用户名: 密码: 验证码:
非线性发展方程求解法的研究与数学机械化实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据数学机械化思想,以计算机符号和数值计算软件为工具,研究了孤立子理论中若干重要的非线性发展方程的求解方法及其相关问题,提出和发展了一系列求非线性发展方程解的方法,并在计算系统Maple或MATLAB上予以机械化实现。将数学机械化方法应用于相关学科,开发了数学机械化软件平台。主要的工作如下:
     第一章介绍了孤立子理论和非线性发展方程求解理论及其数学机械化研究的历史发展和现状。同时介绍了一些关于这些学科的国内外学者所取得的成果。
     第二章介绍了构造非线性发展方程精确解的“AC=BD”模式和构造“C-D”对的算法,利用Maple和“AC=BD+R”带余除法构造精确解的具体算法。
     第三章基于将非线性发展方程求解统一化,算法化,机械化的思想,运用吴方法和符号计算的工具,建立了广义双曲函数的理论,提出了求非线性发展方程的广义双曲函数解和研究解的长时间行态及其相关问题的一系列方法。主要内容如下:
     (1)给出广义双曲函数的定义和代数与微分性质及其证明,构造非线性发展方程解的广义双曲函数变换的定义和一些具体形式。
     (2)提出了广义双曲函数-B(?)cklund变换方法,将其应用于解非线性发展方程组,求出了许多新的更一般的精确解。用计算机数值模拟方法研究了一些解的长时间的行态,结果表明这些新解具有良好的长时间的稳定性。
     (3)提出了划分非线性发展方程的广义双曲函数解的长时间行态的三段法,并将其应用于研究一些非线性发展方程的广义双曲函数解的长时间稳定性,检验该方法的有效性。另外,还分别提出了修正广义双曲函数解和变系数解的长时间行态的方法。
     (4)根据WTC方法和齐次平衡法构造B(?)cklund变换的方法的思想,提出了一种构造B(?)cklund变换的方法及其机械化算法,并将该方法应用于构造一些高阶高维的非线性发展方程的B(?)cklund变换,检验了有效性和可靠性。另外,还提出了与该方法相关的定理,并给出了证明。
     (5)利用计算机数值模拟方法,广泛地研究了非线性发展方程的广义双曲函数解中的三个参数的不同取值对该解的局部性质和长时间行态的影响,一个非线性发展方程在同一种自-B(?)cklund变换下,取不同类型的种子解对该发展方程解的个数和解的形式的影响,不同类型的种子解对解的主部的影响,各种类型的广义双曲函数解的长时间行态,不同类型的非行波解和行波解的长时间行态的比较等问题,有一些新的发现,提出四个猜测。
     第四章以符号计算软件Maple为工具,发展了构造非线性发展方程精确解的改进的F-展开法和推广的射影-Riccati方程法,提出了如下方法及其定理:
     (1)构造了广义双曲函数-Riccati方程,提出了有关广义双曲函数-Riccati方程具有新的更一般的广义双曲函数解的定理、广义的射影Riccati方程和射影Riccati方程是广义双曲函数-Riccati方程的特例的定理,并且用Maple机械化方法给出了这两个定理的证明。
     (2)利用广义双曲函数-Riccati方程,提出了广义双曲函数-Riccati方法,并用该方法求出了非线性发展方程的新的更一般形式的解。
     (3)通过构造两类更一般的变换,提出了广义F-展开法和扩展的广义F-展开法。并将这些方法分别应用到一些非线性发展方程,结果成功地获得了这些方程的许多新的更一般的精确解。
     第五章构造更一般的变换,给出类N孤子解的定义和猜测5,发展了Exp-函数方法,提出了Exp-B(?)cklund变换方法和Exp-类N孤子方法。利用这两种新方法获得了一些非线性发展方程的包含行波解和非行波解的更一般形式的精确解,并用计算机数值模拟方法研究了这类解的长时间行态。
     第六章发展了求非线性发展方程的行波解的代数方法,提出了如下方法及其相关的定理:
     (1)提出了一般形式的变换和相关定理,然后用Maple机械化方法证明了该定理。
     (2)提出了求一阶任意次非线性常微分方程的精确解的机械化算法及其Maple程序,通过求六、八、十、十二次非线性常微分方程的某些一般形式的新的精确解,验证了该方法的有效性和可靠性。
     (3)利用一阶任意次非线性常微分方程及其新的精确解,提出了广义的代数方法和扩展的广义的代数方法,并将它们分别应用到一些非线性发展方程,结果得到许多新的行波解和非行波解。
     第七章改进了一些数值算法,提出了一类求非线性发展方程解的数值与解析混合运算的方法,求解常微分方程初值问题的改进的亚当斯方法等,提高了数值计算精度,并算法实现了机械化。另外,还提出了数值解、符号解、误差估计、输出结果图形可视化或表格化并举的设计数值计算机软件的新策略,开发了大量的数学计算机软件程序,建立了数值分析和高等数学的机械化软件MATLAB平台,使同类问题自动求解。
In this dissertation, under the guidance of mathematics mechanization and by means of computer algebraic and numerical systems, some problems in the theory of solitons are discussed and some methods for constructing the solutions of nonlinear evolution equations are presented. The methods presented are realized on the algebraic computation software Maple or MATLAB. The method of mathematics mechanization is applied to the related subjects and the operating systems of mathematics mechanization using MATLAB are set up. The description is as follows:
     Chapter 1 of this dissertation is devoted to reviewing the history and development of soliton theory, some methods for seeking exact solutions of nonlinear evolution equations and the mathematics mechanization, with an emphasis on some achievements on the subjects involved in this dissertation.
     Chapter 2 concerns the construction of exact solutions of nonlinear evolution equations under via the "AC=BD" theory introduced by Prof. H. Q. Zhang. The construction of the operators of C and D and some concrete algorithms for constructing the exact solution based on the division with remainder "AC=BD+R" in terms of the symbolic computation software Maple are introduced.
     In chapter 3, based on the ideas of unification methods, algorithm realization and mechanization for solving nonlinear evolution equations, we found a new theory of generalized hyperbolic functions and present some new methods to construct the solutions of nonlinear evolution equations. Its main contents are as follows:
     (1) A new definition of generalized hyperbolic functions, generalized hyperbolic function transformation and their properties are presented. Then some concrete formulae of generalized hyperbolic function transformation are also given for constructing the solutions of nonlinear evolution equations.
     (2) A new generalized hyperbolic function - B(?)cklund transformation method is presented and applied to construct the exact solutions of some nonlinear evolution equations. As a result, a lot of new exact solutions in more general forms are obtained. Then we investigate the long-playing traveling state of the solutions via computer simulation and find that the solutions are of long time stability.
     (3) A new method of partitioned long-playing traveling state of the generalized hyperbolic function solution of nonlinear evolution equations is presented. The validity of the method is tested by its application to investigating the long time stability of the solutions. In addition, two methods which revise long-playing traveling state of the generalized hyperbolic function solutions and the variable coefficient solutions of nonlinear evolution equations are given.
     (4) Based on the ideas of the WTC method and the homogeneous balance method for constructing B(?)cklund transformation, a new method and its mechanization algorithm are suggested for constructing the B(?)cklund transformation. The validity and reliability of the method are tested by its application to two nonlinear evolution equatious of higher order and higher dimension. In addition, a new theorem about the method is presented and proved.
     (5) We investigate in a wide context whether the different values of three parameters in the gener- alized hyperbolic function solution affect the local properties of the long-playing travelling state of the solutions, whether the different types of a seed solution of a nonlinear evolution equation under the same B(?)cklund transformation affect the shape and number of solitons, the seed solution affect on the main part of solution, long-playing travelling state of the variable (constant) coefficient non -travelling wave solution differs from travelling wave solution, and the long-playing travelling states of several types of generalized hyperbolic function solutions and so on by means of computer simulation. As a result, we find some new phenomena and suggest four guesses.
     In chapter 4, by use of the symbolic computation software Maple, the general projective Riccati equation method and the improved F- expansion method are improved, and the resulting new methods and theorems are devised to construct the exact solutions for nonlinear evolution equations.
     (1) A new generalized hyperbolic function-Riccati equation is constructed and two theorems, which shows that the equation possesses new and more general generalized hyperbolic function solution including the projective Riccati equation and general projective Riccati equation, are devised and proved by a mechanization method using Maple.
     (2) By means of the generalized hyperbolic function-Riccati equation, a new generalized hyperbolic function -Riccati method is presented and applied to some nonlinear evolution equations. As a result, new exact solutions in more general forms are obtained.
     (3) By devising two kinds of new and more general transformation, a new generalized F-expansion method and a new extended generalized F- expansion method are proposed for constructing the exact solutions of nonlinear evolution equations. These new methods are applied to some nonlinear evolution equations and more general exact solutions are obtained.
     In chapter 5, a new definition of N soliton-like solution, guess 5, and a new and more general transformation are given, the Exp- function method is developed, and a new Exp -B(?)cklund method and a new Exp -N soliton-tike method are presented. Some more general exact solutions including nontravelling wave solutions and traveling wave solutions of some nonlinear evolution equations are derived using these methods. The long-playing traveling state of the solutions is sought by means of computer simulation.
     In chapter 6, the algebraic methods for constructing the traveling wave solutions of nonlinear evolution equations are developed and the following new methods and theorems are presented.
     (1) A new and general transformation, and a new theorem which is proved in Maple are presented.
     (2) A new mechanization method to find the exact solutions of a first-order nonlinear ordinary differential equation with any degree is presented. The validity and reliability of the method are tested by its application to the first-order nonlinear ordinary differential equation with six degree, eight degree, ten degree, and twelve degree.
     (3) A new generalized algebraic method, an extended generalized algebraic method, and their algorithms are suggested based on a nonlinear ordinary differential equation with any degree. Some nonlinear evolution equations are chosen to illustrate our algorithm so that more families of new exact solutions are obtained, which contain both non-traveling and traveling wave solutions.
     In chapter 7, some numerical methods are improved, a new compound operation method consisting of numerical and analytical methods to solve nonlinear evolution equations and the improved Adams method are proposed, and the accuracy of numerical computation is raised. A new tactics of devising a new system for handling numerical computation orders, which can actualize synchronously that numerical solutions, sign solution, and their error estimates are outputted in a figure format or a table format, is presented. A great deal of the software on mathematics mechanization is developed and two systems for handling the computation and the figures orders on numerical analysis and advanced mathematics using MATLAB are set up so that the same type of problem is solved automatically.
引文
[1] J. Scott Russell, Report on waves, Fourteen meeting of the British association for the advancement of science, John Murray, London,1844, 311.
    [2] G.B. Airy, "Tides and waves" Encycl. Metrop. London Art. 1845: 241.
    [3] M.J. Boussinesq, Th é orie de l'intumescence liquide appel é e onde solitaire ou de translation, se propageant dans un canal rectangulaire. C. R. Acad. Sci. Paris 1871: 755-759.
    [4] M.J. Boussinesq,O Theorie des ondes et de remous qui se propagent le long d'un canal recangulaierhorizonal , et communiquant au liquide contene dans ce cannal desvitesses sensiblement pareilles de la surface au fond,J.Math.Pures Appl. Ser. 1872, 2: 55-108.
    [5] J.W.S. Rayleigh, Lord, "On waves" Philos. Mag. Ser. 1876, 5: 257.
    [6] http://staff.science.uva.nl/janwieg/korteweg/KdV.pdf
    [7] D.J. Kortewrg and G. deVries, Phil. Mag. 1895,39:422.
    [8] E. Fermi, J Pasta and Ulam, Studies of Nonlinear Problems, I, Los Alamos Rep. LA(1940), 1955.
    [9] J.K. Perring and T. H. R.Skyrme, Nucl. Phys.1962(31):550.
    [10] N.J. Zabusky and M. D.Kruskal, Phys. rev. Lett.15(1965) 240.
    [11] 郭柏灵.粘性消去法和差分格分的粘性.北京:科学出版社,1993.
    [12] 郭柏灵.非线性演化方程.北京:科学出版社,1995.
    [13] 郭柏灵.近可积无穷维动力系统.北京:科学出版社,2004.
    [14] 郭柏灵.无穷维动力系统(上,下)..北京:国防工业出版社,2002.
    [15] 谷超豪等,孤立子理论与应用,杭州:浙江科技出版社,1987.
    [16] 郭柏灵.庞小峰.孤立子.北京:科学出版社,1987.
    [17] 李翊神.孤子与可积系统.上海:上海科技出版社,1999.
    [18] P. J. Olver, Applications of Lie Group to Dtrerential Equations (Berlin, Springer, 1986).
    [19] G.W. Bluman and S. Kumei, Symmetries and Differential Equations, Applied Mathematical Science No. 81 (Springer, New York, 1989).
    [20] 陈登远.孤子引论,北京:科学出版社,2006.
    [21] 庞小峰.孤立子物理学,四川:四川科学技术出版社,2003.
    [22] 陈陆君,粱昌洪.孤立子理论及其应用,西安:西安电子科技大学出版社,1997.
    [23] Fryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos (Cambridge, CambridgeUniversity Press, 2000).
    [24] M. J.Ablowitz and P.A. Clarkson,Solitons, Evolution Equations and Inverse Scattering(Cambridge, Cambridge University Press, 1992).
    [25] G.Eilenberger,Solitons Mathematical Methods for Physicists(Berlin, Springer,1981).
    [26] M.Remoissenet,Waves Called Solitons Concepts and Experiments(Berlin, Springer,1996).
    [27] C. Rogers, and W. R. Shadwick, Backlund transformations and their application, academic Press, New York, 1982.
    [28] H. D. Wahlquist and F. B. Estabrook, Backlund transformations for solitons of the Korteweg-de Vriu equation, Phys. Rev. Lett., 1973, 31: 1386-1390.
    [29] J. weiss, M. Tabor and G. Carnvale, The Painlev é property for partial differential equations. J. Math. Phys., 1983, 24: 522.
    [30] J. Weiss, The Painlev é property for partial differential equations. Ⅱ. Backlund transformation, Lax pairs, and the Schwarzian derivative. J. Math. Phys., 1983, 24: 1405.
    [31] V. B. Matveev and M. A. Salle, Darboux transformation and Solitons, Berlin:Springer, 1991.
    [32] 谷超豪等,孤立子理论中的Darboux变换及其几何应用,上海:上海科技出版社,1999
    [33] M .Wadati et al., Simple derivation of Backlund transformation from Riccati form of inverse method. Prog. Theor. Phys., 1975, 53: 418.
    [34] X. B. Hu and Y. Li, Superposition formulae of a fifth-order KdV equation and its modified equation. Acta Math. Appl. Sin., 1988, 4: 46.
    [35] X.B. Hu and P. A. Clarkson, Backlund transformations and nonlinear superposition formulae of a differential- difference KdV equation. J. Phys. A., 1998, 31: 1405.
    [36] X. B. Hu and Z. N. Zhu , A Backlund transformation and nonlinear superposition formula for the Belov- Chaltikian lattice. J. Phys. A., 1998, 31: 4755.
    [37] V.B. Matveev and E. K. Sklyanin, On Backlund transformations for many-body systems. J. Phys. A.,1998, 31: 2241.
    [38] E. K. sklyanin, Canonicity of Backlund transformation: r-matrix approach. I. L. D. Faddeev's Seminar on Mathematical Physics Amer.Amer. Math. Soc. Transt. Set., 2000, 2: 201.
    [39] A. N. W. Hone, et al., Backlund transformations for many-body systems related to KdV. J. Phys. A, 1999, 32: L299; Backlund transformations for the sl(2) Gaudin magnet. 2001, 34: 2477.
    [40] A. G. Choudhury and A. R. Chowhury, Canonical and Backlund transformations for discrete integrable systems and classical r-matrix. Phys. Lett. A., 2001, 280: 37.
    [41] Y. B. Zeng, et al., Canonical explicit Backlund transformations with spectrality for constrained flows of soliton hierarchies. Physica A, 2002, 303: 321.
    [42] M.L. Wang and Z. B. Li, Proc. Of the 1994 Beijing Symposium on nonlinear evolution equations and infinite dimensional dynamics systems, Zhongshan University Press, 1995,181.
    [43] Z.B. Li and M. L. Wang, Travelling wave solutions to the two-dimensional KdV-Burgers equation. J. Phys. A, 1993, 26: 6027.
    [44] 李志斌,张善卿,非线性波方程准确孤立波解的符号计算,数学物理学报,1997,17(1):81.
    [45] 范恩贵,大连理工大学博士论文,1998.
    [46] E. Fan and H. Q. Zhang, A note on the homogeneous balance method. Phys. Lett. A, 1998, 246: 403-406; Proc.of Asian Symposium on Computer Mathematics, 1998: 159; New exact solutions to a system of coupled KdV equations. Phys. Lett. A, 1998, 245: 389.
    [47] 范恩贵,张鸿庆,二类变式Boussinesq的对称性约化和精确解,数学物理学报,1999,19(4).
    [48] E. Fan, Two new applications of the homogeneous balance method. Phys. Lett. A, 2000, 265: 353-357.
    [49] 范恩贵,可积系统与计算机代数,北京:科学出版社,2004.
    [50] 王琪,非线性微分方程求解和混沌同步:(博士学位论文).大连:大连理工大学,2006.
    [51] 陈勇,孤立子理论中的若干问题的研究及机械化实现:(博士学位论文).大连:大连理工大学,2003.
    [52] 李彪,孤立子理论中若干精确求解方法的研究及应用:(博士学位论文).大连:大连理工大学,2004.
    [53] Y. Chen, Z.Y. Yan and H.Q. Zhang, Exact solutions for a family of variable-coefficient Reaction-Duffing equations via the Backlund transformation, Theor. Math. Phys., 2002, 132(1): 970-975.
    [54] Y. Chen, B. Li and H.Q. Zhang, Auto-Backlund transformation and exact solutions for modified nonlinear dispersive mK(m, n) equations, Chaos, Solitons and Fractals, 2003, 17: 693-698.
    [55] Y. Chen, B. Li and H. Zhang, Backlund Transformation and Exact Solutions for a New Generalized Zakhorov- Kuznetsov Equation, Commun. Theor. Phys., 2003, 39: 135-140.
    [56] C. S. Gardner, et al., Method for solving the Korteweg-deVries equation, Phys. Rev. Lett., 1967, 19: 1095.
    [57] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math., 1968, 21: 467.
    [58] N.J. Zabusky and M. D. Kruskal Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 1965, 14: 240.
    [59] M. Wadati, The modified Korteweg-de Vries equation, J. Phys. Soc. Jp., 1972, 32: 1681.
    [60] M. J. Ablowitz et al., Method for solving the sine-Gordon equation. Phys. Rev. Lett. 1973, 30: 1262; Nonlinear-evolution equations of physical significance. 1973, 31: 125.
    [61] H. D. Wahlquist and F. B. Estabrook, Prolongation structures of nonlinear evolution equations. J. Math. Phys., 1975, 16: 1; Prolongation structures of nonlinear evolution equations. Ⅱ. 1976, 17: 1293.
    [62] K. Wu, H. Y. Guo and S. K. Wang, Prolongation structures of nonlinear systems in higher dimensions. Commun. Theor. Phys., 1983, 2: 1425.
    [63] H. Y. Guo, K. Wu and S. K. Wang, Inverse scattering transform and regular Riemann-Hilbert problem. Commun. Theor. Phys., 1983, 2: 1169.
    [64] H.Y. Guo, K. Wu and S. K. Wang, Prolongation structure, Backlund transformation and principal homogeneous Hilbert problem in general relativity. Commun. Theor. Phys., 1983, 2: 883.
    [65] H.Y. Guo, et al., On the prolongation structure of Ernst equation. Commun. Theor. Phys., 1982, 1: 661.
    [66] 李翊神等,非线性科学选讲,中国科学技术大学出版社,1994.
    [67] 屠规彰,应用数学和计算数学,1979,1:21.
    [68] 李翊神,一类发展方程和谱的变形,中国科学A,1982,5:385.
    [69] G. L. Lamb, Backlund transformations for certain nonlinear evolution equations, J. Math. Phys.,1974, 15: 2157.
    [70] 胡星标,李勇,1+2维Gaudrey-Dodd-Gibbon-Kotera-Sawada方程的非线性叠加公式,高校应用数学学报,1993,8:17.
    [71] X.B. Hu and Y. Li, Nonlinear superposition formulae of the Ito equation and a model equation for shallow water waves. J. Phys. A., 1991, 24: 1979.
    [72] X. B. Hu, Nonlinear superposition formulae for the differential-difference analogue of the KdV equation and two-dimensional Toda equation. J. Phys. A., 1994, 27: 201.
    [73] S. Lie, Uber die integration durch bestimmte integrale yon einer klasse linear partieller differentiaigleichung, Arch for Math., 1881, 6: 328; Gesamm elts Abhandlungen, Vol. Ⅲ, Teubner B. G., Leipzig, 1922, 492.
    [74] S. Lie, Math. Ann., 1908, 32: 213.
    [75] H. Bateman, The conformal transformations of a spsce of four dimensions and their applications to geometrical optics. Proc. London Math. Soc., 1909, 7: 70.
    [76] E. Cunningham, The principle of relativity in electrodynamics and an extension thereof, Proc.London Math. Soc., 1909, 8: 77.
    [77] E. Nother, Nachr Koning. Gesell. Wissen. Gottingen, Meth. Phys. kl, 1918, 235.
    [78] L.V. Ovsiannikov, Groups and group-invariant solutions of differential equations, Dokl. Akad. Nauk. USRR, 1958, 118: 439.
    [79] L. V. Ovsiannikov, Group properties of differential equations, Novosibirsl, 1962.
    [80] L.V. Ovsiannikov, Group analysis of differential equations, Academic Press, New York, 1982.
    [81] L.I. Sedov, Similarity and dimensional method, 4th ed., Academic Press, New York, 1959.
    [82] M. G. Sukharev, Dokl. Akad. Nauk. USRR 1967, 175: 781.
    [83] N. H. Ibragimov, Transformation groups applied to mathematical Physcics, Reidel, Boston, 1985.
    [84] V.A. Venikov, Theory of Similarity and Simulation, Mac Donald Technical and Scientific, London, 1969.
    [85] G. W. Blumanand J. D. Cole, The general similarity solution of the heat equation, J. Math. Mech., 1969, 18: 1025.
    [86] G.W. Bluman and J. D. Cole, Similarity method for differential equation., Appl. Math. Sci. No.13, Springer- Berlag, New York, 1974.
    [87] D. Levi and P. Winternitz, Non-classical symmetry reduction: example of the Boussinesq equation. J. Phys. A, 1989, 22: 2915.
    [88] E. M. Vorob'er, Acta Appl. Math., 1991, 24: 1.
    [89] P. J. Olver, Evolution equations possessing infinitely many symmetries. J. Math. Phys., 1977, 18: 1212.
    [90] P. J. Olver, On the Hamiltonian structure of evolution equations. Math. Proc. Camb. Phill Soc., 1980, 88: 71.
    [91] B. Fuchsseiner and A. S. Fokas, Symplectic structures, their Backlund transformations and hereditary symmetries. Physica D, 1981, 4: 47.
    [92] H.H. Chen, et al., In Advance in nonlinear wave, ed L. Debnath, 1982, 233.
    [93] 李翊神,朱国诚,一个谱可变演化方程的对称,科学通报,1986,19:1449;可积方程新的对称,李代数及谱可变演化方程,中国科学 A,1987,30:235;”C可积”非线性方程的代数性质-(Ⅰ)Burgers方程和Calogero方程,中国科学A,1989,32:1133.
    [94] 田畴,Burgers方程的新的强对称,对称和李代数,中国科学 A,1987,30:1009.
    [95] G. C. Zhu and H. H. Chen, Symmetries and integrability of the cylindrical Korteweg-de Vries equation. J. Math. Phys. 1986, 27: 100.
    [96] S.Y. Lou, Twelve sets of symmetries of the Caudrey-Dodd-Gibbon-Sawada-Kotera equation. Phys. Lett. A 1993, 175: 23;Inverse recursion operator of the AKNS hierarchy, Phys. Lett. A 1993, 179: 271.Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations. J. Math. Phys., 1994, 35: 2390.
    [97] T. Sun and W. Wang, Symmetries and their Lie algebra properties for the higher-order Burgers equations. J. Phys. A, 1989, 22: 2372.
    [98] Y.S. Li and G. C. Zhu, New set of symmetries of the integrable equations, Lie algebra and non-isospectral evolution equations. Ⅱ. AKNS system. J. Phys. A, 1986, 19: 3713.
    [99] W. X. Ma, K symmetries and tau symmetries of evolution equations and their Lie algebras. J. Phys. A., 1990, 23: 2707.
    [100] P. A. Clarkson and M. D. Kruskal, New similarity reductions of the Boussinesq equation. J. Math. Phys., 1989, 30: 2201.
    [101] S. Y. Lou, A note on the new similarity reductions of the Boussinesq equation. Phys. lett. A, 1990, 151: 133.
    [102] P. A. Clarkson, New similarity solutions for the modified Boussinesq equation. J. Phys. A, 1989, 22: 2355.
    [103] H. S. European, J. Appl. Math., 1(1990)219; Nonlinearity, 1992, 5: 453; Nonclassical Symmetry Reductions of the Boussinesq Equation. Chaos, Solitons and Fractals, 1995, 5: 2261.
    [104] P. A. Clarkson and H. S. European, J. Appl. Math., 1992, 3: 381; Symmetry reductions of a generalized, cylindrical nonlinear Schrodinger equation. J. Phys. A, 1993, 26: 133.
    [105] P. A. Clarkson and P. Winternitz, Nonclassical symmetry reductions for the Kadomtsev-Petviashvili equation. Physica D, 1991, 49: 257.
    [106] P. A. Clarkson and D. K. Ludlow, Symmetry reductions, exact solutions, and Palnlev é analysis for a generalised Boussinesq equation. J. Math. Anal. Appl., 1994, 186: 132.
    [107] S. Y. Lou, Similarity reductions of the KP equation by a direct method. J .Phys. A, 1990, 23: L694; Generalized Boussinesq equation and KdV equation-Painlev é properties, Backlund transformations and Lax pairs. Sci. China A, 1991, 34: 1098.
    [108] S. Y. Lou and H. Y. Ruan, Nonclassical analysis and Painleve property for the Kupershmidt equations. J. Phys. A, 1993, 26: 4679.
    [109] C. Z. Qu, Nonclassical analysis for the Zakharov-Kuznetsov equation. Int. J. Theor. Phys., 1995, 34: 99;Nonclassical symmetry reductions for the integrable super KdV equations. Commun. Theor. Phys., 1995, 24: 177.
    [110] J. Z. Zhang, Similarity reductions for the Khokhlov-Zabolotskaya equation. Commun. Theor. Phys., 1995, 24: 69.
    [111] 王烈衍,K(m,n)方程的对称约化,物理学报,2000,49:181.
    [112] M. C. Nucci and P. A. Clarkson, The nonclassical method is more general than the direct method for symmetry reductions. An example of the FitzHugh-Nagumo equation. Phys. Lett. A, 1992, 164: 49.
    [113] P. J. Olver, Direct reduction and differential constraints. Proc. R. Soc. Lond. A, 1994, 444: 509.
    [114] E. Pucci, Similarity reductions of partial differential equations. J. Phys. A, 1992, 25: 2631.
    [115] P.J. Arrigo, et al., Nonclassical symmetry solutions and the methods of Bluman-Cole and Clarkson-Kruskal. J. Math. Phys., 1993, 34: 4692.
    [116] J. F. Zhang, Chin. Phys., 2000, 9: 1.
    [117] 范恩贵,齐次平衡法,Weiss-Tabor-Carnevale法及Clarkson-Kruskal约化法之间关系,物理学报,2000,49:1409.
    [118] S. Y. Lou et al., Similarity and conditional similarity reductions of a (2 + 1)-dimensional KdV equation via a direct method. J. Math. Phys., 2000, 41: 8286.
    [119] S. Y. Lou and X. Y. Tang, Conditional Similarity Reduction Approach: Jimbo-Miwa equation. Chin. Phys., 2001, 10: 897.
    [120] X.Y. Tang et al., Conditional similarity solutions of the Boussinesq equation. Commun. Theor. Phys., 2001, 35: 399.
    [121] R. Z. Zhaanov, W. I. Fuschchych, Conditional symmetry and new classical solutions of the Yang-Mills equations. J. Phys. A: Math.Gen, 1995,28:6253.
    [122] 朝鲁,微分方程(组)对称向量的吴-微分特征列算法及其应用,数学物理学报,1999,19(3):326.
    [123] 朝鲁,大连理工大学博士论文,1997.
    [124] W. Hereman, Review of symbolic software for Lie symmetry analysis, Math. Comput. Modelling, 1997, 25:115.
    [125] 朝鲁,张鸿庆,唐立民,一个计算微分方程(组)对称群的Mathematica程序包及其应用,计算物理,1997,14(3):375.
    [126] 吕卓生,计算微分方程对称与精确解的机械化算法及实现:(博士学位论文).大连:大连理工大学,2004.
    [127] M. J. Ablowitz and H. Segur, Solitons and the inverse scattering transformation, SIAM: Philadelphia, 1981.
    [128] J. weiss, M. Tabor and G. Carnvale, The Painlev é property for partial differential equations. J. Math. Phys., 1983, 24: 522.
    [129] M. J. Ablowitz et al., A connection between nonlinear evolution equations and ordinary differential equations of P-type. J. Math. Phys., 1980, 21: 715.
    [130] J. Weiss, The Painlev é property for partial differential equations. Ⅱ. Backlund transformation, Lax pairs, and the Schwarzian derivative. J. Math. Phys., 1983, 24: 1405.
    [131] M. Jimbo et al., Palnlev é test for the serf-dual Yang-Mills equation. Phys. lett. A, 1982, 92: 59.
    [132] 曾云波,与A_l相联系的半Toda方程的Lax对与Backlund变换,数学学报,1992,35:454;数递推算子与Painleve性质,学年刊,1991,12A:778.
    [133] 谢福鼎,Wu-Ritt消元法在偏微分代数方程中的应用:(博士学位论文).大连:大连理工大学,2003.
    [134] 王灯山,大连理工大学硕士论文,2005.
    [135] 郑学东,大连理工大学硕士论文,2003.
    [136] 李德生,若干非线性演化方程精确解求解法的研究:(博士学位论文).大连:大连理工大学,2004.
    [137] S. Y. Lou, KdV extensions with Painlev é property, J. Math. Phys. 1998, 39: 2112-2121.
    [138] L. L. Chen and S. Y. Lou, Painleve analysis of a (2+1-dimensional Burgers equation, Commun. Theor. Phys. 1998,29: 313-316.
    [139] 楼森岳,推广的Painlev é展开及KdV方程的非标准截断解,物理学报,1998,47:1937-1949.
    [140] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett., 1971, 27: 1192; A variety of nonlinear network equations generated from the Backlund transformation for the Toda lattice. Prog. Theor. Phys. Suppl., 1976, 59: 64.
    [141] Y. Matsuno, Bilinear Transformation method, New york :Academic, 1984.
    [142] X. B. Hu, Rational solutions of integrable equations via nonlinear superposition formulae. J. Phys. A, 1997, 30: 8225.
    [143] X. B. Hu and Z. N .Zhu, A Backlund transformation and nonlinear superposition formula for the Belov- Chaltikian lattice.J. Phys. A, 1998, 31: 4755; Some new results on the Blaszak-Marciniak lattice: Backlund transformation and nonlinear superposition formula. J. Math. Phys., 1998, 39: 4766.
    [144] X. B. Hu and Y. T. Wu, A new integrable differential-difference system and its explicit solutions. J .Phys. A, 1999, 32: 1515.
    [145] X. B. Hu and H. W. Tara, Some new results on the Btaszak-Marciniak, 3-field and 4-field lattices. Rep. Math. Phys., New integrable differential-difference systems: Lax pairs, bilinear forms and soliton solutions. 2000, 46: 99.
    [146] H. W. Tam et al., The Hirota-Satsuma coupled KdV equation and a coupled Ito system revisited. J .Phys. Soc. Jp., 2000, 69: 45.
    [147] X. B. Hu et al., Lax pairs and Backlund transformations for a coupled Ramani equation and its related system. Apl. Math. Lett., 2000, 13: 45.
    [148] M. Boiti et al., On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions. Inv. Probl, 1986, 2: 271; M. Boiti et al., On a spectral transform of a KdV-like equation related to the Schrodinger operator in the plane.Inv.Probl.,1987, 3: 25.
    [149] R. Radha and M. Lakshmanan, Singularity analysis and localized coherent structures in (2+1)-dimensional generalized Korteweg-de Vries equations. J. Math. Phys., 1994, 35: 4746.
    [150] J. F. Zhang, Abundant dromion-like structures to the (2+1) dimensional KdV equation. Chin. Phys, 2000, 9: 1.
    [151] S. Y. Lou, Generalized dromion solutions of the (2+1)-dimensional KdV equation. J. Phys. A, 1995, 28: 7227.
    [152] S.Y. Lou and H. Y. Ruan, Revisitation of the localized excitations of the (2+1)-dimensional KdV equation. J. Phys. A, 2001, 34: 305.
    [153] P. Rosenau and M. Hyman, Compactons: Solitons with finite wavelength, Phys. Rev. Lett. 1993, 70: 564.
    [154] P. Rosenau, Nonlinear dispersion and compact structures. Phys. Rev. Left.1994, 73: 1737; Phys.lett. A, On nonanalytic solitary waves formed by a nonlinear dispersion. 1997, 230: 305; Compact and noncompact dispersive patterns. Phys. Lett. A, 2000, 275: 193.
    [155] P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E, 1996, 53: 1900.
    [156] S. Dusuel et al., Predictability in systems with many characteristic times: The case of turbulence. Phys. Rev. E, 1998, 57: 2320.
    [157] M. S. Ismail and T. A. Taha, A numerical study of compactons. Math. Computer Simulation, 1998, 47: 519.
    [158] A. M. Wazwaz, Exact special solutions with solitary patterns for the nonlinear dispersive K(m, n) equations. Chaos, Solitons and Fractais, 2002, 13: 161;
    [159] S.Y. Lou and Q. X. Wang, Painlevé integrability of two sets of nonlinear evolution equations with nonlinear dispersions. Phys. Lett. A, 1999, 262: 344.
    [160] M. L. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A, 1995, 199: 169-172.
    [161] M. L. Wang, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 1996, 216: 67; M. L. Wang, Y. M. Wang and Y. B. Zhou, An auto-Backlund transformation and exact solutions to a generalized KdV equation with variable coefficients and their applications. Phys. Lett. A 2002, 303: 45.
    [162] Y. T. Gao and B. Tian, New families of exact solutions to the integrable dispersive long wave equations in (2+1)-dimensional spaces. J. Phys. A, 1996, 29: 2895:
    [163] Fan EG, Zhang HQ. New exact solutions to a system of coupled KdV equations. Phys.Lett.A, 1998, 245: 389-392.
    [164] 闰振亚,大连理工大学博士论文,2002.
    [165] M. L. Wang, Solitary wave solutions for variant Bonssinesq equations, Phys. Lett. A, 1995, 199: 169-172; M. L. Wang, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 1996, 216: 67; M. L. Wang, Y. M. Wang and Y. B. Zhou, An auto-B/icklund transformation and exact solutions to a generalized KdV equation with variable coefficients and their applications. Phys. Lett. A 2002, 303: 45.
    [166] Y. T. Gao and B. Tian, New families of exact solutions to the integrable dispersive long wave equations in (2+1)-dimensional spaces. J. Phys. A, 1996, 29: 2895.
    [167] E. Fan and H. Q. Zhang, A note on the homogeneous balance method. Phys. Lett. A, 1998, 246: 403-406; Proc.of Asian Symposium on Computer Mathematics, 1998: 159; New exact solutions to a system of coupled KdV equations. Phys. Lett. A, 1998, 245: 389.
    [168] E. J. Parkes and B. R. Duffy, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations. Comput. Phys. Commun. 1996, 98: 288.
    [169] E. G. Fan, Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled mKdV equation. Phys. Lett. A, 2001, 282: 18; Soliton solutions for the new complex version of a coupled KdV equation and a coupled mKdV equation. 2001, 285: 373.
    [170] C. T. Yan, A simple transformation for nonlinear waves, Phys. Lett. A, 1996, 224: 77.
    [171] Z. Y. Yan and H. Q. Zhang, New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics. Phys. Lett. A, 1999, 252: 291.
    [172] P. Rosenau and M. Hyman, Compactons: Solitons with finite wavelength, Phys. Rev. Lett. 1993, 70: 564.
    [173] 张鸿庆.弹性力学方程组一般解的统一理论.大连工学院学报,1978,18(3):23-47.
    [174] 张鸿庆.Maxwell方程的多余阶次与恰当解.应用数学和力学,1981,2(3):321-331.
    [175] 张鸿庆.线性算子方程组一般解的代数构造.大连工学院学报,1979,3:1-16.
    [176] 张鸿庆,王震宇.胡海昌解的完备性和逼近性.科学通抿1985,30(5):342-344.
    [177] He J H,Xu-HongWu.Exp-function method for nonlinear wave equations,Chaos Solitons and Fractals,2006, 30:700-708.
    [178] Xu-Hong Wu, He J H,.Exp-function method and its application to nonlinear equations,Chaos Solitons and Fractals (2007) in press.
    [179] He J H, Abdou M A.New periodic solutions for nonlinear evolution equations using Exp-function method ,Chaos Solitons and Fractals (2007) in Press.
    [180] M. A. Abdou, Generalized solitnary and periodic solutions for nonlinear partial differntial equations by Exp-function method, Nonlinear Dynamics, in press.
    [181] S. Zhang, Application of Exp-function method to high Dimensional nonlinear evolution equation, Chaos Solitons and Fractals (2007) in Press.
    [182] El-Wakil S A,Abdou M A,Chaos,Solitons and Fractals,2007,31:1256-1264
    [183] El-Wakil S A,Abdou M A,Chaos,Solitons and Fractals,2007,31:840-852
    [184] El-Wakil S A,Abdou M A,Phys.Lett.A,2006,358:275-282
    [185] K.W.Morton and D.F.Mayers,偏微分方程数值解,北京:人民邮电出版社,2006.
    [186] 孙志忠,偏微分方程的数值计算方法,北京:科学出版社,2005.
    [187] 黄明游,发展方程的数值计算方法,北京:科学出版社,2004.
    [188] 程建春,数学物理方程及其近似解,北京:科学出版社,2004.
    [189] 陈祖墀,偏微分方程,合肥:中国科学技术大学出版社,2004.
    [190] 胡健伟汤怀民,微分方程数值方法,北京:科学出版社,2003.
    [191] 李立康、於崇华、朱政华,偏微分方程数值解法,上海:复旦大学出版社,2003.
    [192] 廖玉麟,数学物理方程,武汉:华中理工大学出版社,1995.
    [193] 吴文俊.吴文俊论数学机械化.山东:山东教育出版社,1996.
    [194] 林东岱,李文林,虞言林,数学与数学机械化,山东教育出版社,2001.
    [195] 吴文俊,几何定理机器证明的基本原理,北京:科学出版社,1984.
    [196] 高小山,数学机械化进展综述,数学进展,2001,30(5):385.
    [197] W. T. Wu, On the decision problem and the mechanization of theorem- proving in elementary geometry. Scientia Sinica, 1978,21:159-172.
    [198] W. T. Wu, On zeros of algebraic equations: an application of Ritt principle. Kexue Tongbao,1986,31:1; Chinese version, 1985, 30: 881.
    [199] J. F. Pdtt, Differential Algebra, New York: American mathematical Society, 1950.
    [200] J. F. Pdtt, Bull. Amer. Math. Soc., 1934, 40: 303.
    [201] W. T. Wu, On the foundation of algebraic differential geometry, MMRP.1989.3
    [202] X. S. Gao, J. Z. Zhang, and S.C. Chou, Geometry Expert (in Chinese), Nine Chapters Pub., Taiwan, 1998.
    [203] S. C. Chou, X. S. Gao, and J.Z. Zhang, Machine Proofs in Geometry, World Scientific, Singapore, 1994.
    [204] S.C. Chou, Automated reasoning in differential geometry and mechanics using the characteristic set method. I. An improved version of Ritt-Wu's decomposition algorithm. Journal of Automated Reasoning, 1993, 10: 161.
    [205] X. S. Gao, S. C. Chou, and Jo Z. Zhang, Proceedings of ISSAC-93, 284.
    [206] X. S. Gao, An Introduction to Wu's Method of Mechanical Geometry Theorem Proving, IFIP Transaction on, Automated Reasoning, North-Holland, 1993, 13.
    [207] D. M. Wang and X. S. Gao, Geometry theorems proved mechanically using Wu's method. MM-Reseach Preprints, 1987(2).
    [208] D. M. Wang and S. Hu Mechanical proving system for constructible theorems in elementry geometry. J.Sys.Sci.Math Scis, 1995, 7.
    [209] D. D. Lin and Z. J. Liu, Some results in theorem proving in finite geometry. Proc of IWMM.Inter Academic Pub, 1992.
    [210] J. Z. Wu and Z. J. Liu, Proceedings of 1st Asian Symposium on Computer Mathematics, Beijing of China, 1995.
    [211] J. Z. Wu and Z. J. Liu, Science in China(Series E), 1996, 39(6): 608.
    [212] S. C. Chou and X. S. Gao, Ritt-Wu's decomposition algorithm and geometry theorem proving. CADE'10.Stikel M E, Ed. Springer-Verlag, 1990, 207.
    [213] D.Kapur,H.K.Wan. Refutational proofs of geometry theorems via characteristic sets. Proc of ISSAC- 90,Tokyo,Japan,1990, 277.
    [214] H. Ko. Geometry theorem proving by decomposition of quasi-algebraic sets: an application of the Ritt-Wu principle. Artif.Intell.,1988,37: 95.
    [215] B.H. Li and M. T. Cheng, Proving theorems in elementary geometry with Clifford algebraic method. Chinese Math Progress, 1997, 26(4): 357.
    [216] B. H. Li,Automated reasoning with differential forms.Proc of ASCM'92, 1992.
    [217] H. B. Li,M.T.Cheng, Clifford algebraic reduction method for mechanical theorem proving in differential geometry. J. Automated Reasoning, 1998, 21: 1.
    [218] D. M. Wang, Clifford algebraic calculus for geometric reasoning with applications to computer vision. In:D.Wang.Automated Deduction in geometry LNAI 1996, 1360: 115.
    [219] H. Shi, Proceeding 1992, International work Math. Mech. International Academic, 1992:79. MM-Preprints, 1997: 1.
    [220] 石赫,机械化数学引论,湖南教育出版社,1998.
    [221] X. D. Sun, K. Wang and K. Wu, Commun. Theor. Phys. 1996, 26: 213.
    [222] X. D. Sun, K. Wang and K. Wu, Classification of six-vertex-type solutions of the colored Yang-Baxter equation. J. Math. Phys. 1995, 10: 6043. Solutions of Yang-Baxter equation with color parameters. 中国科学 A, 1995, 38: 1105.
    [223] Z. B. Li, MM-Preprints, 1997, 15: 64.
    [224] Z. B. Li and H. Shi, Appl. Math-JCU, 1996, llB: 1.
    [225] Z. B. Li, Proc. Of Asian Symposition on Computer Mathematics, Lanzhou University, 1998: 153.
    [226] Z. B. Li, Y. P. Liu, RATH: A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations. Compu. Phys. Commun. 2002,148:256.
    [227] E. G. Fan and H. Q. Zhang, Backlund transformation and exact solutions for Whitham-Broer-Kaup equations in shallow water. Appl. Math. Mech., 1998, 19: 713.
    [228] 范恩贵,张鸿庆,非线性波动方程的孤波解,物理学报,1997,46:1254;非线性孤子方程的齐次平衡解法,1998,47:353.
    [229] Z.Y. Yan and H. Q. Zhang, New explicit solitary wave solutions and periodic wave solutions for Whitham- Broer-Kaup equation in shallow water. Phys. Lett. A., 2001, 285: 355-260.
    [230] Z. Y. Yan and H. Q. Zhang, On a new algorithm of constructing solitary wave solutions for systems of nonlinear evolution equations in mathematical physics. Appl. Math. Mech., 2000, 21: 342.
    [231] Z.Y. Yan and H. Q. Zhang, Multiple soliton-like and periodic-like solutions to the generalization of integrable (2 + 1)-dimensional dispersive long-wave equations. J. Phys. Soc. Jpn., 2002, 71: 437.
    [232] 闫振亚, 张鸿庆, New explicit travelling wave solutions for a class of nonlinear evolution equations. 物理学报, 1999, 48: 1.
    [233] Erich Kaltofen, Challenges of Symbolic Computation: My Favorite Open Problemsy., J. Symbolic Compu- tation, 2000, 29: 891.
    [234] B. Buchberger, G. E. Collins and R. Loos, Computer Algebra-Symbolic and Algebraic Computation, Beijing: World Publishing Corporation, 1988.
    [235] B.. H. Risch, Trans. Ams. Math. Soc., 1969, 139: 167.
    [236] E. R. Berlekamp, Factoring polynomials over large finite fields, Math. Comput., 1970, 24: 713.
    [237] W. S. Brown, On the partition function of a finite set, J. ACM, 1971, 18: 478.
    [238] R. W. Gosper, Decision Procedures for Indefinite Hypergeometric Summation, Proc. Nat. Acad. Sci. USA, 1978, 75: 40.
    [239] A. K. Lenstra, Factoring multivariate polynomials over algebraic number fields, SIAM J. Comput., 1987, 16: 591.
    [240] A. K. Lenstra, H. W. Jr. Lenstra and L. Lovasz, Factoring polynomials with rational coefficients, Math. Ann., 1982, 261: 515.
    [241] E. Kaltofen and B. Trager, Computing with polynomials given by black boxes for their evaluations: greatest common divisors, factorization, separation of numerators and denominators, J. Symb. Comput., 1990, 9: 310.
    [242] V. Shoup, A new polynomial factorization algorithm and its implementation, J. Symb. Comput., 1995, 20: 363.
    [243] H.Q. Zhang, Proceedings of 5th Asian Symposium on Computer Mathematics, World Scientific, Singapore, 2001:210.
    [244] 张鸿庆,冯红,构造弹性力学位移函数的机械化算法,应用数学和力学,1995,16:335.
    [245] 张鸿庆,大连理工大学学报,1978,18:23;力学特刊,1981: 152.
    [246] Timoshenko S P,Goodier J N. Theory of Elasticity, McGraw-Hill,1977.
    [247] X. D. Zheng, Y,. Chen, H. Q. Zhang, Generalized extended tanh-function method and its application to (1+1)-dimensional dispersive long wave equation, Phys. Lett. A 2003, 311: 145.
    [248] M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge: Cambridge University. Press, 1991.
    [249] 闫振亚, 张鸿庆, New explicit travelling wave solutions for a class of nonlinear evolution equations. 物理学报, 1999, 48: 1.
    [250] Biao Li, Yong Chen, Hongqing Zhang, Travelling wave solutions for generalized Pochhammer-Chree equations. Zeitschrift Fur Naturforschung A, 2002, 57(11): 874-882.
    [251] Biao Li,Yong Chen, Hongqing Zhang, Explicit exact solutions for some nonlinear partial differential equations with nonlinear terms of any order. Czechoslovak Journal OF Physics, 2003, 53(4): 283-295.
    [252] B. Li, Y. Chen, H.Q. Zhang, Auto-Backlund transformations and exact solutions for the generalized twodimensional Korteweg-de Vries-Burgers-type equations and Burgers-type equations, Z. Naturforsch. A, 2003, 58: 464.
    [253] B. Dey, Domain wall solutions of KdV-llke equations with higher order nonlinearity. J. Phys. A: Math. Gen. 1986,19:9.
    [254] Robert L. Pego, P. Smereka, M.I. Weinstein, Oscillatory instability of traveling waves for a KdV-Burgers equation. Physica D, 1993, 67: 45.
    [255] D. E. Pellnovsky, Roger H.J. Grimshav, An asymptotic approach to solitary wave instability and critical collapse in long-wave KdV-type evolution equations. Physica D, 1996, 98: 139.
    [256] W. G. Zhang, Q.S. Chang, B.G. Jiang, Explicit exact solitary-wave solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order. Chaos,Solitons and Fractals, 2002, 13: 311.
    [257] W.X. Ma, An exact solution to two-dimensional Korteweg-de Vries-Burgers equation. J. Phys. A: Math.Gen. 1993, 26: L17.
    [258] E. J. Parkes, Exact solutions to the two-dimensional Korteweg-de Vries-Burgers equation. J. Phys. A: Math. Gen. 1994, 27:497.
    [259] E. Fan, J. Zhang, Benny Y.C. Hon, A new complex line soliton for the two-dimensional KdV-Burgers equation. Phys. Lett. A 2001, 291: 376.
    [260] N. Joshi, J. A. Petersen, L.M. Schubert, Nonexistence results for the Korteweg-de Vries and Kadomtsev- Petviashvili equations. Stud. Appl. Math. 2000, 105: 361.
    [261] Y. Liu, X. P. Wang, Nonlinear stability of solitary waves of a generalized Kadomtsev-Petviashvili equation. Commun. Math. Phys. 1997, 183: 253.
    [262] A. D. Bouard, J.C. Saut, Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves. SIAM J. Math. ANAL. 1997, 28(5): 1064.
    [263] X. P. Wang, M. J. Ablowitz, H. Segur, Wave collapse and instability of solitary waves of a generalized Kadomtsev-Petviashvili equation. Physica D 1994, 78: 241.
    [264] 王启德.《应用弹性理论》,机械工业出版社,北京,1953.
    [265] 雍雪林毕业论文,2005.
    [266] Y. Chen, B. Li and H.Q. Zhang, Exact Solutions for Two nonlinear wave Equations with Nonlinear Terms of Any Order, Communications in Nonlinear Science and Numerical Simulation, 2005, 10:133-138
    [267] 谷超豪等,孤立子理论与应用,杭州:浙江科技出版社,1990.
    [268] P. A. Clarkson, Painlevé analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation. IMA J. Appl. Math., 1990, 44: 27.
    [269] 曾昕,张鸿庆,(2+1)维Boussinesq方程的Backlund变换与精确解.物理学报,2005,54(4).
    [270] M.L.Wang, Phys. Lett. A,1996,213:279.
    [271] M.L.Wang, Y.B.Zhou, Z.B. Li, Phys. Lett. A,1996,216:67.
    [272] M.L.Wang, Y.M. Wang, Phys. Lett. A,2001,287:211.
    [273] M.L.Wang,Y.M. Wang,Y.B. Zhou,Physics Letters A,2002,303:45-51.
    [274] J.F. Zhang, F.M. Wu, Chin. Phys,1999,8:326.
    [275] E.G. Fan, H.Q.Zhang, Phys. Lett. A1998,245:389.
    [276] E.G. Fan, H.Q. Zhang, Phys. Lett.A1998,246:403.
    [277] E.G. Fan, Phys.Lett. A,2000,265:353.
    [278] L. Yang,F.J. Zhang, Y.H. Wang, Chaos Solitons Fractals,2002,13:337.
    [279] Z.Y.Yan, H.Q. Zhang, Phys. Lett. A2001,285:355.
    [280] L. Yang, Z.G. Zhu, Y.H. Wang, Phys.Lett. A,1999,260:55.
    [281] V E Vekslerchik, J. Phys. A: Math. Gen. 2004,37:5667-5678.
    [282] E.G. Fan,Phys. Lett. A,2002,294:26.
    [283] Y.J.Ren,H.Q.Zhan,Physics Letters A,2006,357:438-448.
    [284] Ji Lin and Hua-mei Li, Palnlevé Integrability and Abundant Localized Structures of (2+1)-dimensional Higher Order Broer-Kaup System, Z. Naturforsch. 2002,57:929-936.
    [285] Ji Lin, Xian-min Qian, The interactions of localized coherent structures for a (2+1)-dimensional system, Phys. Lett. A, 2003,313:93-100.
    [286] Zh.Sh.Lu,H.Q.Zh,Physics Letters A,2003,307:269-273.
    [286] D.Sh.Li,H.Q.Zh, Applied Mathematics and Computation 147(2004)789-797.
    [287] Fan EG. Computer Physics Communications 2003;153: 17.
    [288] Fan EG. Integrable System and Computer Algebra.Beijing:Science Press 2004;31.
    [289] Zh.y. Yan. Chaos,Solitons and Fractals 2004;21: 1013.
    [290] D.J.Huang,H.Q.Zhang. Phys. Lett. A 344:229;2005.
    [291] Tie-ch Xia,Zh-sh Lü, H-q Zhang. Chaos, Solitons and Fractals 2004;20:561.
    [292] 庞小峰,孤立子物理学,四川:四川科学技术出版社,2003.
    [293] V. E. Zakharov and S. Wabnitz, Optical Solltons: Theoretical Challenges and Industrial Perspectives (Springer-Verlag, Berlin,1998).
    [294] M. Nakazawa, H. Kubota, K. Suzuki, and E. Yamada, Recent progress in sollton transmission technology, Chaos, 2000, 10: 486.
    [295] A. Maruta, Y. Yamamoto, S. Okamoto, A. Suziki, T. Morita, A. Agata, and A. Hasegawa, Electron. Lett. 2000, 36: 1947.
    [296] L. J. Richardson, W. Forysiak, and N.J. Doran, Trans-oceanic 160-Gb/s single-channel transmission using short-period dispersion management, IEEE Photonics Technol. Lett. 2001, 13: 209.
    [297] K. Nakkeeran, A. B. Moubissi, P. Tchofo Dinda, and S. Wabnitz, Opt. Lett. 2001, 20: 1544.
    [298] A. B. Moubissi, K. Nakkeeran, P. Tchofo Dinda, and S. Wabnitz, Average dispersion decreasing densely dispersion-managed fiber transmission systems, IEEE Photonics Teclmol. Lett. 2002, 14: 1279.
    [299] P. Tchofo Dinda, A. B. Moubissi, and K. Nakkeeran, A collective variable approach for dispersion-managed solitons, J. Phys. A 2001, 34:103.
    [300] P. Tchofo Dinda, A. B. Moubissi, and K. Nakkeeran, Phys. Rev. E 2001, 64: 016608.
    [301] A. Hasegawa, Y. Kodama, and A. Maruta, Recent Progress in Dispersion-Managed Soliton Transmission Technologies, Opt. Fiber Technol. 3, 197 (1997).
    [302] A. Hasegawa, Quasi-soliton for ultra-high speed communications, Physica D, 1998, 123: 267.
    [303] S. Kumar and A. Hasegawa, Opt. Lett., 1997, 22: 372.
    [304] Z. Y. Xu, L. Li, Z. H. Li, G.S. Zhou and K. Nakkeeran, Phys. Rev. E, 2003, 68:46605.
    [305] L. Li, Z. H. Li, Z. Y. Xu, G.S. Zhou, and Karl H. Spatschek, Phys. Rev. E, 2002, 66:46616.
    [306] R. Conte and M. Musette, Link between solitary waves and projective Riccati equations. J. Phys. A 1992, 25: 5609.
    [307] T. C. Bountis, V. Papageorgiou and P. Winternitz, On the integrability of systems of nonlinear ordinary differential equations with superposition principles. J. Math. Phys. 1986, 27: 1215. R. Anderson, J. Harnad and P. Winternitz, Systems of ordinary differential equations with nonlinear superposition principles. Physica D 1982, 4: 164.
    [308] Yan ZY.Generalized method and its application in the higher-order nonlinear Schrodinger equation in nonlinear optical fibres, Chaos, Solitons and Fractals,2003,16:759.
    [309] Zhang GX et.al. Sci China (A), (in Chinese)2000,30:1103.
    [310] Xie FD, Gao XS.Exact travelling wave solutions for a class of nonlinear partial differential equations, Chaos, Solitons and Fractals,2004,19:1113.
    [311] Chen Y,Wang Q,Li B.A generalized method and general form solutions to the Whitham-Broer-Kaup equation, Chaos, Solitons and Fractals, 2004,22:675.
    [312] Chen Y. Commun. Theor. Phys,2002,38:261.
    [313] Huang DJ,Zhang HQ.Exact travelling wave solutions for the Boiti-Leon-Pempinelli equation, Chaos, Solitons and Fract als,2004,22;243.
    [314] Zhou YB, Wang ML, Wang YM. Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys Lett A 2003;308:31-6.
    [315] Wang Mingliang ,Zhou Yubin. The Periodic Wave Solutions for the Klein2Gordn2Schr ·· odinger Equations [J]. Physics Letters A, 2003,318:84- 92.
    [316] Zhang Jinliang ,Wang Mingliang ,Cheng Dongming ,et al. The Periodic Wave Solutions for Two Nonlinear Evolution Equations[J]. Commun Theor Phys ,2003,40(2) :129 - 132.
    [317] Zhang Jinliang ,Wang Yueming ,Wang Mingliang ,et al. The Periodic Wave Solutions for the Generalized Nizhnik2Novikov2Veselov Equation[J]. Chinese Physics ,2003,12(8) :825-830.
    [318] 张金良,王跃明,王明亮,等.两类非线性方程的精确解[J].物理学报,2003,52(7):1574-1578.
    [319] Wang Mingliang ,Wang Yueming ,Zhang Jinliang. The Periodic Wave Solutions for Two Systems of Nonlinear Wave Equations[J]. Chinese Physics ,2003,12(12) :1341 - 1348.
    [320] Zhou Yubin ,Wang Mingliang ,Miao Tiande. The Periodic Wave Solutions and Solitary Wave Solutions for a Class of Tsinghua Tong-fang Optical Disc Co., Ltd. All rights reserved. Partial Differential Equations[J]. Physics Letters A ,2004,323:77 - 88.
    [321] 张金良,王明亮,王跃明,等.立方非线性Schr~(··)odinger方程的Jacobi椭圆函数周期解[J].原子与分子物理学报,2003,20(3):390-392.
    [322] Zhang Jinliang ,Wang Mingliang ,Fang Zongde. The Exact Solutions to (2 + 1)2Dimensional Nonlinear Schr~(··)odinger Equation[J].原子与分子物理学报,2004,21(1):78-82.
    [323] 李向正,王跃明,李晓燕,等.组合KdV2Burgers方程的一种解法[J].河南科技大学学报(自然科学版),2003,24(4):103-107.
    [324] 李向正,常志勇,张金良,等.非线性Schr~(··)odinger方程的包络波形式解[J].河南科技大学学报(自然科学版),2004,25(1):82-85.
    [325] 李保安,李向正,罗娜,等.n维Klein2Gordon方程的一种解法[J].河南科技大学学报(自然科学版),2004,25(1):78-81.
    [326] 李向正,王跃明,李晓燕,等.组合KdV2Burgers方程的一种解法[J].河南科技大学学报(自然科学版),2003,24(4):104-107.
    [327] 王跃明,王明亮.两个非线性偏徼分方程的分离变量解[J].洛阳工学院学报,2000,21(2):88-90.
    [328] 张金良,王跃明,王明亮,等.一般变系数KdV方程的自2BT和变速孤立波解[J].洛阳工学院学报,2000,21(3):80-82.
    [329] 王跃明,张金良,王明亮.变系数Burgers方程的BT及其非线性边值2初值问题[J].洛阳工学院学报,2000,21(3):83-86.
    [330] 李晓燕,王明亮,李保安.一个(2+1)维Burgers方程[J].洛阳工学院学报,2001,22(1):68-70.
    [331] 张金良,王跃明,李向正,等.一变系数(2+1)维微分方程的BT及其精确解[J].洛阳工学院学报,2001,22(4):84-86.
    [332] 张金良,王跃明,杨德五,等.一般非线性色散长波方程的精确解[J].洛阳工学院学报,2002,23(2):102-105.
    [333] 张金良,李向正,王明亮,等.变系数Burgers方程的一些新的精确解[J].河南科技大学学报(自然科学版),2003,24(1):108-110.
    [334] 李向正,李保安,王明亮.一个变系数广义Fisher方程的自2BT和精确解[J].河南科技大学学报(自然科学版),2003,24(3):105-107.
    [335] 李晓燕,杨德五,李向正,等.一个(2+1)维KdV方程的自2BT和多重孤立波解[J].河南科技大学学报(自然科学版),2003,24(3):108-110.
    [336] 王跃明,张小勇,尤国伟,等.动边界上burgers方程的非线性边值2初值问题[J].河南科技大学学报(自然科学版),2003,24(4):98-100.
    [337] 张金良,王跃明,刘叶青,等.非线性对流2扩散方程的一些精确解[J].河南科技大学学报(自然科学版),2003,24(4):1012103.
    [338] 李向正,李晓燕,王明亮.Jacobi椭圆函数的四个恒等式.河南科技大学学报(自然科学版),2004,25(3).
    [339] Liu Shikuo ,Fu Zuntao ,Liu Shida ,et al. Jacobi Elliptic Function Expansion Method and Periodic Wave Solutions of Nonlinear Wave Equations[J]. Physics Letters A ,2001,289:69-74.
    [340] Parkes EJ ,Dully B R.,Abbott P C. The Jacobi Elliptic2function Method for Finding Periodic2Wave Solutions to Nonlinear Evolution Equations[J]. Physics Letters A ,2002,295:280-286.
    [341] 刘式达,傅遵涛,刘式适,等.非线性波动方程的Jacobi椭圆函数包络周期解[J].物理学报,2002,51(4):718-722.
    [342] 张善卿,李志斌.Jacobi椭圆函数展开法的新应用[J].物理学报,2003,52(5):1066-1069.
    [343] 郭冠平,张解放.长短波相互作用方程的Jacobi椭圆函数求解[J].物理学报,2003,52(11):2660-2663.
    [344] Fan E,Hon BYC. Phys Lett A 2002;292:335; Fan E,Zhang J. Phys Lett A 2002;305:383.
    [345] Yan ZY. Chaos,Solitons and Fractals 2003;18:299; Yan ZY.Chaos,Solitons and Fractals 2003;15:575; Yan ZY. Comput Phys Commun 2002;148:30.
    [346] Qi Wang,Yong Chen,Zhang Hongqing.A new Jacobi elliptic function rational expansion method and its application to (1+1)-dimensional dispersive tong wave equation.Chaos,Solitons and Fractals,2005,23:477-483.
    [347] 李向正,李晓燕,王明亮.Jacobi椭圆函数的四个恒等式.河南科技大学学报(自然科学版)2004,25(3).
    [348] Jianbin Liu, Kongqing Yang. Periodic wave solutions to a coupled KdV equations with variable coefficients. Chaos, Solitons and Fractals 2004,22:111-121.
    [349] Dengshan Wang, Hong-Qing Zhang, Further improved F-expansion method and new exact solutions of Konopelchenko -Dubrovsky equation. Chaos, Solitons and Fractals,2005,25:601-610
    [350] Whitham G.B. Proc R Soc A,1967,299:6.
    [351] Broer L.J.Appl Sci Res, 1975,31:377.
    [352] Kaup D.J.Prog Theor Phys, 1975,54:369.
    [353] Kupershmidt B.A. Commun. Math. Phys,1985,99:51.
    
    [354] Ablowitz.MJ, Clarkson.PA. Solitons,nonlinear evolution equations and inverse scattering. Cambrideg: Cambridge University. Press, 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700