宋建星.腺病毒介导人血管内皮细胞生长因子基因感染NIH3T3细胞的实验研究.第二军医大学学报.2008,29(8):929-933.
    [41]Paolo DC, Dawn D, Lynn F, et al. Angiogenic gene-modified muscle cells for enhancement of tissue formation. Tissue Engineering.2005,11(7-8):1034-1044.
    [42]Xie K, Wei D, Shi D, Huang S. Constitutive and inducible expression and regulation of vascular endothelial growth factor. Cytokine Growth Factor Rev. 2004,15(5):297-324.
    [43]Cho ML, Jung YO, Moon YM, et al. Interleukin-18 induces production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunol Lett.2006,103(2):159-166.
    [44]Howard LP, Michael AK, Michael L, et al. Therapeutic arteriogenesis by ultrasound-mediated VEGF 165 plasmid gene delivery to chronically ischemic skeletal muscle. Circ Res.2007,101(3):295-303.
    [45]韩焱福,刘军,宋建星.微囊化基因工程细胞移植的研究进展.上海生物医学工程.2007,28(3):161-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700